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This paper considers the problem of solving the saddle-point problem over a network, which consists of multiple interacting agents.
The global objective function of the problem is a combination of local convex-concave functions, each of which is only available to
one agent. Ourmain focus is on the case where the projection steps are calculated approximately and the subgradients are corrupted
by some stochastic noises. We propose an approximate version of the standard dual averaging method and show that the standard
convergence rate is preserved, provided that the projection errors decrease at some appropriate rate and the noises are zero-mean
and have bounded variance.

1. Introduction

The problem of solving optimization problems over a multi-
agent network has attracted a lot of attention in recent years
(see, e.g., [1–13]). The objective function of such problems is,
in general, a sum of local objective functions, each of which is
known to one specific agent only. Moreover, the estimates of
all agents are restricted to lie in some convex set. Duo to the
lack of a central coordinator, the methods that are developed
to solve this problem have to be executed by individual agents
through local interactions.

In this paper, we consider the multiagent saddle-point
problem where the global objective function is given as
a sum of local convex-concave functions, subject to some
global constraint. We utilize the average consensus algorithm
(see, e.g., [14–21]) as a mechanism to design a distributed
method for solving this problem. The method is based on
the standard dual averaging method (see, e.g., [1, 22]), and
it can also be viewed as an approximate version of the
distributed dual averaging method in [2]. Different from the
distributed dual averaging methods in [1–4], which require
that the projection steps have to be very accurately calculated,
the proposed method assumes that they only have to be
computed approximately. Moreover, the proposed method

also considers the case where the subgradients are corrupted
by some stochastic noises.

Literature Review. In [9], the authors develop a general
framework for solving convex optimization problem over a
network of multiple agents. Based on the average consensus
algorithms, they propose a subgradient-based method; the
method is fully distributed, in the sense that each agent
only needs to communicate with its neighbors. Different
from the work [9], the authors in [1] propose a distributed
method that is based on dual averaging of subgradients; in
particular, the authors characterize the explicit convergence
rate of the proposed method. The authors in [3] further
study the effects of communication delays on the distributed
dual averaging method. The work [4] utilizes the push-
sum algorithm as a mechanism to design a distributed
dual averaging method; the implementation of the method
removes the need for the doubly stochastic communication
matrices. In [2], the authors solve the saddle-point problem
over amultiagent network; the objective function is given as a
sum ofmultiple convex-concave functions. Based on the dual
averaging method, the authors propose a distributed method
and characterize its convergence rate.

The contribution of our work in this paper is mainly
twofold. First, we propose an approximate dual averaging
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method, and the implementation of the method does not
need to calculate the projection steps accurately. We show
how the projection errors affect the error bound of the
method and conclude that the standard convergence rate is
preserved when the errors decrease at some appropriate rate.
Second, we further consider the case where the subgradients
are corrupted by stochastic noises that are zero-mean and
have bounded variance, andwe also highlight the dependence
of the error bound on the variance.

In contrast with the work [22], we solve the saddle-point
problem over a multiagent network; in particular, we show
that the standard convergence rate 𝑂(1/√𝑇) (where 𝑇 is the
iteration counter) is preserved, even when the projection
steps are computed approximately and the subgradients
are corrupted by some stochastic noises. In contrast with
the work [2], we propose an approximate version of the
distributed dual averaging method and show that if the
projection errors decrease at some appropriate rate, the
standard convergence rate is preserved.

The remainder of this paper is organized as follows.
Section 2 gives a formal statement of the multiagent saddle-
point problem and the underlying network model. Section 3
presents themethod and itsmain convergence results. Finally,
we conclude with Section 4.

Notation and Terminology. We use R𝑑 to denote the 𝑑-
dimensional vector space. We denote the standard inner
product on R𝑑 by ⟨𝑥, 𝑦⟩ = ∑

𝑑

𝑖=1
𝑥𝑖𝑦𝑖, for all 𝑥, 𝑦 ∈ R𝑑. Let

M be a closed convex set in R𝑑. We say ℎ(𝑥) is a proximal
function of the set M if it is continuous and strongly convex
onMwith respect to some norm ‖ ⋅‖; that is, for all 0 ≤ 𝜃 ≤ 1,
ℎ(𝜃𝑥1 + (1 − 𝜃)𝑥2) ≤ 𝜃ℎ(𝑥1) + (1 − 𝜃)ℎ(𝑥2) − (𝜎/2)𝜃(1 −

𝜃)‖𝑥1 − 𝑥2‖
2, for all 𝑥1, 𝑥2 ∈ M, where 𝜎 is some positive

scalar. We define the proximal center of the set M by 𝑥0 =

argmin𝑥∈Mℎ(𝑥). For R𝑛 × R𝑚, we introduce the following
norm: ‖𝑥‖ := [𝛾𝜎𝑤‖𝑤‖

2

2
+ (1 − 𝛾)𝜎𝑧‖𝑧‖

2

2
]
1/2, where 𝛾 ∈ (0, 1),

‖ ⋅ ‖2 denotes the Eculidean norm, and 𝜎𝑤 and 𝜎𝑧 are the
parameters that will be specified in the sequel. This implies
the following dual norm of 𝜏 = (𝜏𝑤, 𝜏𝑧) ∈ R𝑛 × R𝑚: ‖𝜏‖∗ =

[(‖𝜏𝑤‖
2

2
/𝛾𝜎𝑤) + (‖𝜏𝑧‖

2

2
/(1 − 𝛾)𝜎𝑧)]

1/2. A vectorG(𝑦0) is called
a subgradient of a convex function 𝑓 : R𝑑 → R at 𝑦0 ∈ R𝑑 if,
for all 𝑦, 𝑓(𝑦) ≥ 𝑓(𝑦0) + ⟨𝑦 − 𝑦0,G(𝑦0)⟩. The supergradient
of a concave function can be defined accordingly.

2. Problem Setup

2.1. Communication Network Model. We consider a time-
varying network with 𝑁 agents. The network can be viewed
as a directed graph with node set V = {1, . . . , 𝑁} and
time-varying link set. The information exchange at time 𝑘 is
modeled through using the communication matrix 𝑃(𝑘) =

[𝑝𝑖𝑗(𝑘)]𝑖,𝑗∈V
∈ R𝑁×𝑁, which induces the link set E(𝑃(𝑘));

E(𝑃(𝑘)) is the set of activated links at time 𝑘, defined as
E(𝑃(𝑘)) = {(𝑗, 𝑖) | 𝑝𝑖𝑗(𝑘) > 0, 𝑖, 𝑗 ∈ V}. We represent
the agents’ connectivity at each time 𝑘 by a directed graph
G(𝑘) = (V,E(𝑃(𝑘))).

2.2. Multiagent Saddle-Point Problem. In this paper, we are
interested in solving the following problem:

min
𝑤∈W

max
𝑧∈Z

𝑁

∑

𝑖=1

L
𝑖
(𝑤, 𝑧) , (1)

whereW andZ are convex and compact sets inR𝑛 andR𝑚,
respectively, and eachL𝑖 is a convex-concave function defined
overW × Z known only by agent 𝑖.

We refer to a vector pair (𝑤
∗
, 𝑧
∗
) ∈ W × Z as a saddle

point of L := ∑
𝑁

𝑖=1
L𝑖 overW × Z if

L (𝑤
∗
, 𝑧) ≤ L (𝑤

∗
, 𝑧
∗
) ≤ L (𝑤, 𝑧

∗
) , ∀𝑤 ∈ W, 𝑧 ∈ Z.

(2)

Note that such a vector pair (𝑤∗, 𝑧∗) is a solution to problem
(1).

We now make some assumptions on problem (1). For the
setW, we assume that there exists a proximal function ℎ𝑤(𝑤)

with proximal center and convex parameter denoted by 𝑤0

and 𝜎𝑤, respectively. Without loss of generality, we assume
that ℎ𝑤(𝑤0) = 0. For the set Z we introduce the similar
assumptions and notations; that is, ℎ𝑧(𝑧0) = 0. Therefore, for
𝑥 = (𝑤, 𝑧) ∈ X := W×Z, it is natural to introduce a proximal
function ℎ(𝑥) of the setX, given by

ℎ (𝑥) = 𝛾ℎ𝑤 (𝑤) + (1 − 𝛾) ℎ𝑧 (𝑧) , 𝛾 ∈ (0, 1) . (3)

It is easy to see that the proximal center ofX is 𝑥0 = (𝑤0, 𝑧0)

and ℎ(𝑥0) = 0. Furthermore, we denote 𝐻 := max𝑥∈Xℎ(𝑥).

3. Main Results

3.1. The Method and Assumptions. We now propose the
method, which is based on the method in [2]. Specifically,
each agent 𝑖 ∈ V updates its estimates by setting (𝑘 =

0, 1, . . .):

𝜑
𝑖

𝑘+1
=

𝑁

∑

𝑗=1

𝑝𝑖𝑗 (𝑘) 𝜑
𝑗

𝑘
+ G𝑖
𝑘
+ 𝜙
𝑖

𝑘
, (4)

𝑥
𝑖

𝑘+1
= 𝜋
𝜉𝑘+1
𝛼𝑘+1

(−𝜑
𝑖

𝑘+1
) , (5)

where 𝜑
𝑖

0
= 0 ∈ R𝑛 × R𝑚, 𝑥𝑖

0
= 𝑥0, G𝑖𝑘 = (G𝑖

𝑤
(𝑥
𝑖

𝑘
), −G𝑖
𝑧
(𝑥
𝑖

𝑘
))

(G𝑖
𝑤
(𝑥
𝑖

𝑘
) and G𝑖

𝑧
(𝑥
𝑖

𝑘
) denote a subgradient of L𝑖 with respect

to 𝑤 and a supergradient of L𝑖 with respect to 𝑧 at point
𝑥
𝑖

𝑘
, respectively), 𝜙

𝑖

𝑘
∈ R𝑛 × R𝑚 is the stochastic noise

vector in evaluatingG𝑖
𝑘
, {𝛼𝑘+1} is a positive and nondecreasing

sequence, 𝜋𝛼(𝜑) := argmin𝑥∈X{−⟨𝑥, 𝜑⟩ + 𝛼ℎ(𝑥)}, and 𝜋
𝜉

𝛼
(𝜑)

satisfies the following two properties:

(i) 𝜋
𝜉

𝛼
(𝜑) ∈ X, (ii) 

𝜋
𝜉

𝛼
(𝜑) − 𝜋𝛼 (𝜑)


≤ 𝜉, (6)

where 𝜉 is a positive scalar that represents the error in
computing the next iterate by a projection defined by the
proximal function ℎ and parameter 𝛼. Note that 𝜋𝜉

𝛼
(𝜑) is not

uniquely defined for each 𝜉.
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In the paper, we make the following assumptions.

Assumption 1 (connectivity). For all 𝑘 ≥ 0, there exists a
positive integer𝐵 such that the directed graph (V,E(𝑃(𝑘𝐵))∪

⋅ ⋅ ⋅ ∪ E(𝑃((𝑘 + 1)𝐵 − 1))) is strongly connected.

Assumption 2 (weightmatrix). For all 𝑘 ≥ 0, the communica-
tion matrix 𝑃(𝑘) satisfies the following properties: (i) 𝑃(𝑘) is
doubly stochastic and (ii) there exists a positive scalar 𝜁 such
that 𝑝𝑖𝑖(𝑘) ≥ 𝜁 for all 𝑖 ∈ V. In addition, if 𝑝𝑖𝑗(𝑘) > 0, then
𝑝𝑖𝑗(𝑘) ≥ 𝜁 for all 𝑖, 𝑗 ∈ V.

Assumption 3 (bounded subgradients). We assume that the
following inequalities hold for all 𝑖 ∈ V and 𝑥 ∈ X:


G𝑖
𝑤
(𝑥)

2
≤ 𝐺W,


G𝑖
𝑧
(𝑥)

2
≤ 𝐺Z, (7)

where 𝐺W and 𝐺Z are positive scalars.

Assumption 4 (stochastic subgradient). We assume that the
stochastic noise vector 𝜙

𝑖

𝑘
satisfies the following properties,

for all 𝑖 ∈ V and 𝑘 ≥ 0:

(i) E [𝜙
𝑖

𝑘
] = 0, (ii) E [


𝜙
𝑖

𝑘



2

∗
] ≤ Φ

2
, (8)

where Φ is some positive constant.

3.2. Convergence Results. We show convergence of the
method (4) and (5) via local average pair (𝑤

V
𝑡
, �̂�

V
𝑡
) defined at

each agent V ∈ V,

𝑤
V
𝑇

=
1

𝑇

𝑇−1

∑

𝑘=0

𝑤
V
𝑘
, �̂�

V
𝑇

=
1

𝑇

𝑇−1

∑

𝑘=0

𝑧
V
𝑘
, (9)

where 𝑇 ≥ 1 is the iteration counter.
With the assumptions made in Section 3.1, we have the

following main convergence result.

Theorem 5. Under Assumptions 1, 2, 3, and 4, consider a
sequence {𝑥𝑖

𝑘+1
} generated according to the method (4) and (5),

with step and projection error sizes:

𝛼0 = 𝐶𝛼, 𝛼𝑘 = 𝐶𝛼
√𝑘, for 𝑘 ≥ 1,

𝜉0 = 0, 𝜉𝑘 =
𝐶𝜉

√𝑘
, for 𝑘 ≥ 1,

(10)

where𝐶𝛼 and𝐶𝜉 are some positive scalars. Let (𝑤∗, 𝑧∗) ∈ W×

Z be a saddle point of L(𝑤, 𝑧), and then, for each agent V ∈ V
and all 𝑇 ≥ 1, we have

E [
L (𝑤

V
𝑇
, �̂�

V
𝑇
) − L (𝑤

∗
, 𝑧
∗
)
]

≤
1

√𝑇
[2𝑅𝜉𝐶𝜉 + 𝑁𝐻𝐶𝛼 + 2𝑅𝛼𝐶𝛼] ,

(11)

where 𝑅𝜉 = 𝑁(5𝐺X + Φ), 𝑅𝛼 = (𝑁/𝜎)((1/2)(𝐺X + Φ)
2
+

(𝐺X+Φ)𝑅+4𝐺X𝑅),𝐺X = [(𝐺
2

W/𝛾𝜎𝑤) + (𝐺
2

Z/(1 − 𝛾)𝜎𝑧)]
1/2,

𝑅 = ((𝑁𝐵/𝑉(1 − 𝑉)) + 2)(𝐺X + Φ), and 𝑉 = 1 − (𝜁/4𝑁
2
).

Proof. See The Appendix.

Remark 6. Theorem 5 represents the main convergence of
the method (4) and (5), which shows that the function
value L(𝑤V

𝑡
, �̂�

V
𝑡
) converges to L(𝑤∗, 𝑧∗) at rate 𝑂(1/√𝑇) in

expectation, for each V ∈ V. It is easy to see that the
error bound is an increasing function of the noise magnitude
Φ. It is worth noting that, in method (4) and (5), we have
considered the case where the subgradients are corrupted
by stochastic noises that are zero-mean and have bounded
variance, and moreover, the projection steps are calculated
only approximately. In fact, the proposed method converges
when the projection error 𝜉𝑘 decreases as 𝑂(1/𝑘

𝑎
), where

𝑎 > 0. However, for the case when 0 < 𝑎 < 1/2, the 𝑂(1/√𝑇)

convergence rate cannot be achieved.

Remark 7. As compared to the work [2], we show that the
standard 𝑂(1/√𝑇) convergence rate for the dual averag-
ing method is preserved, under the assumption that the
projection steps are only computed approximately, and the
subgradients are corrupted by some stochastic noises as well.
As compared to [23], the proposedmethod solves the saddle-
point problem in a distributed setting, and the expected
convergence rate is also established.

4. Conclusion

We have studied the problem of solving saddle-point prob-
lems over a multiagent network. The objective function is
given as a sum of local convex-concave functions, subject
to some global constraint. Based on the average consensus
algorithm and the dual averaging method, we propose an
approximate dual averagingmethod under the constraint that
the projection steps are computed approximately and the
subgradients are corrupted by stochastic noises. Finally, we
have presented the main convergence results of the proposed
method.

Appendix

Proof of Theorem 5

We provide three lemmas which will be used for the proof of
Theorem 5.

Lemma A.1 (see [7]). Let Assumptions 1 and 2 hold. Then

[P(𝑘, 𝑠)]𝑖𝑗 −

1

𝑁


≤ 𝑉
⌈(𝑘−𝑠+1)/𝐵⌉−2

, (A.1)

where P(𝑘, 𝑠) = 𝑃(𝑠)𝑃(𝑠 + 1) ⋅ ⋅ ⋅ 𝑃(𝑘− 1)𝑃(𝑘), for all 𝑘 ≥ 𝑠 ≥ 0.

Lemma A.2. Under Assumptions 1, 2, 3, and 4, consider a
sequence {𝜑𝑖

𝑘+1
} generated according to the method (4) and (5),

and then, for all 𝑘 ≥ 0,

max
V∈V

E [
𝜑𝑘+1 − 𝜑

V
𝑘+1

∗
] ≤ (

𝑁𝐵

𝑉 (1 − 𝑉)
+ 2) (𝐺X + Φ) ,

(A.2)

where 𝜑
𝑘+1

= (1/𝑁)∑
𝑁

𝑖=1
𝜑
𝑖

𝑘+1
.
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Proof. We can compute the general evolution of 𝜑
𝑖

𝑘+1
as

follows, by referring to (4):

𝜑
𝑖

𝑘+1
=

𝑁

∑

𝑗=1

𝑝𝑖𝑗 (𝑘) 𝜑
𝑗

𝑘
+ G𝑖
𝑘
+ 𝜙
𝑖

𝑘

=

𝑁

∑

𝑗=1

[P (𝑘, 0)]𝑖𝑗𝜑
𝑗

0
+

𝑘

∑

𝑠=1

𝑁

∑

𝑗=1

[P (𝑘, 𝑠)]𝑖𝑗G
𝑗

𝑠−1

+

𝑘

∑

𝑠=1

𝑁

∑

𝑗=1

[P(𝑘, 𝑠)]𝑖𝑗𝜙
𝑗

𝑠−1
+ G𝑖
𝑘
+ 𝜙
𝑖

𝑘
.

(A.3)

In a similar way, for 𝜑
𝑘
, we have

𝜑
𝑘+1

= 𝜑
0
+

𝑘

∑

𝑠=1

1

𝑁

𝑁

∑

𝑖=1

G𝑖
𝑠−1

+

𝑘

∑

𝑠=1

1

𝑁

𝑁

∑

𝑖=1

𝜙
𝑖

𝑠−1

+
1

𝑁

𝑁

∑

𝑖=1

G𝑖
𝑘
+

1

𝑁

𝑁

∑

𝑖=1

𝜙
𝑖

𝑘
.

(A.4)

Hence by noting that 𝜑𝑖
0
= 0 for all 𝑖 it follows that


𝜑
𝑘+1

− 𝜑
𝑖

𝑘+1

∗
≤

𝑘

∑

𝑠=1

𝑁

∑

𝑗=1


[P (𝑘, 𝑠)]𝑖𝑗 −

1

𝑁




G𝑗
𝑠−1

∗

+

𝑘

∑

𝑠=1

𝑁

∑

𝑗=1


[P (𝑘, 𝑠)]𝑖𝑗 −

1

𝑁




𝜙
𝑗

𝑠−1

∗
+


G𝑖
𝑘

∗

+



1

𝑁

𝑁

∑

𝑖=1

G𝑖
𝑘

∗

+

𝜙
𝑖

𝑘

∗
+



1

𝑁

𝑁

∑

𝑖=1

𝜙
𝑖

𝑘

∗

.

(A.5)

Note that 𝑥𝑖
𝑘
∈ X (cf. (6)), for all 𝑖 ∈ V and 𝑘 ≥ 0. Hence, we

can use the definition of the dual norm and Assumption 3 to
bound ‖G𝑖

𝑘
‖
∗
as follows:


G𝑖
𝑘

∗
≤ [

𝐺
2

W

𝛾𝜎𝑤

+
𝐺
2

Z

(1 − 𝛾)𝜎𝑧

]

1/2

= 𝐺X. (A.6)

This, along with Lemma A.2, leads to the following estimate:

E [

𝜑
𝑘+1

− 𝜑
𝑖

𝑘+1

∗
] ≤

𝑘

∑

𝑠=1

𝑁

∑

𝑗=1

𝑉
⌈(𝑘−𝑠+1)/𝐵⌉−2

(𝐺X + Φ)

+ 2 (𝐺X + Φ) ,

(A.7)

where we have used the inequality E[‖𝜙
𝑖

𝑘
‖
∗
] ≤

[E[‖𝜙
𝑖

𝑘
‖
2

∗
]]
1/2

≤ Φ, according to Assumption 4. Hence,
the desired result follows by using the inequality that
∑
𝑘

𝑠=1
∑
𝑁

𝑗=1
𝑉
⌈(𝑘−𝑠+1)/𝐵⌉−2

≤ 𝑁𝐵/𝑉(1 − 𝑉).

Lemma A.3 (see [22]). For function Ψ𝛼(𝜑) := max𝑥∈X{⟨𝑥 −

𝑥0, 𝜑⟩ − 𝛼ℎ(𝑥)}, where 𝑥0 is the proximal center ofX and 𝛼 is
some positive scalar, we have the following.

(a) Function Ψ𝛼(⋅) is convex and differentiable, and its
gradient satisfies ∇Ψ𝛼(𝜑) = 𝜋𝛼(𝜑) − 𝑥0.

(b) ‖∇Ψ𝛼(𝜑1) − ∇Ψ𝛼(𝜑2)‖ ≤ (1/𝜎𝛼)‖𝜑1 − 𝜑2‖∗, for all
𝜑1, 𝜑2 ∈ R𝑛 × R𝑚.

(c) Function Ψ𝛼(⋅) satisfies Ψ𝛼(𝜑 + Δ𝜑) ≤ Ψ𝛼(𝜑) +

⟨∇Ψ𝛼(𝜑), Δ𝜑⟩ + (1/2𝜎𝛼)‖Δ𝜑‖
2

∗
, for all 𝜑, Δ𝜑 ∈ R𝑛 ×

R𝑚.

Proof of Theorem 5. First, we introduce the following gap
sequence, for all 𝑇 ≥ 1:

Λ 𝑇 := max
𝑥∈X

{

𝑇−1

∑

𝑘=0

𝑁

∑

𝑖=1

⟨𝑥
V
𝑘
− 𝑥,G𝑖

𝑘
+ 𝜙
𝑖

𝑘
⟩} . (A.8)

Bounding E[Λ 𝑇]. It is easy to see that

E [Λ 𝑇] = E[max
𝑥∈X

{

𝑇−1

∑

𝑘=0

𝑁

∑

𝑖=1

⟨𝑥
V
𝑘
− 𝑥,G𝑖

𝑘
+ E [𝜙

𝑖

𝑘
]⟩}]

= E[max
𝑥∈X

{

𝑇−1

∑

𝑘=0

𝑁

∑

𝑖=1

⟨𝑥
V
𝑘
− 𝑥,G𝑖

𝑘
⟩}] ,

(A.9)

where we have used Assumption 4; that is, E[𝜙
𝑖

𝑘
] = 0.

Breaking Λ 𝑇 into two parts, we have

Λ 𝑇 = max
𝑥∈X

{

𝑇−1

∑

𝑘=0

𝑁

∑

𝑖=1

⟨𝑥0 − 𝑥,G𝑖
𝑘
+ 𝜙
𝑖

𝑘
⟩}

+

𝑇−1

∑

𝑘=0

𝑁

∑

𝑖=1

⟨𝑥
V
𝑘
− 𝑥0,G

𝑖

𝑘
+ 𝜙
𝑖

𝑘
⟩ .

(A.10)

For the first term on the right-hand side of (A.10), we can
follow an argument similar to that of the proof of Theorem 1
in [2] to provide the following bound:

𝑁Ψ𝛼𝑇
(−

1

𝑁

𝑇−1

∑

𝑘=0

𝑁

∑

𝑖=1

(G𝑖
𝑘
+ 𝜙
𝑖

𝑘
)) + 𝑁𝐻𝛼𝑇

= 𝑁Ψ𝛼𝑇
(−𝜑
𝑇
) + 𝑁𝐻𝛼𝑇,

(A.11)

where we have used (A.4), while for the second term, we
achieve this in the following way. By recalling the definition
of 𝜑
𝑘+1

, we have

𝜑
𝑘+1

=
1

𝑁

𝑁

∑

𝑖=1

𝜑
𝑖

𝑘+1

=
1

𝑁

𝑁

∑

𝑗=1

[

𝑁

∑

𝑖=1

𝑝𝑖𝑗 (𝑘)] 𝜑
𝑗

𝑘
+

1

𝑁

𝑁

∑

𝑖=1

G𝑖
𝑘
+

1

𝑁

𝑁

∑

𝑖=1

𝜙
𝑖

𝑘

= 𝜑
𝑘
+ G𝑘 + 𝜙

𝑘
,

(A.12)

where G𝑘 = (1/𝑁)∑
𝑁

𝑖=1
G𝑖
𝑘
, 𝜙
𝑘
= (1/𝑁)∑

𝑁

𝑖=1
𝜙
𝑖

𝑘
, and the last

equality follows from the fact that the weight matrix 𝑃(𝑘) is
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double stochastic (cf. Assumption 2).Then, we investigate the
sequence {Ψ𝛼𝑘

(−𝜑
𝑘
)}; that is,

Ψ𝛼𝑘+1
(−𝜑
𝑘+1

) ≤ Ψ𝛼𝑘
(−𝜑
𝑘+1

)

= Ψ𝛼𝑘
(−𝜑
𝑘
− G𝑘 − 𝜙

𝑘
)

≤ Ψ𝛼𝑘
(−𝜑
𝑘
) − ⟨∇Ψ𝛼𝑘

(−𝜑
𝑘
) ,G𝑘 + 𝜙

𝑘
⟩

+
1

2𝜎𝛼𝑘


G𝑘 + 𝜙

𝑘



2

∗
.

(A.13)

It turns out that, for the term ∇Ψ𝛼𝑘
(−𝜑
𝑘
), we have

∇Ψ𝛼𝑘
(−𝜑
𝑘
) = 𝜋𝛼𝑘

(−𝜑
𝑘
) − 𝑥0

= 𝜋𝛼𝑘
(−𝜑

V
𝑘
) − 𝑥0 + 𝜋𝛼𝑘

(−𝜑
𝑘
) − 𝜋𝛼𝑘

(−𝜑
V
𝑘
)

= 𝜋
𝜉𝑘
𝛼𝑘

(−𝜑
V
𝑘
) − 𝑥0 + 𝜋𝛼𝑘

(−𝜑
V
𝑘
) − 𝜋
𝜉𝑘
𝛼𝑘

(−𝜑
V
𝑘
)

+ 𝜋𝛼𝑘
(−𝜑
𝑘
) − 𝜋𝛼𝑘

(−𝜑
V
𝑘
) ,

(A.14)

where the first equality follows from Lemma A.3(a). Hence,
we can bound the term −⟨∇Ψ𝛼𝑘

(−𝜑
𝑘
),G𝑘 + 𝜙

𝑘
⟩ as follows:

− ⟨∇Ψ𝛼𝑘
(−𝜑
𝑘
) ,G𝑘 + 𝜙

𝑘
⟩

≤ −⟨𝜋
𝜉𝑘
𝛼𝑘

(−𝜑
V
𝑘
) − 𝑥0,G𝑘 + 𝜙

𝑘
⟩

+

𝜋𝛼𝑘

(−𝜑
V
𝑘
) − 𝜋
𝜉𝑘
𝛼𝑘

(−𝜑
V
𝑘
)



G𝑘 + 𝜙

𝑘

∗

+

𝜋𝛼𝑘

(−𝜑
𝑘
) − 𝜋𝛼𝑘

(−𝜑
V
𝑘
)



G𝑘 + 𝜙

𝑘

∗
.

(A.15)

By recalling property (ii) of the approximate projection (6)
and Lemma A.3(b), we can further obtain

− ⟨∇Ψ𝛼𝑘
(−𝜑
𝑘
) ,G𝑘 + 𝜙

𝑘
⟩

≤ −⟨𝑥
V
𝑘
− 𝑥0,G𝑘 + 𝜙

𝑘
⟩ + 𝜉𝑘


G𝑘 + 𝜙

𝑘

∗

+
1

𝜎𝛼𝑘

𝜑𝑘 − 𝜑
V
𝑘

∗


G𝑘 + 𝜙

𝑘

∗
,

(A.16)

where the equality 𝜋
𝜉𝑘
𝛼𝑘
(−𝜑

V
𝑘
) = 𝑥

V
𝑘
was used, which holds

for 𝑘 ≥ 0 (for 𝑘 = 0, it is easy to verify that 𝜋
𝜉𝑘
𝛼𝑘
(−𝜑

V
𝑘
) =

𝜋𝛼𝑘
(0) = 𝑥0). Substituting (A.16) into (A.13) and then taking

the expectation, we obtain

E [⟨𝑥
V
𝑘
− 𝑥0,G𝑘 + 𝜙

𝑘
⟩]

≤ Ψ𝛼𝑘
(−𝜑
𝑘
) − Ψ𝛼𝑘+1

(−𝜑
𝑘+1

) + 𝜉𝑘E [

G𝑘 + 𝜙

𝑘

∗
]

+
1

𝜎𝛼𝑘

E [
𝜑𝑘 − 𝜑

V
𝑘

∗
]E [


G𝑘 + 𝜙

𝑘

∗
]

+
1

2𝜎𝛼𝑘

E [

G𝑘 + 𝜙

𝑘



2

∗
]

≤ Ψ𝛼𝑘
(−𝜑
𝑘
) − Ψ𝛼𝑘+1

(−𝜑
𝑘+1

) + (𝐺X + Φ) 𝜉𝑘

+
𝐺X + Φ

𝜎𝛼𝑘

E [
𝜑𝑘 − 𝜑

V
𝑘

∗
] +

1

2𝜎𝛼𝑘

(𝐺X + Φ)
2
,

(A.17)

where we have used the bounds ‖G𝑘‖∗ ≤ 𝐺X and E[‖𝜙
𝑘
‖
∗
] ≤

Φ. Hence, combining the inequalities (A.10), (A.11), and
(A.17) yields

E [Λ 𝑇] ≤ 𝑁

𝑇−1

∑

𝑘=0

[Ψ𝛼𝑘
(−𝜑
𝑘
) − Ψ𝛼𝑘+1

(−𝜑
𝑘+1

)]

+ 𝑁 (𝐺X + Φ)

𝑇−1

∑

𝑘=0

𝜉𝑘

+
𝑁 (𝐺X + Φ)

𝜎

𝑇−1

∑

𝑘=0

1

𝛼𝑘

E [
𝜑𝑘 − 𝜑

V
𝑘

∗
]

+
𝑁(𝐺X + Φ)

2

2𝜎

𝑇−1

∑

𝑘=0

1

𝛼𝑘

+ 𝑁Ψ𝛼𝑇
(−𝜑
𝑇
) + 𝑁𝐻𝛼𝑇

= 𝑁 (𝐺X + Φ)

𝑇−1

∑

𝑘=0

𝜉𝑘 + 𝑁𝐻𝛼𝑇

+
𝑁(𝐺X + Φ)

2

2𝜎

𝑇−1

∑

𝑘=0

1

𝛼𝑘

+
𝑁 (𝐺X + Φ)

𝜎

𝑇−1

∑

𝑘=0

1

𝛼𝑘

E [
𝜑𝑘 − 𝜑

V
𝑘

∗
] ,

(A.18)

where we have used the fact that Ψ𝛼0(−𝜑
0
) = 0.

Bounding E[|L(𝑤V
𝑇
, �̂�

V
𝑇
) −L(𝑤∗, 𝑧∗)|]. Following an argument

similar to that of the proof ofTheorem 1 in [2], we can arrive
at

1

𝑇
E [Λ 𝑇] ≥ E[max

𝑧∈Z
{

1

𝑇

𝑇−1

∑

𝑘=0

L (𝑤
V
𝑘
, 𝑧)}]

− E[min
𝑤∈W

{
1

𝑇

𝑇−1

∑

𝑘=0

L (𝑤, 𝑧
V
𝑘
)}]

−
2

𝑇

𝑇−1

∑

𝑘=0

𝑁

∑

𝑖=1

𝐺XE [

𝑥
𝑖

𝑘
− 𝑥

V
𝑘


]

≥ E [max
𝑧∈Z

L (𝑤
V
𝑇
, 𝑧)] − E [min

𝑤∈W
L (𝑤, �̂�

V
𝑇
)]

−
2𝐺X

𝑇

𝑇−1

∑

𝑘=0

𝑁

∑

𝑖=1

E [

𝑥
𝑖

𝑘
− 𝑥

V
𝑘


] ,

(A.19)
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where we have used the fact that L is a convex-concave
function. By recalling the definition of a saddle point (2), we
have

max
𝑧∈Z

L (𝑤
V
𝑇
, 𝑧) ≥ L (𝑤

V
𝑇
, 𝑧
∗
) ≥ L (𝑤

∗
, 𝑧
∗
) ,

min
𝑤∈W

L (𝑤, �̂�
V
𝑇
) ≤ L (𝑤

∗
, �̂�

V
𝑇
) ≤ L (𝑤

∗
, 𝑧
∗
) ,

(A.20)

which further implies

L (𝑤
V
𝑇
, �̂�

V
𝑇
) − L (𝑤

∗
, 𝑧
∗
)
 ≤ max
𝑧∈Z

L (𝑤
V
𝑇
, 𝑧) − min

𝑤∈W
L (𝑤, �̂�

V
𝑇
) .

(A.21)

By substituting the preceding inequality into (A.19) leads to

E [
L (𝑤

V
𝑇
, �̂�

V
𝑇
) − L (𝑤

∗
, 𝑧
∗
)
]

≤
1

𝑇
E [Λ 𝑇] +

2𝐺X

𝑇

𝑇−1

∑

𝑘=0

𝑁

∑

𝑖=1

E [

𝑥
𝑖

𝑘
− 𝑥

V
𝑘


] .

(A.22)

It remains to bound max𝑖,V∈VE[‖𝑥
𝑖

𝑘
− 𝑥

V
𝑘
‖]. We will use

Lemma A.2 to achieve this. Using the update (5), we have


𝑥
𝑖

𝑘
− 𝑥

V
𝑘


=


𝜋
𝜉𝑘
𝛼𝑘

(−𝜑
𝑖

𝑘
) − 𝜋
𝜉𝑘
𝛼𝑘

(−𝜑
V
𝑘
)


=

𝜋𝛼𝑘

(−𝜑
𝑖

𝑘
) − 𝜋𝛼𝑘

(−𝜑
V
𝑘
) + 𝜋
𝜉𝑘
𝛼𝑘

(−𝜑
𝑖

𝑘
)

−𝜋𝛼𝑘
(−𝜑
𝑖

𝑘
) + 𝜋𝛼𝑘

(−𝜑
V
𝑘
) − 𝜋
𝜉𝑘
𝛼𝑘

(−𝜑
V
𝑘
)


≤

𝜋𝛼𝑘

(−𝜑
𝑖

𝑘
) − 𝜋𝛼𝑘

(−𝜑
V
𝑘
)


+

𝜋
𝜉𝑘
𝛼𝑘

(−𝜑
𝑖

𝑘
) − 𝜋𝛼𝑘

(−𝜑
𝑖

𝑘
)


+

𝜋𝛼𝑘

(−𝜑
V
𝑘
) − 𝜋
𝜉𝑘
𝛼𝑘

(−𝜑
V
𝑘
)


≤
1

𝜎𝛼𝑘


𝜑
𝑖

𝑘
− 𝜑

V
𝑘

∗
+ 2𝜉𝑘,

(A.23)

where we have used Lemma A.3 and the property (ii) of the
approximate projection (6). Using Lemma A.2 it follows that

max
𝑖,V∈V

E [

𝑥
𝑖

𝑘
− 𝑥

V
𝑘


] ≤ (

𝑁𝐵

𝑉 (1 − 𝑉)
+ 2) (𝐺X + Φ)

2

𝜎𝛼𝑘

+ 2𝜉𝑘

=
2𝑅

𝜎
⋅

1

𝛼𝑘

+ 2𝜉𝑘.

(A.24)

Combining the inequalities (A.18), (A.22), and (A.24) gives

E [
L (𝑤

V
𝑇
, �̂�

V
𝑇
) − L (𝑤

∗
, 𝑧
∗
)
]

≤ (𝑁 (𝐺X + Φ) + 4𝑁𝐺X)
1

𝑇

𝑇−1

∑

𝑘=0

𝜉𝑘 + 𝑁𝐻
𝛼𝑇

𝑇

+ (
𝑁(𝐺X + Φ)

2

2𝜎
+

𝑁 (𝐺X + Φ)𝑅

𝜎
+

4𝑁𝐺X𝑅

𝜎
)

×
1

𝑇

𝑇−1

∑

𝑘=0

1

𝛼𝑘

.

(A.25)

We are left to bound the terms (1/𝑇)∑
𝑇−1

𝑘=0
𝜉𝑘 and

(1/𝑇)∑
𝑇−1

𝑘=0
(1/𝛼𝑘). By recalling the definition of the sequence

{𝜉𝑘}, we have

1

𝑇

𝑇−1

∑

𝑘=0

𝜉𝑘 =
𝐶𝜉

𝑇
[1 +

𝑇−1

∑

𝑘=2

1

√𝑘
]

≤
𝐶𝜉

𝑇
[1 + ∫

𝑇−1

1

1

√𝑢
d𝑢]

=
𝐶𝜉

𝑇
[2√𝑇 − 1 − 1]

≤
2𝐶𝜉

√𝑇
.

(A.26)

In a similar way, we have (1/𝑇)∑
𝑇−1

𝑘=0
𝛼𝑘 ≤ 2𝐶𝛼/

√𝑇; therefore,
the desired result follows by substituting this and (A.26) into
(A.25). The proof is complete.
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