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Anewdifference system is induced fromadifferential competition systemby different discretemethods.We give theoretical analysis
for local bifurcation of the fixed points and derive the conditions under which the local bifurcations such as flip occur at the
fixed points. Furthermore, one- and two-dimensional diffusion systems are given when diffusion terms are added. We provide the
Turing instability conditions by linearizationmethod and inner product technique for the diffusion systemwith periodic boundary
conditions. A series of numerical simulations are performed that not only verify the theoretical analysis, but also display some
interesting dynamics.

1. Introduction

Interactions of different species may take many forms such as
competition, predation, parasitism, and mutualism. One of
the most important interactions is the competition relation-
ship. The dynamic relationship between the two competition
species is one of the dominant subjects in mathematical
ecology due to its universal existence and importance. Lotka-
Volterra competition systems are ecological models that
describe the interaction among various competing species
and have been extensively investigated in recent years (see
[1–3] and the references therein). In the earlier literature,
the two-competing species competition models are often
formulated in the form of ordinary differential systems as
follows:

𝑢
󸀠

(𝑡) = 𝑢 (𝑡) (𝑟
1
− 𝑎
11
𝑢 (𝑡) − 𝑎

12
V (𝑡)) ,

V󸀠 (𝑡) = V (𝑡) (𝑟
2
− 𝑎
21
V (𝑡) − 𝑎

22
V (𝑡)) ,

(1)

for 𝑡 ∈ [0, +∞) 𝑎
𝑖𝑗
≥ 0, 𝑖, 𝑗 = 1, 2, where 𝑢(𝑡) and V(𝑡) are the

quantities of the two species at time 𝑡, 𝑟
1
> 0 and 𝑟

2
> 0 are

growth rates of the respective species, 𝑎
11

and 𝑎
22

represent
the strength of the intraspecific competition, and 𝑎

12
and 𝑎
21

represent the strength of the interspecific competition.
The discrete timemodels governed by difference equation

are more realistic than the continuous ones when the pop-
ulations have nonoverlapping generations or the population
statistics are compiled from given time intervals and not

continuously. Moreover, since the discrete time models can
also provide efficient computational models of continuous
models for numerical simulations, it is reasonable to study
discrete time models governed by difference equations.

Applying forward Euler scheme to the first equation of
system (1) and obtaining a discrete analog of the second
equation by considering a variation with piecewise constant
arguments for certain terms on the right side (exponential
discrete form) [4], we obtain the following equation:

𝑢
𝑡+1

= 𝑢
𝑡
(𝑟
1
− 𝑎
11
𝑢
𝑡
− 𝑎
12
V
𝑡
) ,

V
𝑡+1

= V
𝑡
exp (𝑟

2
− 𝑎
21
𝑢
𝑡
− 𝑎
22
V
𝑡
) .

(2)

For the sake of simplicity, let

𝑢
𝑡+1

= 𝑢
𝑡
(𝑟
1
+ 1 − 𝑎

11
𝑢
𝑡
− 𝑎
12
V
𝑡
) ,

V
𝑡+1

= V
𝑡
exp (𝑟

2
− 𝑎
21
𝑢
𝑡
− 𝑎
22
V
𝑡
) .

(3)

By setting𝑈
𝑡
= 𝑎
11
𝑢
𝑡
and𝑉
𝑡
= 𝑎
22
V
𝑡
and 𝑟
1
= 𝑟
2
, 𝑎
11
= 𝑎
22
,

and 𝑎
12
= 𝑎
21
, we have the following form:

𝑢
𝑡+1

= 𝑢
𝑡
(𝑟 + 1 − 𝑢

𝑡
− 𝑎V
𝑡
) = 𝑓 (𝑢

𝑡
, V
𝑡
) ,

V
𝑡+1

= V
𝑡
exp (𝑟 − 𝑎𝑢

𝑡
− V
𝑡
) = 𝑔 (𝑢

𝑡
, V
𝑡
) .

(4)

Although numerical variations of system (1) have been
extensively studied (see, e.g., thework in [5–8]), somediscrete
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analogs may be found in [9–15], regarding attractivity, persis-
tence, global stabilities of equilibrium, and other dynamics.
Up to now, to the best of our knowledge, the discrete system
(4) has not been investigated.

Since the pioneering theoretical works of Skellam [15] and
Turing [16], many works have focused on the effect of spatial
factors which play a crucial role in the stability of populations
[17–19]. Many important epidemiological and ecological
phenomena are strongly influenced by spatial heterogeneities
because of the localized nature of transmission or other forms
of interaction. Thus, spatial models are more suitable for
describing the process of population development. Impact of
spatial component on system has been widely investigated
(e.g., see [20–22]). It may be a case in reality that the motion
of individuals is random and isotropic; that is, without any
preferred direction, the individuals are also absolute ones in
microscopic sense, and each isolated individual exchanges
materials by diffusion with its neighbors [19, 23]. Thus,
it is reasonable to consider a 1D or 2D spatially discrete
reaction diffusion system to explain the population system.
Corresponding to the above analysis, we can obtain the
following one-dimensional diffusion systems:

𝑢
𝑡+1

𝑖
= 𝑢
𝑡

𝑖
(𝑟 + 1 − 𝑢

𝑡

𝑖
− 𝑎V𝑡
𝑖
) + 𝑑
1
∇
2
𝑢
𝑡

𝑖
,

V𝑡+1
𝑖

= V𝑡
𝑖
exp (𝑟 − 𝑎𝑢𝑡

𝑖
− V𝑡
𝑖
) + 𝑑
2
∇
2V𝑡
𝑖
,

(5)

for 𝑖 ∈ {1, 2, . . . , 𝑚} = [1,𝑚], 𝑡 ∈ 𝑍+ and ∇2𝑢𝑡
𝑖
= 𝑢
𝑡

𝑖+1
− 2𝑢
𝑡

𝑖
+

𝑢
𝑡

𝑖−1
, ∇2V𝑡
𝑖
= V𝑡
𝑖+1

− 2V𝑡
𝑖
+ V𝑡
𝑖−1

, and two-dimensional diffusion
systems:

𝑢
𝑡+1

𝑖𝑗
= 𝑢
𝑡

𝑖𝑗
(𝑟 + 1 − 𝑢

𝑡

𝑖𝑗
− 𝑎V𝑡
𝑖𝑗
) + 𝑑
1
∇
2
𝑢
𝑡

𝑖𝑗
,

V𝑡+1
𝑖𝑗

= V𝑡
𝑖𝑗
exp (𝑟 − 𝑎𝑢𝑡
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2
∇
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,

(6)

for 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑚} = [1,𝑚], 𝑡 ∈ 𝑅+ = [0,∞) and ∇2𝑢𝑡
𝑖𝑗
=

𝑢
𝑡

𝑖+1,𝑗
+ 𝑢
𝑡

𝑖,𝑗+1
+ 𝑢
𝑡

𝑖−1,𝑗
+ 𝑢
𝑡

𝑖,𝑗−1
− 4𝑢
𝑡

𝑖𝑗
, ∇2V𝑡
𝑖𝑗
= V𝑡
𝑖+1,𝑗

+ V𝑡
𝑖,𝑗+1

+

V𝑡
𝑖−1,𝑗

+ V𝑡
𝑖,𝑗−1

− 4V𝑡
𝑖𝑗
.

In this paper, we will study the dynamical behaviors of
models (4), (5), and (6). By using the theory of difference
equation, the theory of bifurcation, and the center manifold
theoremwewill establish the series of criteria on the existence
and local stability of equilibria, flip bifurcation for the system
(4). For the one- or two-dimensional diffusion systems,
with periodic boundary conditions, the Turing instability
(or Turing bifurcation) theory analysis will be given. Tur-
ing instability conditions can then be deduced combining
linearization method and inner product technique. Further-
more, bymeans of the numerical simulationsmethod, we will
indicate the correctness and rationality of our results.

The paper is organized as follows. In Section 2, we
study the existence and stability of equilibria points and the
conditions of existence for flip bifurcation are verified for
system (4). Turing instability conditions will be illustrated
by linearization method and inner product technique for the
system (5) and (6) with periodic boundary conditions in
Section 3. A series of numerical simulations are performed
that not only verify the theoretical analysis, but also dis-
play some interesting dynamics. For the system (4), the

bifurcation diagrams are given. The impact of the system
parameters and diffusion coefficients on patterns can also
be observed visually for the given diffusion systems. Finally,
some conclusions are given.

2. Analysis of Equilibria and Flip Bifurcation

Clearly, the system (4) has four possible steady states; that is,
𝐸
0
= (0, 0), exclusion points 𝐸

1
= (𝑟, 0), 𝐸

2
= (0, 𝑟), and

nontrivial coexistence point 𝐸
3
= (𝑢
∗
, V∗), where

𝑢
∗
= V∗ =

𝑟

𝑎 + 1

. (7)

The linearized form of (4) is then

𝑢
𝑡+1

= 𝑓
𝑢
𝑢
𝑡
+ 𝑓VV𝑡,

V
𝑡+1

= 𝑔
𝑢
𝑢
𝑡
+ 𝑔VV𝑡,

(8)

which has the Jacobian matrix

𝐽
𝐸𝑖
= [

𝑓
𝑢
𝑓V

𝑔
𝑢
𝑔V
]

𝑃𝑖

= [

1 − 𝑢 −𝑎𝑢

−𝑎V 1 − V]
𝑃𝑖

, 𝑖 = 0, 1, 2, 3. (9)

The characteristic equation of the Jacobian matrix 𝐽 can
be written as

𝜆
2
+ 𝑝𝜆 + 𝑞 = 0, (10)

where 𝑝 = −(𝑓
𝑢
+ 𝑔V) and 𝑞 = 𝑓𝑢𝑔V − 𝑓V𝑔𝑢.

In order to discuss the stability of the fixed points of (4),
we also need the following definitions [20]:

(1) if |𝜆
1
| < 1 and |𝜆

2
| < 1, then steady state 𝐸 is called a

sink and 𝐸 is locally asymptotically stable;
(2) if |𝜆

1
| > 1 and |𝜆

2
| > 1, then 𝐸 is called a source and

𝐸 is unstable;
(3) if |𝜆

1
| > 1 and |𝜆

2
| < 1 (or |𝜆

1
| < 1 and |𝜆

2
| > 1),

then 𝐸 is called a saddle;
(4) if either |𝜆

1
| = 1 and |𝜆

2
| ̸= 1 or |𝜆

2
| = 1 and |𝜆

1
| ̸= 1,

then 𝐸 is called nonhyperbolic.

Case 1 (the fixed point 𝐸
0
= (0, 0)). The linearization of (4)

about 𝐸
0
has the Jacobian matrix

𝐽
𝐸0
= [

1 0

0 1
] , (11)

which has two eigenvalues

𝜆
1
= 𝜆
2
= 1. (12)

The fact means that the system is resonance at the fixed point
𝑃
0
.

Case 2 (the fixed point 𝐸
1
= (0, 𝑟)). At the fixed point, the

Jacobian matrix has the form

𝐽
𝐸1
= [

1 0

−𝑎𝑟 1 − 𝑟
] , (13)
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and the corresponding eigenvalues of (13) are

𝜆
1
= 1, 𝜆

2
= 1 − 𝑟. (14)

𝑟 is a bifurcation parameter. And 𝑟 ̸= 2 implies 𝜆
2
̸= − 1, and

the fixed point 𝐸
1
is nonhyperbolic.

Case 3 (the third fixed point 𝐸
2
= (𝑟, 0)). The linearization of

(4) about 𝐸
2
has the Jacobian matrix

𝐽
𝐸1
= [

1 − 𝑟 −𝑎𝑟

0 1
] , (15)

and the eigenvalues of (15) are

𝜆
1
= 1 − 𝑟, 𝜆

2
= 1. (16)

𝑟 is a bifurcation parameter. And 𝑟 ̸= 2 implies 𝜆
1
̸= − 1, and

the fixed point 𝐸
2
is nonhyperbolic.

Case 4 (the fixed point 𝐸
3
= (𝑟/(𝑎 + 1), 𝑟/(𝑎 + 1))). The

linearization of (4) about 𝐸
3
has the Jacobian matrix

𝐽
𝐸3
=
[

[

[

1 −

𝑟

𝑎 + 1

−

𝑎𝑟

𝑎 + 1

−

𝑎𝑟

𝑎 + 1

1 −

𝑟

𝑎 + 1

]

]

]

, (17)

and the eigenvalues of (17) are

𝜆
1
= 1 − 𝑟, 𝜆

2
= 1 +

(𝑎 − 1) 𝑟

𝑎 + 1

; (18)

then, we have the following results:

(1) |𝜆
1
| < 1, |𝜆

2
| < 1 if and only if 0 < 𝑟 < 2, 0 < 𝑎 < 1;

(2) 𝜆
1
= −1, |𝜆

2
| ̸= 1 if and only if 𝑟 = 2, 𝑎 ̸= 1;

(3) 𝜆
2
= 1, |𝜆

1
| ̸= 1 if and only if 𝑎 = 2, 𝑟 ̸= 2;

(4) 𝜆
2
= −1, |𝜆

1
| ̸= 1 if and only if 𝑎 = (𝑟−2)/(𝑟+2), 𝑟 ̸= 2;

(5) |𝜆
1
| < 1, |𝜆

2
| > 1 if and only if 0 < 𝑟 < 2, 𝑎 > 1;

(6) |𝜆
1
| > 1, |𝜆

2
| < 1 if and only if 2 < 𝑟 < (𝑎+ 1)/(𝑎 − 1);

(7) |𝜆
1
| > 1, |𝜆

2
| > 1 if and only if 𝑟 > 2, 𝑎 > 1.

The following theorem is the case that the fixed point 𝐸
3
is a

flip bifurcation point.

Theorem 1. The positive fixed point 𝐸
3
undergoes a flip

bifurcation at the threshold 𝑟
𝐹
= 2.

Proof. Let 𝜁
𝑛
= 𝑢
𝑛
− 𝑢
∗, 𝜂
𝑛
= V
𝑛
− V∗, and 𝜇

𝑛
= 𝑟 − 2, and

parameter 𝜇
𝑛
is a new and dependent variable; the system (4)

becomes

(

𝜁
𝑛+1

𝜂
𝑛+1

𝜇
𝑛+1

) =(

(𝜁
𝑛
+

𝜇
𝑛
+ 2

𝑎 + 1

) (1 − 𝜁
𝑛
− 𝑎𝜂
𝑛
) −

𝜇
𝑛
+ 2

𝑎 + 1

(𝜂
𝑛
+

𝜇
𝑛
+ 2

𝑎 + 1

) exp (−𝑎𝜁
𝑛
− 𝜂
𝑛
) −

𝜇
𝑛
+ 2

𝑎 + 1

𝜇
𝑛

).

(19)

Let

𝑇 =
[

[

1 −1 0

1 1 0

0 0 1

]

]

; (20)

then

𝑇
−1
=

[

[

[

[

[

[

[

1

2

1

2

0

−

1

2

1

2

0

0 0 1

]

]

]

]

]

]

]

. (21)

By the following transformation:

(

𝜁
𝑛

𝜂
𝑛

𝜇
𝑛

) = 𝑇(

𝑥
𝑛

𝑦
𝑛

𝛿
𝑛

) , (22)

the system (19) can be changed into

(

𝑥
𝑛+1

𝑦
𝑛+1

𝛿
𝑛+1

) = (

−1 0 0

0

3𝑎 − 1

𝑎 + 1

0

0 0 1

)(

𝑥
𝑛

𝑦
𝑛

𝛿
𝑛

) + (

𝑓 (𝑥
𝑛
, 𝑦
𝑛
, 𝛿
𝑛
)

𝑔 (𝑥
𝑛
, 𝑦
𝑛
, 𝛿
𝑛
)

0

) ,

(23)

where

𝑓 (𝑥
𝑛
, 𝑦
𝑛
, 𝛿
𝑛
) = − (𝑎 + 1) 𝑥

2

𝑛
− 2 (𝑎 + 1) 𝑥

𝑛
𝑦
𝑛
− 𝑥
𝑛
𝛿
𝑛

+ (𝑎 − 1 +

(𝑎 − 1)
2

𝑎 + 1

)𝑦
2

𝑛

+ 𝑜 ((
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑦
𝑛

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝛿
𝑛

󵄨
󵄨
󵄨
󵄨
)
3

) ,

𝑔 (𝑥
𝑛
, 𝑦
𝑛
, 𝛿
𝑛
) = (𝑎 + 1) 𝑥

2

𝑛
− 2 (𝑎 + 1) 𝑥

𝑛
𝑦
𝑛

−

2 (𝑎 − 1)

𝑎 + 1

𝑦
𝑛
𝛿
𝑛
+

(𝑎 − 1)
2

𝑎 + 1

𝑦
2

𝑛

+ 𝑜 ((
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑦
𝑛

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝛿
𝑛

󵄨
󵄨
󵄨
󵄨
)
3

) .

(24)

Then, we can consider

𝑦
𝑛
= ℎ (𝑥

𝑛
, 𝛿
𝑛
) = 𝑎
1
𝑥
2

𝑛
+ 𝑎
2
𝑥
𝑛
𝛿
𝑛
+ 𝑎
3
𝛿
2

𝑛
+ 𝑜 ((

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝛿
𝑛

󵄨
󵄨
󵄨
󵄨
)
3

) ,

(25)

which must satisfy

ℎ (−𝑥
𝑛
+ 𝑓 (𝑥

𝑛
, 𝑦
𝑛
, 𝛿
𝑛
) , 𝛿
𝑛+1
)

=

3𝑎 − 1

𝑎 + 1

ℎ (𝑥
𝑛
, 𝛿
𝑛
) + (𝑎 + 1) 𝑥

2

𝑛

− 2 (𝑎 + 1) 𝑥
𝑛
ℎ (𝑥
𝑛
, 𝛿
𝑛
)

−

2 (𝑎 − 1)

𝑎 + 1

ℎ (𝑥
𝑛
, 𝛿
𝑛
) 𝛿
𝑛

+

(𝑎 − 1)
2

𝑎 + 1

ℎ
2
(𝑥
𝑛
, 𝛿
𝑛
)

+ 𝑜 ((
󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑦
𝑛

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝛿
𝑛

󵄨
󵄨
󵄨
󵄨
)
3

) .

(26)
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By calculating, we can get that

𝑎
1
=

(𝑎 + 1)
2

2 (1 − 𝑎)

, 𝑎
2
= 0, 𝑎

3
= 0, (27)

and the system (19) is restricted to the center manifold, which
is given by

𝑓 : 𝑥
𝑛+1

= − 𝑥
𝑛
+

𝑎
3
+ 4𝑎
2
+ 3𝑎

𝑎 − 1

𝑥
2

𝑛
+ (𝑎 + 1) 𝑥

𝑛
𝛿
𝑛

+

1

4

(𝑎 + 1)
3
𝑥
4

𝑛
+ 𝑜 (

󵄨
󵄨
󵄨
󵄨
𝑥
𝑛

󵄨
󵄨
󵄨
󵄨

4

) .

(28)

Since

(

𝜕𝑓

𝜕𝛿

𝜕
2
𝑓

𝜕𝑥
2
+ 2

𝜕
2
𝑓

𝜕𝑥𝜕𝛿

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨(0,0)

= 2 (𝑎 + 1) ̸= 0,

(

1

2

(

𝜕
2
𝑓

𝜕𝑥
2
)

2

+

1

3

𝜕
3
𝑓

𝜕𝑥
3
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨(0,0)

= 2(

𝑎
3
+ 4𝑎
2
+ 3𝑎

𝑎 − 1

)

2

> 0,

(29)

system (4) undergoes a flip bifurcation at 𝐸
3
. The proof is

completed.

3. Turing Bifurcation

In this section, we discuss the Turing bifurcation. Turing’s
theory shows that diffusion could destabilize an otherwise
stable equilibrium of the reaction-diffusion system and lead
to nonuniform spatial patterns. This kind of instability is
usually calledTuring instability or diffusion-driven instability
[16].

3.1. One-Dimensional Case. We consider the following diffu-
sion system:

𝑢
𝑡+1

𝑖
= 𝑢
𝑡

𝑖
(𝑟 + 1 − 𝑢

𝑡

𝑖
− 𝑎V𝑡
𝑖
) + 𝑑
1
∇
2
𝑢
𝑡

𝑖
,

V𝑡+1
𝑖

= V𝑡
𝑖
exp (𝑟 − 𝑎𝑢𝑡

𝑖
− V𝑡
𝑖
) + 𝑑
2
∇
2V𝑡
𝑖
,

(30)

with the periodic boundary conditions

𝑢
𝑡

0
= 𝑢
𝑡

𝑚
, 𝑢

𝑡

1
= 𝑢
𝑡

𝑚+1
,

V𝑡
0
= V𝑡
𝑚
, V𝑡

1
= V𝑡
𝑚+1

,

(31)

for 𝑖 ∈ {1, 2, . . . , 𝑚} = [1,𝑚] and 𝑡 ∈ 𝑍+, where𝑚 is a positive
integer,

∇
2
𝑢
𝑡

𝑖
= 𝑢
𝑡

𝑖+1
− 2𝑢
𝑡

𝑖
+ 𝑢
𝑡

𝑖−1
,

∇
2V𝑡
𝑖
= V𝑡
𝑖+1

− 2V𝑡
𝑖
+ V𝑡
𝑖−1
.

(32)

In order to study Turing instability of (30) and (31), we
firstly consider eigenvalues of the following equation:

∇
2
𝑋
𝑖
+ 𝜆𝑋
𝑖
= 0 (33)

with the periodic boundary conditions

𝑋
0
= 𝑋
𝑚
, 𝑋

1
= 𝑋
𝑚+1

. (34)

By calculating, the eigenvalue problem (33)-(34) has the
eigenvalues

𝜆
𝑠
= 4sin2 (𝑠 − 1) 𝜋

𝑚

for 𝑠 ∈ [1,𝑚] . (35)

We linearise at the steady state, to get

𝑤
𝑡+1

𝑖
= 𝐽𝑤
𝑡

𝑖
+ 𝐷∇
2
𝑤
𝑡

𝑖
, 𝐷 = (

𝑑
1
0

0 𝑑
2

) (36)

with the periodic boundary conditions

𝑤
𝑡

0
= 𝑤
𝑡

𝑚
, 𝑤

𝑡

1
= 𝑤
𝑡

𝑚+1
, (37)

where

𝑤
𝑡

𝑖
= (

𝑢
𝑡

𝑖
− 𝑢
∗

V𝑡
𝑖
− V∗

) = (

𝑥
𝑡

𝑖

𝑦
𝑡

𝑖

) . (38)

Then, respectively, taking the inner product of (36) with
the corresponding eigenfunction 𝑋𝑖

𝑠
of the eigenvalue 𝜆

𝑠
, we

see that
𝑚

∑

𝑖=1

𝑋
𝑖

𝑠
𝑥
𝑡+1

𝑖
= 𝑓
𝑢

𝑚

∑

𝑖=1

𝑋
𝑖

𝑠
𝑥
𝑡

𝑖
+ 𝑓V

𝑚

∑

𝑖=1

𝑋
𝑖

𝑠
𝑦
𝑡

𝑖
+ 𝑑
1

𝑚

∑

𝑖=1

𝑋
𝑖

𝑠
∇
2
𝑥
𝑡

𝑖
,

𝑚

∑

𝑖=1

𝑋
𝑖

𝑠
𝑦
𝑡+1

𝑖
= 𝑔
𝑢

𝑚

∑

𝑖=1

𝑋
𝑖

𝑠
𝑥
𝑡

𝑖
+ 𝑔V

𝑚

∑

𝑖=1

𝑋
𝑖

𝑠
𝑦
𝑡

𝑖
+ 𝑑
2

𝑚

∑

𝑖=1

𝑋
𝑖

𝑠
∇
2
𝑦
𝑡

𝑖
.

(39)

Let 𝑈𝑡 = ∑𝑚
𝑖=1
𝑋
𝑖

𝑠
𝑥
𝑡

𝑖
and 𝑉𝑡 = ∑𝑚

𝑖=1
𝑋
𝑖

𝑠
𝑦
𝑡

𝑖
and use the periodic

boundary conditions (34) and (37); then we have

𝑈
𝑡+1

= 𝑓
𝑢
𝑈
𝑡
+ 𝑓V𝑉

𝑡
− 𝑑
1
𝜆
𝑠
𝑈
𝑡
,

𝑉
𝑡+1

= 𝑔
𝑢
𝑈
𝑡
+ 𝑔V𝑉

𝑡
− 𝑑
2
𝜆
𝑠
𝑉
𝑡

(40)

or

𝑈
𝑡+1

= (𝑓
𝑢
− 𝑑
1
𝜆
𝑠
) 𝑈
𝑡
+ 𝑓V𝑉

𝑡
,

𝑉
𝑡+1

= 𝑔
𝑢
𝑈
𝑡
+ (𝑔V − 𝑑2𝜆𝑠) 𝑉

𝑡
.

(41)

Thus, the following fact can be obtained.

Proposition 2. If (𝑢𝑡
𝑖
, V𝑡
𝑖
) is a solution of the problem of (30)

and (31), then

(𝑈
𝑡
=

𝑚

∑

𝑖=1

𝑋
𝑖

𝑠
𝑥
𝑡

𝑖
, 𝑉
𝑡
=

𝑚

∑

𝑖=1

𝑋
𝑖

𝑠
𝑦
𝑡

𝑖
) (42)

is a solution of (41), where 𝜆
𝑠
is some eigenvalue of (33)-(34)

and𝑋𝑖
𝑠
is the corresponding eigenfunction. For some eigenvalue

𝜆
𝑠
of (33)-(34), if (𝑈𝑡, 𝑉𝑡) is a solution of the system (41), then

(𝑢
𝑡

𝑖
= 𝑈
𝑡
𝑋
𝑖

𝑠
, V𝑡
𝑖
= 𝑉
𝑡
𝑋
𝑖

𝑠
) (43)

is a solution of (30)with the periodic boundary conditions (31).
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Proposition 3. If there exist positive numbers 𝑑
1
, 𝑑
2
and the

eigenvalue 𝜆
𝑠
of the problem (33)-(34) such that one of the

conditions

ℎ (𝜆
𝑠
) < (𝜆

𝑠
(𝑑
1
+ 𝑑
2
) − (𝑓

𝑢
∗ + 𝑔V∗)) − 1,

ℎ (𝜆
𝑠
) < − (𝜆

𝑠
(𝑑
1
+ 𝑑
2
) − (𝑓

𝑢
∗ + 𝑔V∗)) − 1

(44)

or

ℎ (𝜆
𝑠
) > 1 (45)

holds, then the problem (30) and (31) at the fixed point (𝑢∗, V∗)
is unstable, where

ℎ (𝜆
𝑠
) = 𝑑
1
𝑑
2
𝜆
2

𝑠
− (𝑑
1
𝑔V∗ + 𝑑2𝑓𝑢∗) 𝜆𝑠 + (𝑓𝑢∗𝑔V∗ − 𝑓V∗𝑔𝑢∗) .

(46)

For the system (5), we have the following results about
instability of the positive equilibrium of system.

Theorem 4. 0 < 𝑟 < 2, 0 < 𝑎 < 1 and Proposition 3 mean or
show that the problem (30) and (31) is diffusion-driven unstable
or Turing unstable.

3.2. Two-Dimensional Case. In this subsection, we will pay
our attention to the Turing instability analysis for the follow-
ing two-dimensional system:

𝑢
𝑡+1

𝑖𝑗
= 𝑢
𝑡

𝑖𝑗
(𝑟 + 1 − 𝑢

𝑡

𝑖𝑗
− 𝑎V𝑡
𝑖𝑗
) + 𝑑
1
∇
2
𝑢
𝑡

𝑖𝑗
,

V𝑡+1
𝑖𝑗

= V𝑡
𝑖𝑗
exp (𝑟 − 𝑎𝑢𝑡

𝑖𝑗
− V𝑡
𝑖𝑗
) + 𝑑
2
∇
2V𝑡
𝑖𝑗
,

(47)

with the periodic boundary conditions

𝑢
𝑡

𝑖,0
= 𝑢
𝑡

𝑖,𝑚
, 𝑢

𝑡

𝑖,1
= 𝑢
𝑡

𝑖,𝑚+1
,

𝑢
𝑡

0,𝑗
= 𝑢
𝑡

𝑚,𝑗
, 𝑢

𝑡

1,𝑗
= 𝑢
𝑡

𝑚+1,𝑗
,

V𝑡
𝑖,0
= V𝑡
𝑖,𝑚
, V𝑡

𝑖,1
= V𝑡
𝑖,𝑚+1

,

V𝑡
0,𝑗
= V𝑡
𝑚,𝑗
, V𝑡

1,𝑗
= V𝑡
𝑚+1,𝑗

,

(48)

for 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑚} = [1,𝑚] and 𝑡 ∈ 𝑍
+, where 𝑚 is a

positive integer,

∇
2
𝑢
𝑡

𝑖𝑗
= 𝑢
𝑡

𝑖+1,𝑗
+ 𝑢
𝑡

𝑖,𝑗+1
+ 𝑢
𝑡

𝑖−1,𝑗
+ 𝑢
𝑡

𝑖,𝑗−1
− 4𝑢
𝑡

𝑖𝑗
,

∇
2V𝑡
𝑖𝑗
= V𝑡
𝑖+1,𝑗

+ V𝑡
𝑖,𝑗+1

+ V𝑡
𝑖−1,𝑗

+ V𝑡
𝑖,𝑗−1

− 4V𝑡
𝑖𝑗
.

(49)

The following theoremwill show that the system (47) also
undergoes Turing instability. Since the analysis is very similar
to the one-dimensional case, the proof is omitted.

Theorem 5. If there exist positive numbers 𝑑
1
, 𝑑
2
and the

eigenvalue 𝑘2
𝑙𝑠
of the corresponding characteristic equation such

that one of the conditions

ℎ (𝑘
2

𝑙𝑠
) < (𝑘

2

𝑙𝑠
(𝑑
1
+ 𝑑
2
) − (𝑓

𝑢
∗ + 𝑔V∗)) − 1,

ℎ (𝑘
2

𝑙𝑠
) < − (𝑘

2

𝑙𝑠
(𝑑
1
+ 𝑑
2
) − (𝑓

𝑢
∗ + 𝑔V∗)) − 1

(50)
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Figure 1: Bifurcation diagram for 𝑟 − 𝑢
𝑡
with 𝑎 = 0.511.

or

ℎ (𝑘
2

𝑙𝑠
) > 1 (51)

holds and 0 < 𝑟 < 2, 0 < 𝑎 < 1 then the problem (47)-(48) at
the fixed point (𝑢∗, V∗) is diffusion-driven unstable or Turing
unstable, where

ℎ (𝑘
2

𝑙𝑠
) = 𝑑
1
𝑑
2
𝑘
4

𝑙𝑠
− (𝑑
1
𝑔V∗ + 𝑑2𝑓𝑢∗) 𝑘

2

𝑙𝑠
+ (𝑓
𝑢
∗𝑔V∗ − 𝑓V∗𝑔𝑢∗) ,

𝑘
2

𝑙𝑠
= 𝜆
𝑙,𝑠
= 4(sin2 ((𝑙 − 1) 𝜋

𝑚

) + sin2 ((𝑠 − 1) 𝜋
𝑚

))

𝑓𝑜𝑟 𝑙, 𝑠 ∈ [1,𝑚] .

(52)

4. Numerical Simulation

As is known to all, the bifurcation diagram provides a general
view of the evolution process of the dynamical behaviors
by plotting a state variable with the abscissa being one
parameter. As a parameter varies, the dynamics of the system
we concerned change through a local or global bifurcation
which leads to the change of stability at the same time.

Now, 𝑟 is considered as a parameter with the range 0.5–
3.5 for the system (4). Since the bifurcation diagrams of 𝑟−𝑢

𝑡

are similar to the bifurcation diagrams of 𝑟 − V
𝑡
, we will only

show the former which can be seen from Figure 1.
Next, we performed a series of simulations for the

reaction-diffusion systems, and, in each, the initial condi-
tion was always a small amplitude random perturbation
1% around the steady state. As a numerical example, we
consider the bifurcation of the two-dimensional system (47)-
(48). It is well known that Turing instability (bifurcation) is
diffusion-driven instability; thus the diffusion rate is vital to
the pattern formation. To investigate the effect of diffusion
coefficients on patterns, by keeping all the other parameters
of the system fixed (𝑎 = 0.55, 𝑟 = 0.71, and 𝑑

1
= 0.22),

we change a diffusion coefficient in the Turing instability
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Figure 2: Pattern selection with the increase of 𝑑
2
in the Turing instability region when 𝑎 = 0.55, 𝑟 = 0.71, and 𝑑

1
= 0.22. (a) 𝑑

2
= 0.195.

(b) 𝑑
2
= 0.20. (c) 𝑑

2
= 0.205. (d) 𝑑

2
= 0.21. (e) 𝑑

2
= 0.215. (f) 𝑑

2
= 0.217.

region (parameter space which satisfies Turing instability).
Figures 2(a)–2(f) exhibit in detail the different distribution
of patterns with varying values of 𝑑. If we let 𝑑

2
= 0.19,

a stable pattern of square shapes, namely, stationary wave,

is observed in Figure 2(a). With the increase of 𝑑
2
, some

tips appear, which attempt to form self-centered spiral waves
(Figure 2(b)).Then some tips vanish and some tend to evolve
to regular spiral waves, shown in Figure 2(c). Then, with the
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parameter evolution proceeding, the size of spiral waves rises,
but the density of them decreases (see Figure 2(d)). If 𝑑

2
is

further increased, we observe that, in parts of patterns, spiral
waves begin to break up. Hardly can spiral waves be seen,
disorder and chaotic structure are depicted in Figures 2(e)
and 2(f).

5. Discussion and Conclusion

In this paper, we have applied different discrete schemes to
convert the continuous Lotka-Volterra competition model
to a new discrete model and studied the dynamical charac-
teristic of the discrete model. Our theoretical analysis and
numerical simulations have demonstrated that the discrete
competition model undergoes flip bifurcation. Furthermore,
when the effects of spatial factors are considered, we discuss
the Turing instability conditions combining linearization
method and inner product technique. The impact of the dif-
fusion coefficients on patterns can also be observed visually,
and some interesting situations can be observed. Indeed, the
new discrete model can result in a rich set of patterns and we
expect that it is more effective in practice.
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