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Based on complex network, this paper proposes a novel computer virus propagation model which is motivated by the traditional
SEIRQmodel. A systematic analysis of this newmodel shows that the virus-free equilibrium is globally asymptotically stable when
its basic reproduction is less than one, and the viral equilibrium is globally attractive when the basic reproduction is greater than
one. Some numerical simulations are finally given to illustrate the main results, implying that these results are applicable to depict
the dynamics of virus propagation.

1. Introduction

Computer viruses, including the narrowly defined viruses
and network worms, are loosely defined as malicious codes
that can replicate themselves and spread among computers.
Usually, computer viruses attack computer systems directly,
while worms mainly attack computers by searching for sys-
temor software vulnerabilities.With the rapid popularization
of the Internet andmobile wireless networks, network viruses
have posed a major threat to our work and life. To thwart
the fast spread of computer viruses, it is critical to have
a comprehensive understanding of the way that computer
viruses propagate. Kephart and White [1] proposed the first
epidemiological model of computer viruses. From then on,
much effort has been done in developing virus spreading
models [1–15]. On the other hand, it was found [16–18] that
the Internet topology follows the “scale-free” (SF) networks;
that is, the probability that a given node is connected to 𝑘

other nodes follows a power-law of the form 𝑃(𝑘) ∼ 𝑘
−𝜏,

with the remarkable feature that 𝜏 ≤ 3 for most real-world
networks. This finding has greatly stimulated the interest
in understanding the impact of network topology on virus
spreading [16–29].

Recently, Mishra and Jha [2] investigated a so-called
SEIQRS model on a homogeneous network by making the
following assumptions.

(H1) The population has a homogeneous degree distribu-
tion.

(H2) The total population of computers is divided into
five groups: susceptible, exposed, infected, quarantine
and recovered computers. Let 𝑆, 𝐸, 𝐼, 𝑄, and 𝑅

denote the numbers of susceptible, exposed, infected,
quarantine, and recovered computers, respectively.

(H3) New computers are attached to the Internet at rate 𝐴.

(H4) Computers are disconnected from the Internet natu-
rally at a constant rate 𝑑 and removedwith probability
𝛼 due to the attack of malicious objects.

(H5) 𝑆 computers become 𝐸 with constant rate 𝜌; 𝑅 com-
puters become 𝑆 with constant rate 𝜂; 𝐸 computers
become 𝐼 with constant rate 𝜇; 𝐼 computers become
𝑄 with constant rate 𝛿; 𝐼 computers become 𝑅 with
constant rate 𝛾;𝑄 computers become 𝑅with constant
rate 𝜀.

According to the above assumptions, the following model is
derived (see Figure 1):

𝑆


(𝑡) = 𝐴 − 𝜌𝑆𝐼 − 𝑑𝑆 + 𝜂𝑅,

𝐸


(𝑡) = 𝜌𝑆𝐼 − (𝑑 + 𝜇) 𝐸,
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Figure 1: Original model.

𝐼


(𝑡) = 𝜇𝐸 − (𝑑 + 𝛼 + 𝛾 + 𝛿) 𝐼,

𝑄


(𝑡) = 𝛿𝐼 − (𝛼 + 𝜀 + 𝑑) 𝑄,

𝑅


(𝑡) = 𝛾𝐼 + 𝜀𝑄 − (𝑑 + 𝜂) 𝑅.

(1)

In view of the fact that the Internet topology is scale-free
rather than exponential in its degree distribution [17, 18, 23],
this paper addresses the dynamics of a scale-free network-
based SEIQRS model.

For convenience, computers on the Internet are called as
nodes in the sequel. For our purpose, the following additional
assumptions are imposed on the previous SEIQRS model.

(H6) The node degrees of the network asymptotically
follow a power-law distribution, 𝑃(𝑘) ∼ 𝑘

−𝜏, where
𝑃(𝑘) stands for the probability that a node chosen
randomly from the Internet is of degree 𝑘.

(H7) The total number of nodes does not change or,
equivalently, 𝐴 = 0, 𝑑 = 0, and 𝛼 = 0.

(H8) 𝑆
𝑘

(𝑡): the relative density of 𝑘-degree 𝑆-nodes; 𝐸
𝑘

(𝑡):
the relative density of 𝑘-degree 𝐸-nodes; 𝐼

𝑘

(𝑡): the
relative density of 𝑘-degree 𝐼-nodes; 𝑄

𝑘

(𝑡): the rela-
tive density of 𝑘-degree 𝑄-nodes; 𝑅

𝑘

(𝑡): the relative
density of 𝑘-degree 𝑅-nodes; 𝑆

𝑘

(𝑡) + 𝐸
𝑘

(𝑡) + 𝐼
𝑘

(𝑡) +

𝑄
𝑘

(𝑡) + 𝑅
𝑘

(𝑡) = 1.
(H9) The probability that a link has an 𝐼-node as one

endpoint does not depend on the degree of the other
endpoint of the link and, hence, is only a function
of 𝐼(𝑡) := (𝐼

1

(𝑡), 𝐼
2

(𝑡), . . . , 𝐼
𝑛

(𝑡)). Let Θ(𝐼(𝑡)) denote
the probability, Θ(𝐼(𝑡)) = (1/⟨𝑘⟩) ∑

𝑘

𝑘𝑃(𝑘)𝐼
𝑘

, where,
⟨𝑘⟩ := ∑

𝑘

𝑘𝑃(𝑘).

By applying the mean-field technique to the above
assumptions, we get a new epidemicmodel of computer virus,
which is formulated as (see Figure 2)

𝑆


𝑘

(𝑡) = −𝑘𝜌Θ (𝑡) 𝑆
𝑘

(𝑡) + 𝜂𝑅
𝑘

(𝑡) ,

𝐸


𝑘

(𝑡) = 𝑘𝜌Θ (𝑡) 𝑆
𝑘

(𝑡) − 𝜇𝐸
𝑘

(𝑡) ,

𝐼


𝑘

(𝑡) = 𝜇𝐸
𝑘

(𝑡) − (𝛾 + 𝛿) 𝐼
𝑘

(𝑡) ,

𝑄


𝑘

(𝑡) = 𝛿𝐼
𝑘

(𝑡) − 𝜀𝑄
𝑘

(𝑡) ,

𝑅


𝑘

(𝑡) = 𝛾𝐼
𝑘

(𝑡) + 𝜀𝑄
𝑘

(𝑡) − 𝜂𝑅
𝑘

(𝑡) ,

𝑘 = 1, . . . , 𝑛,

(2)
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Figure 2: Our model.

with initial conditions 𝑆
𝑘

(0), 𝐸
𝑘

(0), 𝐼
𝑘

(0), 𝑄
𝑘

(0), and 𝑅
𝑘

(0) ≥

0, 1 ≤ 𝑘 ≤ 𝑛.
Note that, for every 𝑘, we have 𝑆

𝑘

(𝑡)+𝐸
𝑘

(𝑡)+𝐼
𝑘

(𝑡)+𝑄
𝑘

(𝑡)+

𝑅
𝑘

(𝑡) = 1; thus, the first set of equations in system (2) can be
removed, yielding the following system,

𝐸


𝑘

(𝑡)=𝑘𝜌Θ (𝑡) (1−𝐸
𝑘

(𝑡)−𝐼
𝑘

(𝑡) − 𝑄
𝑘

(𝑡) − 𝑅
𝑘

(𝑡)) − 𝜇𝐸
𝑘

(𝑡) ,

𝐼


𝑘

(𝑡) = 𝜇𝐸
𝑘

(𝑡) − (𝛾 + 𝛿) 𝐼
𝑘

(𝑡) ,

𝑄


𝑘

(𝑡) = 𝛿𝐼
𝑘

(𝑡) − 𝜀𝑄
𝑘

(𝑡) ,

𝑅


𝑘

(𝑡) = 𝛾𝐼
𝑘

(𝑡) + 𝜀𝑄
𝑘

(𝑡) − 𝜂𝑅
𝑘

(𝑡) ,

𝑘 = 1, . . . , 𝑛,

(3)

with initial conditions 𝐸
𝑘

(0), 𝐼
𝑘

(0), 𝑄
𝑘

(0), 𝑅
𝑘

(0) ≥ 0 and
𝐸
𝑘

(0) + 𝐼
𝑘

(0) + 𝑄
𝑘

(0) + 𝑅
𝑘

(0) ≤ 1.
The organization of this paper is as follows. Section 2

determines the equilibria of system (3) and the basic repro-
duction number 𝑅

0

. Sections 3 and 4 address the global sta-
bility of the virus-free equilibrium and the global attractivity
of the viral equilibrium, respectively. Numerical examples are
provided in Section 5 to support our theoretical results. In
the final section, a brief conclusion is given and some future
research topics are also pointed out.

2. Basic Reproduction Number and Equilibria

The basic reproduction number 𝑅
0

, which can be explained
as the average number of secondary infections produced by a
single infected node during its infection time, is calculated as

𝑅
0

=
⟨𝑘
2

⟩

⟨𝑘⟩

𝜌

𝛾 + 𝛿
, (4)

where ⟨𝑘
2

⟩ stands for the second origin moment of the node
degree, ⟨𝑘

2

⟩ := ∑
𝑘

𝑘
2

𝑃(𝑘). Then, we have the following
theorem.

Theorem1. Consider system (3).The following assertions hold.
(1) There always exists a virus-free equilibrium 𝑃

0

=

(

4𝑛

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, . . . , 0)

𝑇.
(2) There is no viral equilibrium if 𝑅

0

≤ 1.
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(3) There exists a unique viral equilibrium

𝑃
∗

= (𝐸
∗

, 𝐼
∗

, 𝑄
∗

, 𝑅
∗

)

= (𝐸
∗

1

, . . . , 𝐸
∗

𝑛

, 𝐼
∗

1

, . . . , 𝐼
∗

𝑛

, 𝑄
∗

1

, . . . , 𝑄
∗

𝑛

, 𝑅
∗

1

, . . . , 𝑅
∗

𝑛

)
𝑇

,

(5)

if 𝑅
0

≤ 1, where

𝐸
∗

𝑘

=
𝛾 + 𝛿

𝜇

𝑘𝑥

1 + (𝑘 − 1) 𝑥Δ
,

𝐼
∗

𝑘

=
𝑘𝑥

1 + (𝑘 − 1) 𝑥Δ
,

𝑄
∗

𝑘

=
𝛿

𝜀

𝑘𝑥

1 + (𝑘 − 1) 𝑥Δ
,

𝑅
∗

𝑘

=
𝛾 + 𝛿

𝜂

𝑘𝑥

1 + (𝑘 − 1) 𝑥Δ
,

Δ =
𝛾 + 𝛿

𝜇
+

𝛿

𝜀
+

𝛾 + 𝛿

𝜂
+ 1,

(6)

𝑥 is the unique positive root of the equation

𝑓 (𝑥) = 𝜌 ∑

𝑘

[
𝑘
2

𝑃 (𝑘)

1 + (𝑘 − 1) 𝑥Δ
] [1 − Δ𝑥] − 𝛾 − 𝛿 = 0. (7)

Proof. After imposing the stationarity condition, we have

𝑘𝜌Θ (𝑡) (1 − 𝐸
𝑘

(𝑡) − 𝐼
𝑘

(𝑡) − 𝑄
𝑘

(𝑡) − 𝑅
𝑘

(𝑡)) − 𝜇𝐸
𝑘

(𝑡) = 0,

𝜇𝐸
𝑘

(𝑡) − (𝛾 + 𝛿) 𝐼
𝑘

(𝑡) = 0,

𝛿𝐼
𝑘

(𝑡) − 𝜀𝑄
𝑘

(𝑡) = 0,

𝛾𝐼
𝑘

(𝑡) + 𝜀𝑄
𝑘

(𝑡) − 𝜂𝑅
𝑘

(𝑡) = 0.

(8)

It is easily verified that 𝑃
0

= (

4𝑛

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, . . . , 0)

𝑇 is always a root of
this system. Solving the system, we get

𝐸
∗

𝑘

=
𝛾 + 𝛿

𝜇

𝑘𝑥

1 + (𝑘 − 1) 𝑥Δ
,

𝐼
∗

𝑘

=
𝑘𝑥

1 + (𝑘 − 1) 𝑥Δ
,

𝑄
∗

𝑘

=
𝛿

𝜀

𝑘𝑥

1 + (𝑘 − 1) 𝑥Δ
,

𝑅
∗

𝑘

=
𝛾 + 𝛿

𝜂

𝑘𝑥

1 + (𝑘 − 1) 𝑥Δ
,

(9)

where 𝑥 is the unique positive root of the equation

𝑓 (𝑥) = 𝜌 ∑

𝑘

[
𝑘
2

𝑃 (𝑘)

1 + (𝑘 − 1) 𝑥Δ
] [1 − Δ𝑥] − 𝛾 − 𝛿 = 0. (10)

If 𝑅
0

≤ 1, we have 𝐸
∗

= 𝐼
∗

= 𝑄
∗

= 𝑅
∗

= 0, implying
that 𝑓(𝑥) = 0 and, thus, (10) has no positive roots. Hence,
assertion (3) holds. Now, assume 𝑅

0

> 1. The observations
that (a) 𝑓(0) > 0, (b) 𝑓



(𝑥) < 0 for 𝑥 ≥ 0, and (c) 𝑓(+∞) > 0

imply that (10) has a unique positive root. Hence, assertion
(8) also holds.

Remark 2. It can be seen from Theorem 1 that 𝐸
∗

1

< 𝐸
∗

2

<

⋅ ⋅ ⋅ < 𝐸
∗

𝑛

, 𝐼
∗

1

< 𝐼
∗

2

< ⋅ ⋅ ⋅ < 𝐼
∗

𝑛

, 𝑄
∗

1

< 𝑄
∗

2

< ⋅ ⋅ ⋅ < 𝑄
∗

𝑛

and
𝑅
∗

1

< 𝑅
∗

2

< ⋅ ⋅ ⋅ < 𝑅
∗

𝑛

. This shows that, when in the steady state
𝑃
∗, the infection density for a higher node degree is higher

than that for a lower node degree.

3. Stability of the Virus-Free Equilbrium

It is clear that 𝑃
0

= (

4𝑛

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, . . . , 0) is the virus-free equilibrium

of system (3). In this section, we will prove that virus-free
equilibrium is globally asymptotically stable when 𝑅

0

< 1.
For convenience, let

Ω = {𝑥 = (𝑥
1

, 𝑥
2

, . . . , 𝑥
4𝑛

) | 𝑥
𝑖

≥ 0 ∀1 ≤ 𝑖 ≤ 4𝑛,

𝑥
𝑖

+ 𝑥
𝑖+𝑛

+ 𝑥
𝑖+2𝑛

+ 𝑥
𝑖+3𝑛

≤ 1∀1 ≤ 𝑖 ≤ 𝑛} .

(11)

Let 𝑥(𝑡) = (𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡))
𝑇 and rewrite system (3) in

matrix-vector notation as

𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐻 (𝑥 (𝑡)) , (12)

with initial condition 𝑥(0) ∈ Ω, where
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𝐴 = [
𝐴
11

0

𝐴
21

𝐴
22

]

(4𝑛×4𝑛)

,

𝐴
11

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝜇 0 ⋅ ⋅ ⋅ 0
𝑝(1)𝜌

⟨𝑘⟩

2𝑝(2)𝜌

⟨𝑘⟩
⋅ ⋅ ⋅

𝑛𝑝(𝑛)𝜌

⟨𝑘⟩

0 −𝜇 ⋅ ⋅ ⋅ 0
2𝑝(1)𝜌

⟨𝑘⟩

4𝑝(2)𝜌

⟨𝑘⟩
⋅ ⋅ ⋅

2𝑛𝑝(𝑛)𝜌

⟨𝑘⟩

...
...

...
...

...
...

0 0 ⋅ ⋅ ⋅ −𝜇
𝑛𝑝(1)𝜌

⟨𝑘⟩

2𝑛𝑝(2)𝜌

⟨𝑘⟩
⋅ ⋅ ⋅

𝑛
2

𝑝(𝑛)𝜌

⟨𝑘⟩

𝜇 0 ⋅ ⋅ ⋅ 0 −(𝛾 + 𝛿) 0 ⋅ ⋅ ⋅ 0

0 𝜇 ⋅ ⋅ ⋅ 0 0 −(𝛾 + 𝛿) ⋅ ⋅ ⋅ 0

...
...

...
...

...
...

0 0 ⋅ ⋅ ⋅ 𝜇 0 0 ⋅ ⋅ ⋅ −(𝛾 + 𝛿)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]
(2𝑛×2𝑛)

,

𝐴
21

=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 ⋅ ⋅ ⋅ 0 𝛿 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0 0 𝛿 ⋅ ⋅ ⋅ 0

...
...

...
...

...
...

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 𝛿

0 0 ⋅ ⋅ ⋅ 0 𝛾 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0 0 𝛾 ⋅ ⋅ ⋅ 0

...
...

...
...

...
...

0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 𝛾

]
]
]
]
]
]
]
]
]
]
]
]
]

]
(2𝑛×2𝑛)

,

𝐴
22

=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝜀 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0

0 −𝜀 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0

...
...

...
...

...
...

0 0 ⋅ ⋅ ⋅ −𝜀 0 0 ⋅ ⋅ ⋅ 0

𝜀 0 ⋅ ⋅ ⋅ 0 −𝜂 0 ⋅ ⋅ ⋅ 0

0 𝜀 ⋅ ⋅ ⋅ 0 0 −𝜂 ⋅ ⋅ ⋅ 0

...
...

...
...

...
...

0 0 ⋅ ⋅ ⋅ 𝜀 0 0 ⋅ ⋅ ⋅ −𝜂

]
]
]
]
]
]
]
]
]
]
]
]
]

]
(2𝑛×2𝑛)

,

𝐻 (𝑥 (𝑡)) = −𝜌Θ (𝐸
1

(𝑡) + 𝐼
1

(𝑡) + 𝑄
1

(𝑡) + 𝑅
1

(𝑡) , . . . , 𝑛 (𝐸
𝑛

(𝑡) + 𝐼
𝑛

(𝑡) + 𝑄
𝑛

(𝑡) + 𝑅
𝑛

(𝑡)) ,

3𝑛

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0) .

(13)

Theorem 3. Consider system (12); 𝑃
0

= (

4𝑛

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, . . . , 0) is locally

asymptotically stable if 𝑅
0

< 1, whereas 𝑃
0

is a saddle point if
𝑅
0

< 1.

Proof. The characteristic equation with respect to 𝑃
0

is

det (𝜆𝐸
4𝑛

− 𝐴) = det(𝜆𝐸
2𝑛

− 𝐴
11

0

−𝐴
21

𝜆𝐸
2𝑛

− 𝐴
22

)

= det (𝜆𝐸
2𝑛

− 𝐴
11

) (𝜆𝐸
2𝑛

− 𝐴
22

) = 0.

(14)

We obtain

det (𝜆𝐸
4𝑛

− 𝐴)

= (𝜆 + 𝜂)
𝑛

(𝜆 + 𝜀)
𝑛

(𝜆 + 𝜇)
𝑛−1

× (𝜆 + 𝛿 + 𝛾)
𝑛−1 [

[

[

−𝜆 − 𝜇 𝜌
⟨𝑘
2

⟩

⟨𝑘⟩

𝜇 −𝜆 − 𝛾 − 𝛿

]
]

]

= (𝜆 + 𝜂)
𝑛

(𝜆 + 𝜀)
𝑛

(𝜆 + 𝜇)
𝑛−1

(𝜆 + 𝛿 + 𝛾)
𝑛−1

× ((𝜆 + 𝜇) (𝜆 + 𝛾 + 𝛿) − 𝜇𝜌
⟨𝑘
2

⟩

⟨𝑘⟩
)

= (𝜆 + 𝜂)
𝑛

(𝜆 + 𝜀)
𝑛

(𝜆 + 𝜇)
𝑛−1

(𝜆 + 𝛿 + 𝛾)
𝑛−1

× (𝜆
2

+ (𝛾 + 𝛿 + 𝜇) 𝜆 + 𝜇 (𝛾 + 𝛿) − 𝜇𝜌
⟨𝑘
2

⟩

⟨𝑘⟩
) = 0.

(15)
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This equation has negative roots −𝜂 and −𝜀 with multiplicity
𝑛 and negative roots −𝜇, −𝛿, and −𝛾 with multiplicity 𝑛 − 1.
Now let

𝑔 (𝜆) = 𝜆
2

+ (𝛾 + 𝛿 + 𝜇) 𝜆 + 𝜇 (𝛾 + 𝛿) − 𝜇𝜌
⟨𝑘
2

⟩

⟨𝑘⟩
= 0. (16)

Suppose𝑅
0

< 1.Then, (𝛾+𝛿)−𝜌(⟨𝑘
2

⟩/⟨𝑘⟩) > 0 and it follows
from the Hurwitz criterion that all roots of the characteristic
equation have negative real parts, implying that 𝑃

0

is locally
asymptotically stable. Now, assume 𝑅

0

> 1. Then, (𝛾 + 𝛿) −

𝜌(⟨𝑘
2

⟩/⟨𝑘⟩) < 0 and the characteristic equation has exactly
one positive root, implying that 𝑃

0

is a saddle point.

Lemma 4 (see [16]). Consider a system 𝑑𝑥/𝑑𝑡 = 𝑓(𝑥) defined
at least in a compact set 𝐶. Then, 𝐶 is invariant if, for every
point y on 𝜕𝐶, the vector 𝑓(𝑦) is tangent to or pointing into 𝐶.

Lemma 5. The set Ω is positively invariant for system (12).
That is, 𝑥(0) ∈ Ω implies 𝑥(𝑡) ∈ Ω for all 𝑡 > 0.

Proof. 𝜕Ω consists of the following 5Δ sets:

𝑆
𝑖

= {𝑥 ∈ Ω | 𝑥
𝑖

= 0} , 𝑇
𝑖

= {𝑥 ∈ Ω | 𝑥
𝑖+𝑛

= 0} ,

𝑈
𝑖

= {𝑥 ∈ Ω | 𝑥
𝑖+2𝑛

= 0} , 𝑉
𝑖

= {𝑥 ∈ Ω | 𝑥
𝑖+3𝑛

= 0} ,

𝑊
𝑖

= {𝑥 ∈ Ω | 𝑥
𝑖

+ 𝑥
𝑖+𝑛

+ 𝑥
𝑖+2𝑛

+ 𝑥
𝑖+3𝑛

= 1} ,

(17)

which have

𝜑
𝑖

= (0, . . . , 0,
𝑖

−1, 0, . . . , 0) ,

𝜍
𝑖

= (0, . . . , 0,
𝑖+𝑛

−1, 0, . . . , 0) ,

𝜉
𝑖

= (0, . . . , 0,
𝑖+2𝑛

−1 , 0, . . . , 0) ,

𝜓
𝑖

= (0, . . . , 0,
𝑖+3𝑛

−1 , 0, . . . , 0) ,

𝜁
𝑖

= (0, . . . , 0,
𝑖

1, 0, . . . , 0,
𝑖+𝑛

1 , 0, . . . ,

0,
𝑖+2𝑛

1 , 0, . . . , 0,
𝑖+3𝑛

1 , 0, . . . , 0)

(18)

as their respective outer normal vectors. For 1 ≤ 𝑖 ≤ 𝑛, we
have

(
𝑑𝑥

𝑑𝑡

𝑥∈𝑆𝑖

⋅ 𝜑
𝑖

)

= −𝑖𝜌
∑
𝑘

𝑘𝑝 (𝑘)

⟨𝑘⟩
(1 − 𝑥

𝑖+𝑛

− 𝑥
𝑖+2𝑛

− 𝑥
𝑖+3𝑛

) ≤ 0,

(
𝑑𝑥

𝑑𝑡

𝑥∈𝑇𝑖

⋅ 𝜍
𝑖

) = −𝜇𝑥
𝑖

≤ 0,

(
𝑑𝑥

𝑑𝑡

𝑥∈𝑈𝑖

⋅ 𝜉
𝑖

) = −𝛿𝑥
𝑖+𝑛

≤ 0,

(
𝑑𝑥

𝑑𝑡

𝑥∈𝑉𝑖

⋅ 𝜓
𝑖

) = − (𝛾𝑥
𝑖+𝑛

+ 𝜀𝑥
𝑖+2𝑛

) ≤ 0,

(
𝑑𝑥

𝑑𝑡

𝑥∈𝑊𝑖

⋅ 𝜁
𝑖

) = −𝜂𝑥
𝑖+3𝑛

≤ 0.

(19)

Thus, the claimed result follows from Lemma 4.

Lemma 6 (see [16]). Consider an 𝑛-dimensional autonomous
system

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝐴𝑥 (𝑡) + 𝐻 (𝑥 (𝑡)) , 𝑥 ∈ 𝐷, (20)

where𝐴 is an irreducible 𝑛×𝑛matrix,𝐷 is a region containing
the origin, 𝐻(𝑥) ∈ 𝐶

1

(𝐷), and lim
𝑥→0

‖𝐻(𝑥)‖/‖𝑥‖ = 0.
Assume there exist, a positively invariant compact convex set
𝐶 ⊂ 𝐷 containing the origin, a positive number 𝑟, and a real
eigenvector 𝜔 of 𝐴𝑇, such that

(C1) (𝑥, 𝜔) ≥ 𝑟‖𝑥‖ for all 𝑥 ∈ 𝐶,
(C2) (𝐻(𝑥), 𝜔) ≤ 0 for all 𝑥 ∈ 𝐶,
(C3) the origin forms the largest positively invariant set

included in 𝑁 = {𝑥 ∈ 𝐶 | (𝐻(𝑥), 𝜔) = 0}.

Then, one has that

(1) 𝑠(𝐴
𝑇

) < 0 implies that the origin is globally asymptoti-
cally stable in 𝐶, and

(2) 𝑠(𝐴
𝑇

) > 0 implies that there exists 𝑚 > 0 such that, for
each 𝑥

0

∈ 𝐶 − {0}, the solution 𝜙(𝑡, 𝑥
0

) to system (12)
satisfies lim

𝑡→∞

inf ‖𝜙(𝑡, 0)‖ ≥ 𝑚.

We are ready to prove.

Theorem 7. Consider system (12). Then, 𝑃
0

is globally asymp-
totically stable in Ω, if 𝑅

0

< 1.

Proof. Let𝐶 = Ω and look at (12). As matrix𝐴
𝑇 is irreducible

and all of its nondiagonal entries are nonnegative, it follows
from [13] that𝐴𝑇 has a positive eigenvector 𝜔 = (𝜔

1

, . . . , 𝜔
4𝑛

)

corresponding to its eigenvalue 𝑠(𝐴
𝑇

). Let 𝜔
0

= min
𝑖

𝜔
𝑖

> 0.
Then, for all 𝑥 ∈ Ω, we have

(𝑥, 𝜔) ≥ 𝜔
0

4𝑛

∑

𝑖=1

𝑥
𝑖

≥ 𝜔
0

(

4𝑛

∑

𝑖=1

𝑥
2

𝑖

)

1/2

= 𝜔
0

‖𝑥‖ ,

(𝐻 (𝑥) , 𝜔) = −𝜌Θ

𝑛

∑

𝑖=1

𝑖𝜔
𝑖

(𝑥
𝑖

+ 𝑥
𝑖+𝑛

+ 𝑥
𝑖+2𝑛

+ 𝑥
𝑖+3𝑛

) ≤ 0.

(21)

Moreover, (𝐻(𝑥), 𝜔) = 0 implies that 𝑥 = 0. Hence, the
claimed result follows from assertion (2) of Lemma 6.
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4. Global Attractivity of the Viral Equilibrium

We will ascertain the global attractivity of the viral equilib-
rium.

Theorem 8. If 𝑅
0

> 1, then the infection solution of (12) 𝑃
∗

=

(

4𝑛

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑃
∗

1

, 𝑃
∗

2

, . . . , 𝑃
∗

4𝑛

) is globally attractive in Ω − {0}.

Proof. Theorem 3 ensures the existence of the viral equilib-
rium. We need to prove that if 𝑅

0

> 1, there is a unique
constant equilibrium 𝑃

∗ inΩ−{0}. Let 𝑥∗ = 𝑃
∗, Assume that

𝑥 = 𝑥
∗

> 0 and 𝑦 = 𝑦
∗

> 0 are two constant solutions of (12)
in Ω − {0}. If 𝑥

∗

̸= 𝑦
∗, then there exists 𝑖

0

, 𝑖
0

= 1, 2, . . . , 4𝑛,
such that 𝑥

∗

𝑖0

̸= 𝑦
∗

𝑖0

, where 𝑥
∗

𝑖0

is the 𝑖
0

th component of the
vector 𝑥

∗. Without loss of generality, assume 𝑥
∗

𝑖0

> 𝑦
∗

𝑖0

, and
𝑥
∗

𝑖0

/𝑦
∗

𝑖0

> 𝑥
∗

𝑖

/𝑦
∗

𝑖

for all 𝑖 = 1, . . . , 4𝑛. Since 𝑥
∗ and 𝑦

∗ are
constant solutions of (12), we substitute them into (12). And
if 1 ≤ 𝑖

0

≤ 𝑛, we obtain,

𝑘𝜌Θ (𝑥
∗

) (1 − 𝑥
∗

𝑖0

− 𝑥
∗

𝑖0+𝑛

− 𝑥
∗

𝑖0+2𝑛

− 𝑥
∗

𝑖0+3𝑛

) − 𝜇𝑥
∗

𝑖0

= 𝑘𝜌Θ (𝑦
∗

) (1 − 𝑦
∗

𝑖0

− 𝑦
∗

𝑖0+𝑛

− 𝑦
∗

𝑖0+2𝑛

− 𝑦
∗

𝑖0+3𝑛

) − 𝜇𝑦
∗

𝑖0

= 0,

(22)

where Θ(𝑥
∗

) = (1/⟨𝑘⟩) ∑
𝑘

𝑘𝑃(𝑘)𝑥
∗

𝑖

.
After equivalent deformation, it follows that

𝑘𝜌Θ (𝑥
∗

) (1 − 𝑥
∗

𝑖0

− 𝑥
∗

𝑖0+𝑛

− 𝑥
∗

𝑖0+2𝑛

− 𝑥
∗

𝑖0+3𝑛

)
𝑦
∗

𝑖0

𝑥∗
𝑖0

− 𝜇𝑦
∗

𝑖0

= 𝑘𝜌Θ (𝑦
∗

) (1 − 𝑦
∗

𝑖0

− 𝑦
∗

𝑖0+𝑛

− 𝑦
∗

𝑖0+2𝑛

− 𝑦
∗

𝑖0+3𝑛

) − 𝜇𝑦
∗

𝑖0

= 0.

(23)

But 𝑥
∗

𝑖0

/𝑦
∗

𝑖0

> 𝑥
∗

𝑖

/𝑦
∗

𝑖

for all 𝑖 and

(1 − 𝑥
∗

𝑖0

− 𝑥
∗

𝑖0+𝑛

− 𝑥
∗

𝑖0+2𝑛

− 𝑥
∗

𝑖0+3𝑛

)
𝑦
∗

𝑖0

𝑥∗
𝑖0

< (1 − 𝑦
∗

𝑖0

− 𝑦
∗

𝑖0+𝑛

− 𝑦
∗

𝑖0+2𝑛

− 𝑦
∗

𝑖0+3𝑛

) .

(24)

Thus, from the above inequality, we get

𝑘𝜌Θ (𝑥
∗

) (1 − 𝑥
∗

𝑖0

− 𝑥
∗

𝑖0+𝑛

− 𝑥
∗

𝑖0+2𝑛

− 𝑥
∗

𝑖0+3𝑛

)
𝑦
∗

𝑖0

𝑥∗
𝑖0

< 𝑘𝜌Θ (𝑦
∗

) (1 − 𝑦
∗

𝑖0

− 𝑦
∗

𝑖0+𝑛

− 𝑦
∗

𝑖0+2𝑛

− 𝑦
∗

𝑖0+3𝑛

) .

(25)

This is a contradiction. Similarly, we can also get contradic-
tions when 𝑛 + 1 ≤ 𝑖

0

≤ 2𝑛, 2𝑛 + 1 ≤ 𝑖
0

≤ 3𝑛, and
3𝑛 + 1 ≤ 𝑖

0

≤ 4𝑛. Therefore, there exists a unique constant
solution 𝑃

∗

= (𝑃
∗

1

, 𝑃
∗

2

, . . . , 𝑃
∗

4𝑛

) of (3) in Ω − {0}. Now, we
shall prove that 𝑥∗ is globally attractive inΩ−{0}. To find the
asymptotic behavior of the solutions of (12) in Ω, we define
the following functions, 𝐹 : Ω → 𝑅 and 𝑓 : Ω → 𝑅 for

𝑃 ∈ Ω, where 𝐹(𝑥) = max
𝑖

(𝑥
𝑖

/𝑥
∗

𝑖

), 𝑓(𝑥) = min
𝑖

(𝑥
𝑖

/𝑥
∗

𝑖

),
𝐹(𝑥) and 𝑓(𝑥) are continuous and the right-hand derivative
exists along solutions of (12). Let 𝑥 = 𝑥(𝑡) be a solution of
(12), we may assume that 𝐹(𝑥(𝑡)) = 𝑥

𝑖0

(𝑡)/𝑥
∗

𝑖0

, 1 ≤ 𝑖
0

≤ 4𝑛,
𝑡 ∈ [𝑡

0

, 𝑡
0

+ 𝜀] for a given 𝑡
0

and a sufficiently small 𝜀 > 0.
Then,

𝐹


(𝑥 (𝑡
0

)) =
𝑥


𝑖0

(𝑡
0

)

𝑥∗
𝑖0

, 𝑡 ∈ [𝑡
0

, 𝑡
0

+ 𝜀] , (26)

where 𝐹
 is defined as

𝐹


= lim
ℎ→0

+

sup 𝐹 (𝑥 (𝑡 + ℎ)) − 𝐹 (𝑥 (𝑡))

ℎ
. (27)

If 1 ≤ 𝑖
0

≤ 𝑛, from (12) we have

𝑥
∗

𝑖0

𝑥


𝑖0

(𝑡
0

)

𝑥
𝑖0

(𝑡
0

)

=
𝑥
∗

𝑖0

𝑥
𝑖0

(𝑡
0

)
𝑘𝜌Θ (𝑥

𝑖0+𝑛
(𝑡
0

))

×(1−𝑥
𝑖0

(𝑡
0

)−𝑥
𝑖0+𝑛

(𝑡
0

)−𝑥
𝑖0+2𝑛

(𝑡
0

)−𝑥
𝑖0+3𝑛

(𝑡
0

))−𝜇𝑥
∗

𝑖0

.

(28)

And we obtain

𝑥
∗

𝑖0

𝑥


𝑖0

(𝑡
0

)

𝑥
𝑖0

(𝑡
0

)
= 𝜇

𝑥
∗

𝑖0

𝑥
𝑖0

(𝑡
0

)
𝑥
𝑖0−𝑛

(𝑡
0

) − (𝛾 + 𝛿) 𝑥
∗

𝑖0

,

when 𝑛 + 1 ≤ 𝑖
0

≤ 𝑛;

𝑥
∗

𝑖0

𝑥


𝑖0

(𝑡
0

)

𝑥
𝑖0

(𝑡
0

)
= 𝛿

𝑥
∗

𝑖0

𝑥
𝑖0

(𝑡
0

)
𝑥
𝑖0−𝑛

(𝑡
0

) − 𝜀𝑥
∗

𝑖0

,

when 2𝑛 + 1 ≤ 𝑖
0

≤ 3𝑛;

𝑥
∗

𝑖0

𝑥


𝑖0

(𝑡
0

)

𝑥
𝑖0

(𝑡
0

)
= 𝛾

𝑥
∗

𝑖0

𝑥
𝑖0

(𝑡
0

)
𝑥
𝑖0−2𝑛

(𝑡
0

) + 𝜀
𝑥
∗

𝑖0

𝑥
𝑖0

(𝑡
0

)
𝑥
𝑖0−𝑛

(𝑡
0

) − 𝜂𝑥
∗

𝑖0

,

when 3𝑛 + 1 ≤ 𝑖
0

≤ 4𝑛.

(29)

According to the definition of 𝐹(𝑥(𝑡)), we have

𝑥
𝑖0

(𝑡
0

)

𝑥∗
𝑖0

≥
𝑥
𝑖

(𝑡
0

)

𝑥∗
𝑖

, 𝑖 = 1, 2, . . . , 4𝑛. (30)
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Then if 𝐹(𝑥(𝑡
0

)) > 1, we obtain

𝑥
∗

𝑖0

𝑥


𝑖0

(𝑡
0

)

𝑥
𝑖0

(𝑡
0

)
≤ 𝑘𝜌Θ (𝑥

∗

𝑖0+𝑛
) (1 − 𝑥

∗

𝑖0

− 𝑥
∗

𝑖0+𝑛
− 𝑥
∗

𝑖0+2𝑛
− 𝑥
∗

𝑖0+3𝑛
)

− 𝜇𝑥
∗

𝑖0

= 0,

𝑥
∗

𝑖0

𝑥


𝑖0

(𝑡
0

)

𝑥
𝑖0

(𝑡
0

)
≤ 𝜇𝑥
∗

𝑖0−𝑛
− (𝛾 + 𝛿) 𝑥

∗

𝑖0

= 0,

𝑥
∗

𝑖0

𝑥


𝑖0

(𝑡
0

)

𝑥
𝑖0

(𝑡
0

)
≤ 𝛿𝑥
∗

𝑖0−𝑛
− 𝜀𝑥
∗

𝑖0

= 0,

(31)

or

𝑥
∗

𝑖0

𝑥


𝑖0

(𝑡
0

)

𝑥
𝑖0

(𝑡
0

)
≤ 𝛾𝑥
∗

𝑖0−2𝑛
+ 𝜀𝑥
∗

𝑖0−𝑛
− 𝜂𝑥
∗

𝑖0

= 0. (32)

Since 𝑥
∗

𝑖0

> 0 and 𝑥
𝑖0
(𝑡
0

) > 0, we conclude that 𝑥


𝑖0

(𝑡
0

) > 0.
Therefore, if 𝐹(𝑥(𝑡

0

)) > 1, 𝐹(𝑥(𝑡
0

)) < 0.
Similarly, we can testify that 𝐹(𝑥(𝑡

0

)) = 1 imples
𝐹


(𝑥(𝑡
0

)) ≤ 0, and 𝑓(𝑥(𝑡
0

)) < 1 implies 𝑓


(𝑥(𝑡
0

)) > 0. If
𝑓(𝑥(𝑡
0

)) = 1, then 𝑓


(𝑥(𝑡
0

)) ≥ 0. Denote

𝑈 (𝑥) = max {𝐹 (𝑥) − 1, 0} ,

𝑉 (𝑥) = max {1 − 𝑓 (𝑥) , 0} .

(33)

Both𝑈(𝑥) and𝑉(𝑥) are continuous and non-negative for 𝑥 ∈

Ω. Notice that 𝑈


(𝑥(𝑡)) ≤ 0, 𝑉(𝑥(𝑡)) ≤ 0. Let

𝐻
𝑈

= {𝑥 ∈ Ω | 𝑈


(𝑥)=0} , 𝐻
𝑉

= {𝑥 ∈ Ω | 𝑉


(𝑥)=0} ,

(34)

then we have

𝐻
𝑈

= {𝑥 | 0 ≤ 𝑥
𝑖

≤ 𝑥
∗

𝑖

} , 𝐻
𝑉

= {𝑥 | 𝑥
∗

𝑖

≤ 𝑥
𝑖

≤ 1} ∪ {0} .

(35)

According to the LaSalle invariant set principle, any solution
of (12) starting in Ω will approach 𝐻

𝑈

∩ 𝐻
𝑉

. And 𝐻
𝑈

∩

𝐻
𝑉

= {𝑥
∗

} ∪ {0}. But if 𝑥(𝑡) ̸= 0, by Lemma 6 we know
that lim

𝑡→∞

inf ‖𝑥(𝑡)‖ ≥ 𝑚 > 0. Then we conclude that
any solution 𝑥(𝑡) of (12), such that 𝑥(0) ∈ Ω − {0}, satisfies
lim
𝑡→∞

𝑥(𝑡) = 𝑥
∗, so 𝑥 = 𝑃

∗ is globally attractive in Ω −

{0}.

Conjecture 9. Consider system (12) and suppose𝑅
0

> 1.Then
the infection equilibrium, 𝑃∗, is globally asymptotically stable
in Ω − {0}.

5. Numerical Examples

In this section, some numerical simulations are given to
support our results. To demonstrate the global stability of the
infection-free solution of system (3), we take the following
set of parameter values: 𝜌 = 0.04, 𝜇 = 0.8, 𝛾 = 0.8, 𝜀 = 0.5,
𝛿 = 0.2, 𝜂 = 0.4, which runs on a scale-free network with
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Figure 3: Global stability of infection-free solution.
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Figure 4: Global attractivity of infection solution.

𝑛 = 1000 and 𝜏 = 2.4. In this case, we have 𝑅
0

= 0.8825 < 1.
The time plots of the four relative densities are plotted in
Figure 3, from which it can be seen that the virus would die
out.

To demonstrate the global attractivity of the viral equi-
librium of system (3), we take the following set of parameter
values: 𝜌 = 0.2, 𝜇 = 0.8, 𝛾 = 0.8, 𝜀 = 0.5, 𝛿 = 0.2,
𝜂 = 0.4, which runs on a scale-free network with 𝑛 = 1000

and 𝜏 = 2.4. In this case, we have 𝑅
0

= 4.4124 > 1. The time
plots of the four relative densities are plotted in Figure 4, from
which it can be seen that the virus would persist.

Consider system (12) with 𝜌 = 0.2, 𝜇 = 0.8, 𝛾 = 0.8, 𝜀 =

0.5, 𝛿 = 0.2, 𝜂 = 0.4 and 𝑛 = 1000. For 𝜏 ∈ {2.0, 2.2, 2.4, 2.6},
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Figure 5: Evolution of 𝐼(𝑡) for different 𝜏 values.

Figure 5 demonstrates how 𝐼(𝑡) evolves with time. It can be
seen that smaller exponent 𝜏 favors virus spreading.

6. Conclusions

To clearly understand how the Internet topology affects the
spread of computer viruses, a new model capturing the
epidemics of computer viruses on scale-free networks has
been proposed. The basic reproduction number 𝑅

0

of the
model has been calculated. The global asymptotic stability of
the virus-free equilibrium has been shown when 𝑅

0

is below
one, and the global attractivity of the viral equilibrium has
been proved if 𝑅

0

is above one. Our future work will focus
on establishing impulsive models on complex networks and
studying the effect of impulsive immunization on computer
virus propagation.
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