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General pseudospectral method is extended to the special Euclidean group SE(3) by virtue of equivariant map for rigid-body
dynamics of the aircraft. On SE(3), a complete left invariant rigid-body dynamics model of the aircraft in body-fixed frame is
established, including configuration model and velocity model. For the left invariance of the configuration model, equivalent Lie
algebra equation corresponding to the configuration equation is derived based on the left-trivialized tangent of local coordinate
map, and the top eight orders truncated Magnus series expansion with its coefficients of the solution of the equivalent Lie algebra
equation are given. A numerical method called geometric pseudospectral method is developed, which, respectively, computes
configurations and velocities at the collocation points and the endpoint based on two different collocation strategies. Through
numerical tests on a free-floating rigid-body dynamics compared with several same order classical methods in Euclidean space and
Lie group, it is found that the proposed method has higher accuracy, satisfying computational efficiency, stable Lie group structural
conservativeness. Finally, how to apply the previous discretization scheme to rigid-body dynamics simulation and control of the
aircraft is illustrated.

1. Introduction

The aircraft is usually regarded as a single rigid body in
three-dimensional space. The dynamics of a rigid body
is an important problem modeling the time evolution of
aircraft and other vehicles [1]. In particular, in aircraft
simulation and control, its authenticity affects the fidelity
of the simulation and also determines whether it can truly
reflect the performance of the designed controller to a certain
extent. The rigid-body dynamics has fundamental motion
invariants; for example, the flow of a Hamiltonian system
is symplectic [2, 3], the total energy of a rigid body is
conserved in the absence of nonconservative forces [4], and
the momentum map associated with a symmetry of a rigid
body is preserved [5]. Furthermore, the exact flow of a rigid
body always stays on a configuration manifold, since the
combined configurations of the translation and rotation of
the rigid body construct a special Lie group called the special
Euclidean group SE(3) [6]. The invariants often manifest
through geometric characteristics of exact flow of a rigid

body, such as symplecticity, first integrals, symmetry, and Lie
group structure. However, for most rigid bodies, obtaining
the analytical solution is quite difficult. Thus, under the
condition of non analytical solution, it is desired to develop
a numerical method whose iterates preserve the previous
fundamental invariants [7]. For this purpose, the research
area of development of numerical methods for rigid-body
differential equations that preserve geometric properties of
the numerical solution has been of great interest in recent
years [8]. Simos [8, 9], Monovasilis et al. [3, 10], and Kalo-
giratou [11] construct several different multistep symplectic
integrators based on symplectic geometry in order to preserve
the Hamiltonian energy of rigid bodies as the harmonic
oscillator, the pendulum, two-body problem, and orbital
problem. Lee et al. [5] andHussein et al. [12] adopt variational
integrators to evolve the rigid-body dynamics, which ensure
that while the total energy of the rigid body is conserved
under conservative forces, the momentum associated with a
symmetry of the system is also conserved. Iserles et al. [13]
and Lee et al. [5] extend numerical methods in Euclidean
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space into Lie group, so that numerical flow of the rigid-
body dynamics has Lie group structural conservativeness,
which is also the main focus of this paper. Retaining motion
invariants under discretization has been proven not only a
nice mathematical property, but also the key to improved
numerics, as they capture the right dynamics (even in long-
time integration) and exhibit increased accuracy [2, 7, 13, 14].
Therefore, for driving the evolution of rigid-body dynamics,
it is very important to develop a numerical method with
preservation of the previous geometric characteristics.

The difficulty of developing a numerical method on Lie
group arises as the group is not the well-known Euclidean
spaceR𝑛; consequently, the rigid-body dynamics evolving on
SE(3) cannot be properly integrated by conventional numer-
ical method, including the popular Runge-Kutta schemes,
developed forR𝑛. For this reason, one resorts to other means
to drive the rigid-body dynamics forward while preserving
the Lie group structure of the configuration. It can be roughly
divided into two categories: classical Lie group methods
which discretize the continuous equations of motion and Lie
group variational integrators which discretize the variational
principles of mechanics. Classical Lie groupmethods include
theMunthe-Kaas (MK)method [15], the Crouch-Grossmann
(CG) method [16], the Newmark-type method [17], and the
commutator-free (CF) method [18], and so forth. The MK
method is based on a differential equation on the Lie algebra
and uses a single evaluation of the exponential map. The CG
method updates the group elements by multiple evaluations
using the exponential map. For detailed information, one can
consult to [13]. Lie group variational integrators are proposed
in recent years whose idea is to discretize the variational
principles of mechanics: Hamilton’s principle or Lagrange-
d’Alembert principle [1, 5, 14]. Both methods have their own
advantage and disadvantage. The former has a better time
performance, but its accuracy is not an advantage under the
same order condition. The latter preserves exactly energy,
momentum, symplectic structure, and group structure [12,
19] and offers a particularly robust and efficient framework for
simulation [14], attitude control [4], motion control [1], and
trajectory generating [14] of the aircraft and other vehicles,
however; it has no advantage of accuracy, and its performance
is subjected to the Newton-type solver for solving the equiv-
alent vector equation [5, 14, 20]. Regardless of the classical
Lie group methods or Lie group variational integrators, they
are all based on Kenth Engø’s idea about equivariant map
which transforms the differential equations evolving on a Lie
group into an equivalent differential equation evolving on a
Lie algebra corresponding to the Lie group [21].

Since accuracy, time performance, conservativeness, and
numerical stability of the aircraft rigid-body dynamics need
to be considered comprehensively in aircraft simulation and
control, we do not intend to adopt any of the previous
methods but use the same idea of equivariant map to develop
a new method on SE(3) for driving the evolution of aircraft
dynamics. We resort to pseudospectral method, which is
widely used in fluid mechanics, quantum mechanics, linear
and nonlinear waves, aerospace, and other fields by virtue
of its high accuracy, spectral (or exponential) convergence
rates, requirement for less computer memory under the same

precision condition, and so forth [22]. Furthermore, it is
commonly used in optimal control of the aircraft and other
vehicles [23] and thereby lay the foundation for our simu-
lation and control application. Unlike variational integrator
must analytically derive the first-order discrete necessary
optimality, which, more often than not, is nontrival for
most optimal control problems [23], typical pseudospectral
method can be used to transcribe a continuous optimal
control problem into a discrete nonlinear programming
problem (NLP), and it has been shown that solving the NLP
derived from the pseudospectral transcription of the Gauss
form is exactly equivalent to solve the discrete first-order
necessary conditions [23, 24]. However, when applied to
rigid body dynamics directly, general pseudospectral method
cannot preserve Lie group structure. For this purpose, a
numerical method on SE(3) called geometric pseudospectral
method is proposed in this work, which provides satisfactory
accuracy, computational efficiency andpreserves the essential
Lie group structure. To our knowledge, Moulla et al. [25] was
the first to pose the concept of “geometric pseudospectral
method” not long ago. They suggested a polynomial pseu-
dospectral method that preserves the geometric structure of
port-Hamiltonian systems, the phenomenological laws, and
the conservation laws without introducing any uncontrolled
numerical dissipation. However, their method was designed
only for port-Hamiltonian systems having a special structure,
that is, the Dirac structure, thus it could not be directly
extended to the systems on SE(3). Thereby, how to apply the
pseudospectral method to a dynamics system on SE(3) and
preserve essential Lie group structure of the system is still an
open question, which is the main topic in this paper.

In thiswork, we establish a completely rigid-body dynam-
ics model of aircraft in body-fixed frame on SE(3). With
respect to kinematics, due to the fact that applying the general
pseudospectralmethoddirectly to the configuration equation
of the rigid-body dynamics could not preserve the Lie group
structure of the solution of the equation, drawing on the
equivariant map, we transform the configuration equation
on SE(3) into an equivalent equations in a Lie algebra space
and accordingly give the top eight orders reduced truncated
Magnus series expansion with its coefficients 𝛼(𝜅) (refer to
the appendix) of the solution of the equivalent equation
under left trivialization. For the condition of each term in
𝑢
[2𝑞]

(𝑡) being multivariate quadrature, we apply the general
pseudospectral method to compute quadrature weights, so
that obtaining the values of 𝑢[2𝑞]

(𝑡) at the collocation points
and the endpoint (collectively referred to discrete points).
Finally, we compute configurations at the discrete points via
coordinate map. It is worth mentioning that the theories
with respect to Lie groupmethods in the extensive literatures
[13–15] are almost derived under right trivialization and
thus are not suitable for our method, since our modeled
aircraft configuration model is left invariant. To this end,
we provide a relatively complete set of left trivialization
framework for developing geometric pseudospectral method
on SE(3). With respect to dynamics, considering the Lie
algebra space is isomorphism to R𝑛, we use the general
pseudospectral method directly to compute the veloci-
ties at the same discrete points as that of configuration.
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Under the same 4th-order and the same large step size, the
proposed method is compared with implicit RK, explicit
RKMK, and Gauss pseudospectral method. Through a com-
prehensive comparison of accuracy, computational efficiency,
and Lie group structural conservativeness, the proposed
method has higher accuracy, satisfying computational effi-
ciency, stable Lie group structural conservativeness. The
proposed method is coordinate-free, no need to switch chart
and special handling of singularities. Finally, we give a way
of applying the proposed numerical method to rigid-body
dynamics simulation and control of the aircraft.

The rest of the paper is organized as follows. In Section 2,
a completely left invariant rigid-body dynamics model of the
aircraft on SE(3) is established. Geometric pseudospectral
method on SE(3) is developed in Section 3. In Section 3.1,
for completeness, the basic idea of the general pseudospec-
tral method in Euclidean space is roughly introduced. In
Section 3.2, geometric pseudospectral method on SE(3) is
developed under left trivialization, and a 4th-order geometric
pseudospectral algorithm is given. In Section 3.3, numerical
tests are carried out on a free-floating rigid-body model in
comparison with four other numerical methods to validate
numerical accuracy, computational efficiency, and structural
conservativeness of the proposedmethod.Then, how to apply
the proposedmethod to rigid-body dynamics simulation and
control of the aircraft is illustrated in Section 4. Finally, the
conclusions and future work are outlined in Section 5.

2. Aircraft Rigid-Body Dynamics
Model on SE(3)

The special Euclidean group SE(3) is the semidirect product
of SO(3) and R3, whose group element 𝑔

𝑎𝑏
= (𝑅

𝑎𝑏
, 𝑝

𝑎𝑏
) con-

sists of rotational component 𝑅
𝑎𝑏

∈ SO(3) and translational
component 𝑝

𝑎𝑏
∈ R3 of the body-fixed frame {𝑏}, relative to

the space frame {𝑎}, where SO(3) = {𝑅
𝑎𝑏

∈ R3 × 3

| 𝑅
𝑎𝑏
𝑅
𝑇

𝑎𝑏
=

𝐼, det𝑅
𝑎𝑏

= +1} is called the special orthogonal group [6]. In
this section, wewill regard the aircraft as a single rigid body in
three-dimensional space and establish a rigid-body dynamics
model of the aircraft on SE(3).

2.1. Kinematics Model. The navigation equations of the air-
craft are given by [26]

[

[

�̇�

̇𝑦

�̇�

]

]

= 𝑅
𝑎𝑏
(𝑡)

[

[

𝑢

V
𝑤

]

]

, (1)

where, �̇�, ̇𝑦, and ż are the north, east, and vertical components
of the aircraft velocity, respectively, in the locally level
geographic frame on the surface of the Earth, 𝑢, V, and 𝑤

denote 𝑋-axis component, 𝑌-axis component, and 𝑍-axis
component of the aircraft airspeed, respectively, in the body-
fixed frame, and 𝑅

𝑎𝑏
(𝑡) is a sequence of 𝑍𝑌𝑋 Euler rotations

from the body-fixed frame to the locally level geographic
frame, given by

𝑅
𝑎𝑏
(𝑡) =

[

[

cos 𝜃 cos𝜓 − cos𝜙 sin𝜓 + sin𝜙 sin 𝜃 cos𝜓 sin𝜙 sin𝜓 + cos𝜙 sin 𝜃 cos𝜓
cos 𝜃 sin𝜓 cos𝜙 cos𝜓 + sin𝜙 cos 𝜃 sin𝜓 − sin𝜙 cos𝜓 + cos𝜙 sin 𝜃 sin𝜓
− sin 𝜃 sin𝜙 cos 𝜃 cos𝜙 cos 𝜃

]

]

. (2)

Denote [𝑥, 𝑦, 𝑧]
𝑇 and [𝑢, V, 𝑤]𝑇 by 𝑝

𝑎

𝑎𝑏
(𝑡) and 𝜐

𝑏

𝑎𝑏
(𝑡),

respectively, then we have

�̇�
𝑎

𝑎𝑏
(𝑡) = 𝑅

𝑎𝑏
(𝑡) ⋅ 𝜐

𝑏

𝑎𝑏
(𝑡) . (3)

Also, the kinematic equations are given by [26]

[

[

̇
𝜙

̇
𝜃

�̇�

]

]

=
[

[

[

𝑝 + tan 𝜃 (𝑞 sin𝜙 + 𝑟 cos𝜙)
𝑞 cos𝜙 − 𝑟 sin𝜙
𝑞 sin𝜙 + 𝑟 cos𝜙

cos 𝜃

]

]

]

, (4)

where, 𝜙, 𝜃, and 𝜓 are roll angle, pitch angle, and yaw angle,
respectively, which are commonly referred to as Euler angles;
𝑝, 𝑞, and 𝑟 denote the roll rate, pitch rate, and yaw rate,
respectively, about 𝑋-body axis, 𝑌-body axis, and 𝑍-body
axis. Then, we have

[

[

𝑝

𝑞

𝑟

]

]

=
[

[

1 0 − sin 𝜃
0 cos𝜙 sin𝜙 cos 𝜃
0 − sin𝜙 cos𝜙 cos 𝜃

]

]

[

[

̇
𝜙

̇
𝜃

�̇�

]

]

=
[

[

̇
𝜙 − �̇� sin 𝜃

̇
𝜃 cos𝜙 + �̇� sin𝜙 cos 𝜃
−

̇
𝜃 sin𝜙 + �̇� cos𝜙 cos 𝜃

]

]

.

(5)

Denote [𝑝, 𝑞, 𝑟]
𝑇 by 𝜔

𝑏

𝑎𝑏
(𝑡), and bring in a operator ⋅̂ :

R3

→ so(3), for all 𝑦 ∈ R3, satisfying �̂�𝑏

𝑎𝑏
(𝑡) ⋅ 𝑦 = 𝜔

𝑏

𝑎𝑏
(𝑡) ×𝑦,

where × is vector cross-product; we have �̂�𝑏

𝑎𝑏
(𝑡) = [

0 −𝑟 𝑞

𝑟 0 −𝑝

−𝑞 𝑝 0

]

and obtain

�̇�
𝑎𝑏
(𝑡) = 𝑅

𝑎𝑏
(𝑡) ⋅ �̂�

𝑏

𝑎𝑏
(𝑡) . (6)

Therefore, from the preceding equation and (3), we can
construct a kinematicsmodel (configuration) ̇

𝑔
𝑎𝑏
(𝑡) = 𝑔

𝑎𝑏
(𝑡)⋅

𝑉

𝑏

𝑎𝑏
(𝑡), namely,

[
�̇�
𝑎𝑏
(𝑡) �̇�

𝑎

𝑎𝑏
(𝑡)

0 0

] = [

𝑅
𝑎𝑏
(𝑡) 𝑝

𝑎

𝑎𝑏
(𝑡)

0 1
] [

�̂�
𝑏

𝑎𝑏
(𝑡) 𝜐

𝑏

𝑎𝑏
(𝑡)

0 0

] ,

(7)

where 𝑔
𝑎𝑏
(𝑡) and 𝑉

𝑏

𝑎𝑏
(𝑡) are, respectively, called the homo-

geneous representation of 𝑔
𝑎𝑏
(𝑡) and that of 𝑉

𝑏

𝑎𝑏
(𝑡) =

[𝜔
𝑏

𝑎𝑏
(𝑡), 𝜐

𝑏

𝑎𝑏
(𝑡)]

𝑇

∈ se(3), se(3) = so(3) × R3 is the Lie
algebra corresponding to SE(3) where so(3) is the Lie algebra
corresponding to SO(3) [6]. The right hand of (7) is the
infinitesimal generator of the action corresponding to 𝑉𝑏

𝑎𝑏
(𝑡),
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and it is left invariant under left multiplication by constant
matrices [27]. These properties determine the trivialization
way of local coordinate map in Section 3.2.1.

2.2. Dynamics Model. The force equations of the aircraft are
given by [28]

[

[

�̇�

V̇
�̇�

]

]

=
[

[

𝑟 ⋅ V − 𝑞 ⋅ 𝑤

𝑝 ⋅ 𝑤 − 𝑟 ⋅ 𝑢

𝑞 ⋅ 𝑢 − 𝑝 ⋅ 𝑤

]

]

+
[

[

− sin 𝜃
sin𝜙 ⋅ cos 𝜃
cos𝜙 ⋅ cos 𝜃

]

]

𝑔 +

[

[

[

[

[

[

[

[

[

𝑞 ⋅ 𝑠

𝑚

𝐶
𝑋,𝑡

𝑞 ⋅ 𝑠

𝑚

𝐶
𝑌,𝑡

𝑞 ⋅ 𝑠

𝑚

𝐶
𝑍,𝑡

]

]

]

]

]

]

]

]

]

+

[

[

[

[

𝑇

𝑚

0

0

]

]

]

]

,

(8)

where, �̇�, V̇, and �̇� denote 𝑋-axis component, 𝑌-axis com-
ponent, and 𝑍-axis component, respectively, of the aircraft

acceleration in the body-fixed frame, 𝑚 is the aircraft mass,
𝑠 is the wing reference area, 𝑞 is the free-stream dynamic
pressure,𝑇 is the engine thrust, and𝐶

𝑋,𝑡
,𝐶

𝑌,𝑡
, and𝐶

𝑍,𝑡
denote

total 𝑋-axis force coefficient, total 𝑌-axis force coefficient,
and total 𝑍-axis force coefficient, respectively.

One has

𝐶
𝑋,𝑡

= 𝐶
𝑋
(𝛼, 𝛽) +

𝑐𝑞

2𝑉
𝑇

𝐶
𝑋𝑞

(𝛼) ,

𝐶
𝑌,𝑡

= 𝐶
𝑌
(𝛼, 𝛽) +

𝑏

2𝑉
𝑇

[𝐶
𝑌𝑟
(𝛼) 𝑟 + 𝐶

𝑌𝑝
(𝛼) 𝑝] ,

𝐶
𝑍,𝑡

= 𝐶
𝑍
(𝛼, 𝛽) +

𝑐𝑞

2𝑉
𝑇

𝐶
𝑍𝑞

(𝛼) .

(9)

Denote [𝑞𝑠𝐶
𝑋,𝑡
, 𝑞𝑠𝐶

𝑌,𝑡
, 𝑞𝑠𝐶

𝑍,𝑡
]
𝑇 and [𝑇, 0, 0]

𝑇 by 𝐹
𝑏

𝐴
(𝑡)

and 𝐹
𝑏

𝑇
(𝑡), respectively; the former represents aerodynamics,

and the latter represents thrust. Then, we have

𝑚 ̇𝜐
𝑏

𝑎𝑏
(𝑡)=−𝑚𝜔

𝑏

𝑎𝑏
(𝑡) × 𝜐

𝑏

𝑎𝑏
(𝑡)+𝑚𝑔𝑅

𝑇

𝑎𝑏
(𝑡) 𝑒

3
+𝐹

𝑏

𝐴
(𝑡)+𝐹

𝑏

𝑇
(𝑡) .

(10)

The moment equations of the aircraft are given by [26]

[

[

�̇�

̇𝑞

̇𝑟

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

(𝐽
𝑥𝑧
(𝐽

𝑥
− 𝐽

𝑦
+ 𝐽

𝑧
) 𝑝𝑞 − (𝐽

𝑧
𝐽
𝑧
− 𝐽

𝑧
𝐽
𝑦
+ 𝐽

2

𝑥𝑧
) 𝑟𝑞 + 𝐽

𝑧
𝑞𝑠𝑏𝐶

𝑙,𝑡
+ 𝐽

𝑥𝑧
𝑞𝑠𝑏𝐶

𝑛,𝑡
)

(𝐽
𝑥
𝐽
𝑧
− 𝐽

2

𝑥𝑧
)

((𝐽
𝑧
− 𝐽

𝑥
) 𝑝𝑟 − 𝐽

𝑥𝑧
(𝑝

2

− 𝑟
2

) + 𝑞𝑠𝑐𝐶
𝑚,𝑡

)

𝐽
𝑦

(((𝐽
𝑥
− 𝐽

𝑦
) 𝐽

𝑥
+ 𝐽

2

𝑥𝑧
) 𝑝𝑞 − 𝐽

𝑥𝑧
(𝐽

𝑥
− 𝐽

𝑦
+ 𝐽

𝑧
) 𝑟𝑞 + 𝐽

𝑥𝑧
𝑞𝑠𝑏𝐶

𝑙,𝑡
+ 𝐽

𝑥
𝑞𝑠𝑏𝐶

𝑛,𝑡
)

(𝐽
𝑥
𝐽
𝑧
− 𝐽

2

𝑥𝑧
)

]

]

]

]

]

]

]

]

]

]

]

]

, (11)

where, 𝑏 is wing span, 𝐽
𝑥
, 𝐽

𝑦
, and 𝐽

𝑧
are moment of inertia

about 𝑋-axis, 𝑌-axis, and 𝑍-axis, respectively, 𝐽
𝑥𝑧

is cross-
product of inertia, and𝐶

𝑙,𝑡
,𝐶

𝑚,𝑡
, and𝐶

𝑛,𝑡
denote total rolling-

moment coefficient, total pitching-moment coefficient, and
total yawing-moment coefficient, respectively.The remaining
parameters can refer to [26]

𝐶
𝑙,𝑡
= 𝐶

𝑙
(𝛼, 𝛽) + Δ𝐶

𝑙,𝛿
𝑎=20
∘

𝛿
𝑎

20

+ Δ𝐶
𝑙,𝛿
𝑟=30
∘

𝛿
𝑟

30

+

𝑏

2𝑉
𝑇

(𝐶
𝑙𝑟
(𝛼) 𝑟 + 𝐶

𝑙𝑝
(𝛼) 𝑝) ,

𝐶
𝑚,𝑡

= 𝐶
𝑚
(𝛼, 𝛽) 𝜂

𝛿ℎ
(𝛿

ℎ
)+𝐶

𝑍,𝑡
(𝑥

𝑐𝑔,ref − 𝑥
𝑐𝑔
)+

𝑐𝑞

2𝑉
𝑇

𝐶
𝑚𝑞

(𝛼) ,

𝐶
𝑛,𝑡

= 𝐶
𝑛
(𝛼, 𝛽) − 𝐶

𝑌,𝑡
(𝑥

𝑐𝑔,ref − 𝑥
𝑐𝑔
)

𝑐

𝑏

+ Δ𝐶
𝑛,𝛿
𝑎=20
∘

𝛿
𝑎

20

+ Δ𝐶
𝑛,𝛿
𝑟=30
∘

𝛿
𝑟

30

+

𝑏

2𝑉
𝑇

(𝐶
𝑛𝑟
(𝛼) 𝑟 + 𝐶

𝑛𝑝
(𝛼) 𝑝) .

(12)

Denote [𝑞𝑠𝑏𝐶
𝑙,𝑡
, 𝑞𝑠𝑐𝐶

𝑚,𝑡
, 𝑞𝑠𝑏𝐶

𝑛,𝑡
]
𝑇 by 𝑇

𝐵
(𝑡), then we have

𝐽�̇�
𝑏

𝑎𝑏
(𝑡) = −𝜔

𝑏

𝑎𝑏
(𝑡) × (𝐽𝜔

𝑏

𝑎𝑏
(𝑡)) + 𝑇

𝐵
(𝑡) , (13)

where 𝐽 = [

𝐽𝑥 0 −𝐽𝑥𝑧

0 𝐽𝑦 0

−𝐽𝑥𝑧 0 𝐽𝑧

] is referred to as the inertia matrix of

the rigid body.
Therefore, from the preceding equation and (10), we can

construct a dynamicsmodel �̇�𝑏

𝑎𝑏
(𝑡) = Π

−1

⋅(𝐵(𝑉
𝑏

𝑎𝑏
(𝑡))⋅𝑉

𝑏

𝑎𝑏
(𝑡)+

𝐹(𝑡, 𝑔
𝑎𝑏
(𝑡))) in se(3), namely,

[

[

�̇�
𝑏

𝑎𝑏
(𝑡)

̇𝜐
𝑏

𝑎𝑏
(𝑡)

]

]

=[

𝐽 0

0 𝑚𝐼
3

]

−1

⋅ ([

̂
𝐽𝜔

𝑏

𝑎𝑏
(𝑡) 0

0 −𝑚�̂�
𝑏

𝑎𝑏
(𝑡)

]
[

[

𝜔
𝑏

𝑎𝑏
(𝑡)

𝜐
𝑏

𝑎𝑏
(𝑡)

]

]

+[

𝑇
𝐵
(𝑡)

𝑚𝑔𝑅
𝑇

𝑎𝑏
(𝑡) 𝑒

3
+𝐹

𝑏

𝐴
(𝑡)+𝐹

𝑏

𝑇
(𝑡)

]).

(14)
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3. Geometric Pseudospectral Method on SE(3)

3.1. General Pseudospectral Method in Euclidean Space. Gen-
eral pseudospectral method will be used for computing
the velocities in the Lie algebra. For this purpose, we
briefly describe the basic principle of general pseudospectral
method [24]. Let us take solving the following differential
equation in R𝑛 at 𝑡

𝑓
, for example,

�̇� (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑥 (𝑡
0
) = 𝑥

0
∈ R

𝑛

, 𝑡
0
≤ 𝑡 ≤ 𝑡

𝑓
. (15)

Firstly, we equally divide a time interval [𝑡
0
, 𝑡

𝑓
] into

several time subintervals [𝑡
𝑘
, 𝑡

𝑘+1
] having a length ℎ and

transform the time interval 𝑡 ∈ [𝑡
𝑘
, 𝑡

𝑘+1
] to the time interval

𝜏 ∈ [−1, 1] via the affine transformation

𝑡 =

𝑡
𝑘+1

− 𝑡
𝑘

2

𝜏 +

𝑡
𝑘+1

+ 𝑡
𝑘

2

. (16)

Thus, accordingly, (15) over [𝑡
𝑘
, 𝑡

𝑘+1
] becomes

𝑑𝑥 (𝜏)

𝑑𝜏

=

𝑡
𝑘+1

− 𝑡
𝑘

2

𝑓 (𝜏, 𝑥 (𝜏)) , −1 ≤ 𝜏 ≤ 1. (17)

Let 𝑐
1
< ⋅ ⋅ ⋅ < 𝑐

𝑁
be collocation points in [−1, 1] and

𝑐
0
= −1. We approximate the solution of (17) by the following

formula:

𝑥 (𝜏) ≈ 𝑋 (𝜏) =

𝑁

∑

𝑖=0

𝑥
𝑖
⋅ 𝐿

𝑖
(𝜏) , (18)

where 𝐿
𝑖
(𝜏) = ∏

𝑁

𝑗=0,𝑗 ̸= 𝑖
(𝜏 − 𝑐

𝑗
)/(𝑐

𝑖
− 𝑐

𝑗
) is the Lagrange

polynomials, satisfying the isolation property

𝐿
𝑖
(𝑐

𝑗
) = 𝛿

𝑖𝑗
= {

1, 𝑖 = 𝑗,

0, 𝑖 ̸= 𝑗.

(19)

Equation (18) together with the isolation property leads
to the fact that

𝑥
𝑖
= 𝑥 (𝑐

𝑖
) (20)

thus𝑋(𝑐
𝑖
) = 𝑥(𝑐

𝑖
).

Through expressing the derivative of the Lagrange poly-
nomials at the collocation points in differential matrix form
𝐷 = [𝑑

𝑗𝑖
] ∈ R𝑁×(𝑁+1),

𝑑
𝑗𝑖
= �̇�

𝑖
(𝑐

𝑗
) =

𝑁

∑

𝑙=0

∏
𝑁

𝑘=0,𝑘 ̸= 𝑖,𝑙
(𝑐

𝑗
− 𝑐

𝑘
)

∏
𝑁

𝑘=0,𝑘 ̸= 𝑖
(𝑐

𝑖
− 𝑐

𝑘
)

,

𝑗 = 1, . . . , 𝑁, 𝑖 = 0, . . . , 𝑁.

(21)

We can write (17) at the collocation points as a set of
differential algebra equations as follows:

𝑁

∑

𝑖=0

𝑑
𝑗𝑖
⋅ 𝑋 (𝑐

𝑖
) =

𝑡
𝑘+1

− 𝑡
𝑘

2

𝑓 (𝑐
𝑗
, 𝑋 (𝑐

𝑗
)) , 𝑗 = 1, . . . , 𝑁.

(22)

Based on the previous equations, we establish defect
equations

𝜍
𝑗
=

𝑁

∑

𝑖=0

𝑑
𝑗𝑖
⋅ 𝑋 (𝑐

𝑖
) −

𝑡
𝑘+1

− 𝑡
𝑘

2

𝑓 (𝑐
𝑗
, 𝑋 (𝑐

𝑗
)) , 𝑗 = 1, . . . , 𝑁

(23)

and apply iterative algorithms to the previous equations so
that determining the approximation to 𝑥(𝜏) at the collocation
points. Finally, according to the following formula, we obtain
the approximation to (15) at the endpoint 𝑡

𝑘+1
of time

subinterval [𝑡
𝑘
, 𝑡

𝑘+1
]:

𝑥 (𝑡
𝑘+1

) ≈ 𝑋 (𝑡
𝑘
) +

𝑡
𝑘+1

− 𝑡
𝑘

2

𝑁

∑

𝑗=1

𝜔
𝑗
⋅ 𝑓 (𝑐

𝑗
, 𝑋 (𝑐

𝑗
)) , (24)

where 𝜔
𝑗
= ∫

1

−1

𝐿
𝑗
(𝑡)d𝑡 is quadrature weight corresponding

to the collocation points. This approximate solution will be
initial value of 𝑥(𝑡) over [𝑡

𝑘+1
, 𝑡

𝑘+2
] and so on.

According to different selection methods of collocation
points, pseudospectral methods can be divided into the
standard method and the orthogonal method. Common col-
location points in the orthogonal method are those obtained
from the roots of either Chebyshev polynomials 𝑇

𝑁
(𝑡) or

Legendre polynomials 𝑃
𝑁
(𝑡) belonging to the orthogonal

polynomial [29].The benefit of using the orthogonal method
over the standard method is that the quadrature approx-
imation to a definite integral is extremely accurate [24].
Furthermore, according to whether the endpoint is or is
not a collocation point, pseudospectral methods fall into
three general categories [30]: Gauss methods, neither of the
endpoints −1 or 1, is a collocation point; Radau methods,
at most one of the endpoints −1 or 1, are a collocation
point; Lobatto methods, both of the endpoints −1 and 1, are
collocation points. In the rest of this paper, we will develop
our geometric pseudospectral method based on Legendre-
Gauss points, abbreviated as Gauss points in the following,
for two main reasons: firstly, there is an intimate relationship
between Gauss method and some implicit RKmethod whose
coefficients in the Butcher Tableau can be used by our
method for computing configuration [2]; secondly, when
Gauss method is used for transcribing the continues optimal
control problem into a discrete nonlinear programming
problem, it does not suffer from a defect in the optimality
conditions at the boundary points due to the endpoints being
not collocation points [23].

3.2. Geometric Pseudospectral Method on SE(3). First recall
and rewrite the aircraft rigid-body dynamics model Equa-
tions (7) and (14) in Section 2 as follows:

̇
𝑔
𝑎𝑏
(𝑡) = 𝑔

𝑎𝑏
(𝑡) ⋅ 𝑉

𝑏

𝑎𝑏
(𝑡) , (25)

�̇�
𝑏

𝑎𝑏
(𝑡) = Π

−1

⋅ (𝐵 (𝑉
𝑏

𝑎𝑏
(𝑡)) ⋅ 𝑉

𝑏

𝑎𝑏
(𝑡) + 𝐹 (𝑡, 𝑔

𝑎𝑏
(𝑡)))

≜ 𝑓 (𝑉
𝑏

𝑎𝑏
(𝑡) , 𝑔

𝑎𝑏
(𝑡)) .

(26)
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Step 1. Initialization:
Initialize time interval [𝑡

0
, 𝑡

𝑓
], step length ℎ, configuration 𝑔

𝑎𝑏
(𝑡

0
), velocity 𝑉𝑏

𝑎𝑏
(𝑡

0
), and let 𝑘 be 0;

Step 2. Main loop:
Step 2.1. Compute the Gauss points {𝜏

1
, 𝜏

2
} in [𝑡

𝑘
, 𝑡

𝑘+1
], corresponding differentiation matrix𝐷

2×3

and quadrature weights {𝜔
1
, 𝜔

2
};

Step 2.2. Compute velocities 𝑉𝑏

𝑎𝑏
(𝜏

1
) and 𝑉

𝑏

𝑎𝑏
(𝜏

2
) at the Gauss points:

Step 2.2.1. Set the number of iterations, threshold of iterations deviation and let current step be 1;
Step 2.2.2. Let initial value of both 𝑔

(step)
𝑎𝑏

(𝜏
1
) and 𝑔

(step)
𝑎𝑏

(𝜏
2
) be 𝑔

𝑎𝑏
(𝑡

𝑘
), that of both 𝑉

𝑏(step)
𝑎𝑏

(𝜏
1
) and 𝑉

𝑏(step)
𝑎𝑏

(𝜏
2
) be 𝑉𝑏

𝑎𝑏
(𝑡

𝑘
);

Step 2.2.3. Child loop:
Step 2.2.3.1. According to the following equations, obtain [�̇�

𝑏(step)
𝑎𝑏

(𝜏
1
) , �̇�

𝑏(step)
𝑎𝑏

(𝜏
2
)]

𝑇

,

[

�̇�
𝑏(step)
𝑎𝑏

(𝜏
1
)

�̇�
𝑏(step)
𝑎𝑏

(𝜏
2
)

] =

𝑡
𝑘+1

− 𝑡
𝑘

2

[

Π
−1

⋅ (𝐵 (𝑉
𝑏(step)
𝑎𝑏

(𝜏
1
)) ⋅ 𝑉

𝑏(step)
𝑎𝑏

(𝜏
1
) + 𝐹 (𝜏

1
, 𝑔

(step)
𝑎𝑏

(𝜏
1
)))

Π
−1

⋅ (𝐵 (𝑉
𝑏(step)
𝑎𝑏

(𝜏
2
)) ⋅ 𝑉

𝑏(step)
𝑎𝑏

(𝜏
2
) + 𝐹 (𝜏

2
, 𝑔

(step)
𝑎𝑏

(𝜏
2
)))

] − [

𝑑
01

𝑑
02

]𝑉
𝑏

𝑎𝑏
(𝑡

𝑘
)

Step 2.2.3.2. Update velocities [𝑉𝑏(step+1)
𝑎𝑏

(𝜏
1
) , 𝑉

𝑏(step+1)
𝑎𝑏

(𝜏
2
)]

𝑇

at the Gauss point,

[

𝑉
𝑏(step+1)
𝑎𝑏

(𝜏
1
)

𝑉
𝑏(step+1)
𝑎𝑏

(𝜏
2
)

] = 𝐷
−1

[

�̇�
𝑏(step)
𝑎𝑏

(𝜏
1
)

�̇�
𝑏(step)
𝑎𝑏

(𝜏
2
)

]

Step 2.2.3.3. Compute 4th-order reduced truncated Magnus series expansion [𝑢
[4]

(𝜏
1
) , 𝑢

[4]

(𝜏
2
)]

𝑇

at the Gauss points,

[

𝑢
[4]

(𝜏
1
)

𝑢
[4]

(𝜏
2
)

] =

[

[

[

[

[

1

4

ℎ ⋅ 𝑉
𝑏(step)
𝑎𝑏

(𝜏
1
) + (

1

4

−

√3

6

)ℎ ⋅ 𝑉
𝑏(step)
𝑎𝑏

(𝜏
2
) −

1

2

(

5

72

−

√3

24

) ℎ
2

⋅ [𝑉
𝑏(step)
𝑎𝑏

(𝜏
1
) , 𝑉

𝑏(step)
𝑎𝑏

(𝜏
2
)]

(

1

4

+

√3

6

)ℎ ⋅ 𝑉
𝑏(step)
𝑎𝑏

(𝜏
1
) +

1

4

ℎ ⋅ 𝑉
𝑏(step)
𝑎𝑏

(𝜏
2
) −

1

2

(−

5

72

−

√3

24

) ℎ
2

⋅ [𝑉
𝑏(step)
𝑎𝑏

(𝜏
1
) , 𝑉

𝑏(step)
𝑎𝑏

(𝜏
2
)]

]

]

]

]

]

Step 2.2.3.4. Using the Cayley map, update configurations [𝑔(step+1)
𝑎𝑏

(𝜏
1
) , 𝑔

(step+1)
𝑎𝑏

(𝜏
2
)]

𝑇

at the Gauss points,

[

𝑔
(step+1)
𝑎𝑏

(𝜏
1
)

𝑔
(step+1)
𝑎𝑏

(𝜏
2
)

] = [

𝑔
𝑎𝑏
(𝑡

𝑘
) ⋅ cay (𝑢[4]

(𝜏
1
))

𝑔
𝑎𝑏
(𝑡

𝑘
) ⋅ cay (𝑢[4]

(𝜏
2
))

]

Step 2.2.3.5. Compute the configuration deviation and velocity deviation respectively between the adjacent steps,
and let the larger one between them be iterative deviation at the current step,

norm (𝑔
(err)
𝑎𝑏

) =













[

logSE(3) (𝑔
(step+1)
𝑎𝑏

(𝜏
1
)
−1

⋅ 𝑔
(step)
𝑎𝑏

(𝜏
1
))

logSE(3) (𝑔
(step+1)
𝑎𝑏

(𝜏
2
)
−1

⋅ 𝑔
(step)
𝑎𝑏

(𝜏
2
))

]











2

, norm (𝑉
𝑏(err)
𝑎𝑏

) =













[






𝑉

𝑏(step+1)
𝑎𝑏

(𝜏
1
) − 𝑉

𝑏(step)
𝑎𝑏

(𝜏
1
)





2






𝑉

𝑏(step+1)
𝑎𝑏

(𝜏
2
) − 𝑉

𝑏(step)
𝑎𝑏

(𝜏
2
)





2

]











∞

Step 2.2.3.6. Substitute 𝑔(step+1)
𝑎𝑏

and 𝑉
𝑏(step+1)
𝑎𝑏

at 𝜏
1
and 𝜏

2
into 𝑔(step)

𝑎𝑏
and 𝑉

𝑏(step)
𝑎𝑏

respectively, at the same time, let step plus 1;
Step 2.2.3.7. Compute the difference between iterative deviation and specified tolerance,
so that determine whether or not to terminate the iterative process.

Step 2.2.4. End child loop;
Step 2.2.5. Use the final iterative results 𝑔(step)

𝑎𝑏
and 𝑉

𝑏(step)
𝑎𝑏

in child loop to compute the velocity 𝑉𝑏

𝑎𝑏
(𝑡

𝑘+1
) at the endpoint 𝑡

𝑘+1
,

𝑉
𝑏

𝑎𝑏
(𝑡

𝑘+1
) = 𝑉

𝑏

𝑎𝑏
(𝑡

𝑘
) +

𝑡
𝑘+1

− 𝑡
𝑘

2

2

∑

𝑖=1

𝜔
𝑖
⋅ Π

−1

⋅ (𝐵 (𝑉
𝑏(step)
𝑎𝑏

(𝜏
𝑖
))𝑉

𝑏(step)
𝑎𝑏

(𝜏
𝑖
) + 𝐹 (𝜏

𝑖
, 𝑔

(step)
𝑎𝑏

(𝜏
𝑖
)))

Step 2.2.6. Compute configuration 𝑔
𝑎𝑏
(𝑡

𝑘+1
) at 𝑡

𝑘+1
:

Step 2.2.6.1. Compute 4th-order reduced truncated Magnus series expansion 𝑢
[4]

(𝑡
𝑘+1

) at 𝑡
𝑘+1

,

𝑢
[4]

(𝑡
𝑘+1

) =

1

2

ℎ ⋅ (𝑉
𝑏(step)
𝑎𝑏

(𝜏
1
) + 𝑉

𝑏(step)
𝑎𝑏

(𝜏
2
)) +

√3

12

ℎ
2

⋅ [𝑉
𝑏(step)
𝑎𝑏

(𝜏
1
) , 𝑉

𝑏(step)
𝑎𝑏

(𝜏
2
)]

Step 2.2.6.2. Use the Cayley map to update configuration 𝑔
𝑎𝑏
(𝑡

𝑘+1
),

𝑔
𝑎𝑏
(𝑡

𝑘+1
) = 𝑔

𝑎𝑏
(𝑡

𝑘
) ⋅ cay (𝑢[4]

(𝑡
𝑘+1

))

Step 2.2.7. Compare 𝑡
𝑘+1

with 𝑡
𝑓
, so that determine whether or not to terminate the main loop;

Step 3. End loop.

Algorithm 1: 4th-order geometric pseudospectral algorithm on SE(3).

For the kinematics Equation (25), it is well known that
the solution of (25) stays on SE(3) for all 𝑡 ≥ 𝑡

0
. How to

use pseudospectral method to solve (25) while preserving
the structural feature of the differential equation under
discretization of 𝑔

𝑎𝑏
(𝑡) is the main problem to be solved

in this section. In R𝑛, both the solution space and the
tangent space are linear vector space. Classical numerical
methods, including general pseudospectral method, just rely
on domain space consisting of vectors. However, the special

Euclidean group is a nonlinear manifold, so using classical
numerical methods directly to solve differential equation on
SE(3) will be not able to preserve its Lie group structure.
Reference [21] indicated that any differential equation in the
form of an infinitesimal generator on a homogeneous space
(a manifold with a transitive Lie group action) is shown to be
locally equivalent to a differential equation on the Lie algebra
corresponding to the Lie group acting on the homogenous
space. Also, a Lie algebra corresponding to the Lie group is a
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vector space with the additional structure of a commutator.
For the previous reasons, the Lie algebra is the natural choice
of space for our geometric pseudospectral method. First, we
will apply the equivariant map to transform (25) evolving
on SE(3) into an equivalent differential equation evolving
in se(3). Next, we use the Gauss pseudospectral method to
solve the equivalent differential equation in order to obtain
𝑝th-order truncated approximation of the equation at the
Gauss points and the endpoints, followed by mapping the
approximate solution back to configuration space via local
coordinate map 𝑓.

For the dynamics equation (26), because the velocity
𝑉

𝑏

𝑎𝑏
(𝑡) belongs to se(3), and actually se(3) is isomorphic to

theR6, we can use Gauss pseudospectral method directly on
(26) to compute the velocities at the Gauss points and the
endpoint.

3.2.1. Computing Configurations at the Gauss Points and
the Endpoint. In order to transform (25) on SE(3) into an
equivalent differential equation evolving on se(3), we briefly
describe the basic idea of equivariant map.

Definition 1 (equivariant map). Let M and N be manifolds,
and let 𝐺 be a Lie group which acts onM by Φ

𝑔
: M → M

and on N by Ψ
𝑔
: N → N. A smooth map 𝑓 : M → N

is called equivariant with respect to these actions if, for all
𝑔 ∈ 𝐺,

𝑓 ∘ Φ
𝑔
= Ψ

𝑔
∘ 𝑓 (27)

that is, the following diagram commutes of equivariant map
𝑓:

𝑓

𝑓

(27)

ℳ 𝒩

ℳ 𝒩

Ψ𝑔Φ𝑔 (28)

First, from the definition of an action of 𝐺 onM, we can
obtain an equivariant map Φ

𝑦
: 𝐺 → M with respect to the

left translation action 𝐿
𝑔
of 𝐺 on itself and an action 𝐺 ofΦ

𝑔

onM as follows:

Φ
𝑦
∘ 𝐿

𝑔
= Φ

𝑔
∘ Φ

𝑦
. (29)

It is known that there is a local coordinate map 𝑓 :

g → 𝐺 on 𝐺 with the Lie algebra g; the most typical one
is exponential map exp : g → 𝐺. At this point, we need to
find an action 𝐵

𝑔
of 𝐺 on g such that 𝑓 will be an equivariant

map with 𝐵
𝑔
and the left action of 𝐺 on itself, namely,

𝑓 ∘ 𝐵
𝑔
= 𝐿

𝑔
∘ 𝑓. (30)

In the case where 𝑓 is the exponential map, 𝐵
𝑔
is nothing

else than the well-known Baker-Campbell-Hausdorff (BCH)
formula:

𝐵
𝑔
(𝑢) = log (𝑔 ⋅ exp (𝑢)) , (31)

where log : 𝐺 → g is called the logarithm map. Since
composition of two equivariant maps is also an equivariant
map, we can construct an equivariant map Φ

𝑦
∘ 𝑓 from g to

M with respect to the action 𝐵
𝑔
on g and Φ onM. Diagram

commutes of compositionΦ
𝑦
∘ 𝑓 are as follows:

𝔤

𝔤 𝐺

𝐺

(29)(30)

ℳ

ℳ

Φ𝑦

Φ𝑦

Φexp (𝑡𝜉)𝐵exp (𝑡𝜉) 𝐿𝑔

𝑓

𝑓

(32)

The theorem 3.6 of [21] stated that if 𝜙 is an equivariant
map, then the infinitesimal generators of the action with
respect to the same element 𝜉 ∈ g are 𝜙-related vector fields.
Thus, the infinitesimal generators 𝜉g and 𝜉M of the flows
𝐵exp(𝑡𝜉) and Φexp(𝑡𝜉), respectively, on g and M are Φ

𝑦
∘ 𝑓-

related; that is,

𝜉M ∘ Φ
𝑦
∘ 𝑓 = 𝑇Φ

𝑦
∘ 𝑇𝑓 ∘ 𝜉g. (33)

Finally, we need to determinewhat 𝜉g is, and the following
theorem gives the conditions that it needs to meet.

Theorem 2 (see [21]). Let 𝑓 : g → 𝐺 be a coordinate map
on 𝐺 and Φ

𝑦
∘ 𝑓 equivariant with respect to the flows 𝐵exp(𝑡𝜉)

and Φexp(𝑡𝜉). The infinitesimal generator of 𝐵
𝑔
satisfying (33)

is 𝜉g(𝑢) = d𝑓−1

𝑢
(𝜐). d𝑓 : g → g is the trivialization of 𝑇𝑓,

defined as d𝑓
𝑢
= 𝑇𝑅

𝑓(𝑢)
−1 ∘ 𝑇𝑓

𝑢
.

The following commutative diagram describing the
equivariantmaps of compositionΦ

𝑦
∘𝑓 (left) and its infinites-

imal generator (right) sums up the previous processes:

𝔤𝔤

𝔤

ℳ

𝑇𝔤 𝑇ℳ

(33)

Φ𝑦 ∘ 𝑓

ℳ

ℳ

𝑇Φ𝑦 ∘ 𝑇𝑓

𝜉ℳ(𝑦)

Φ𝑦 ∘ 𝑓

Φ𝑦 ∘ 𝑓

Φ𝑔𝐵𝑔 d𝑓−1𝑢 (𝜐)
(34)

Also, [21] stated that any differential equation on M
which can be written as an infinitesimal generator fits into
the previous framework, including all Lie type equations,
isospectral flows, and rigid frames. It is noted that, as
mentioned in Section 2.1, the right hand of (7) or (25) is an
infinitesimal generator on SE(3), and here we assume that the
solution 𝑔

𝑎𝑏
(𝑡) of (25) can be written as the following form

[13]:

𝑔
𝑎𝑏
(𝑡) = 𝑔

𝑎𝑏
(𝑡

0
) ⋅ 𝑓 (𝑢 (𝑡)) . (35)

In order to obtain the explicit expression of 𝑢(𝑡), we need
to solve the following differential equation:

�̇� (𝑡) = d𝑓−1

−𝑢
(𝑉

𝑏

𝑎𝑏
(𝑡)) . (36)
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Figure 1: Position (𝑝𝑎

𝑎𝑏
), orientation (𝑅

𝑎𝑏
), linear velocity (𝜐𝑏

𝑎𝑏
), and angular velocity (𝜔𝑏

𝑎𝑏
) versus time and total computational time with

average time per step for the free-floating rigid body when step size is equal to 0.25 s.

For deriving the previous formula, we differentiate (35) as
follows:

d
d𝑡

𝑔
𝑎𝑏
(𝑡) =

d
d𝑡

(𝑔
𝑎𝑏
(𝑡

0
) ⋅ 𝑓 (𝑢 (𝑡)))

= 𝑔
𝑎𝑏
(𝑡

0
) ⋅ d𝐿

𝑓(𝑢(𝑡))
∘ d𝑓

−𝑢(𝑡)
(�̇� (𝑡))

= 𝑔
𝑎𝑏
(𝑡

0
) ⋅ 𝑓 (𝑢 (𝑡)) ⋅ d𝑓

−𝑢(𝑡)
(�̇� (𝑡)) .

(37)

Comparing (37) with (25) and (35), we have

𝑉
𝑏

𝑎𝑏
(𝑡) = d𝑓

−𝑢(𝑡)
(�̇� (𝑡)) . (38)

Taking the inverse of previous formula, we obtain (36).
It seems from the equivariant map and the previous

formula derivation that solving equation (25) can be trans-
formed into a research on the equivalent equation (36), and
the manifold M is SE(3) at this point. d𝑓−1

−𝑢
(𝑉

𝑏

𝑎𝑏
(𝑡)) has

different forms, according to the different choices of local
coordinatemap𝑓. In the casewhere𝑓 is the exponentialmap,
the vector field d𝑓−1

−𝑢
on g can be represented as [13]

d exp−1
−𝑢

(𝑉
𝑏

𝑎𝑏
(𝑡)) = 𝑉

𝑏

𝑎𝑏
(𝑡) +

1

2

ad
𝑢
(𝑉

𝑏

𝑎𝑏
(𝑡))

+

∞

∑

𝑘=2

𝐵
𝑘

𝑘!

ad𝑘

𝑢
(𝑉

𝑏

𝑎𝑏
(𝑡)) ,

(39)

where the adjoint operator ad
𝑢
: g → g is Lie bracket or

commutator, ad
𝑢
(𝑉

𝑏

𝑎𝑏
(𝑡)) = [𝑢, 𝑉

𝑏

𝑎𝑏
(𝑡)], satisfying recursive

expression ad𝑘

𝑢
(𝑉

𝑏

𝑎𝑏
(𝑡)) = [𝑢, ad𝑘−1

𝑢
(𝑉

𝑏

𝑎𝑏
(𝑡))], and 𝐵

𝑘
are

Bernoulli numbers [31] as follows:

𝐵
𝑘

=

{

{

{

1

6

,−

1

30

,

1

42

,−

1

30

,

5

66

,−

691

2730

, . . . , 𝑘 = 2𝑁, 𝑁 ∈ Z+

,

0, 𝑘 = 2𝑁 + 1, 𝑁 ∈ Z+

.

(40)

In the context of rigid-body motion, the right trivializa-
tion corresponds to the differential equation with tangent
vectors 𝐴𝑌 ∈ X(M), 𝐴 ∈ g, and 𝑌 ∈ 𝐺, and the left
trivialization corresponds to the differential equation with
tangent vectors 𝑌𝐴 ∈ X(M), 𝐴 ∈ g, and 𝑌 ∈ 𝐺. The former
represents the change of configuration in a space frame, and
the latter represents the change of configuration in the body-
fixed frame. Here, let d𝑓 be the left trivialization of 𝑇𝑓, since
the configuration model established in Section 2.1 is in the
body-fixed frame. In the case of d𝑓 being the left trivialization
and 𝑓 being the exponential map, we can find an explicit
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Figure 2: Accuracy and computational efficiency of GPM compared with PM, RKMK, and RKi.

approximation to 𝑢(𝑡) called theMagnus series expansion via
applying Picard iterations to (36) [31] as follows:

𝑢 (𝑡) = ∫

𝑡

0

𝑉
𝑏

𝑎𝑏
(𝜉

1
) 𝑑𝜉

1
+

1

2

∫

𝑡

0

[∫

𝜉1

0

𝑉
𝑏

𝑎𝑏
(𝜉

2
) 𝑑𝜉

2
, 𝑉

𝑏

𝑎𝑏
(𝜉

1
)] 𝑑𝜉

1

+

1

12

∫

𝑡

0

[∫

𝜉1

0

𝑉
𝑏

𝑎𝑏
(𝜉

2
) 𝑑𝜉

2
, [∫

𝜉1

0

𝑉
𝑏

𝑎𝑏
(𝜉

2
) 𝑑𝜉

2
, 𝑉

𝑏

𝑎𝑏
(𝜉

1
)]]

× 𝑑𝜉
1
+ ⋅ ⋅ ⋅ .

(41)

The previous formula can be rewritten as an infinite sum
𝑢(𝑡) = ∑

∞

𝑘=0
𝐻

𝑘
(𝑡), where each 𝐻

𝑘
(𝑡) is a linear combination

of terms that have equal numbers 𝑘 of integrals (exclude the

outermost integral from 0 to 𝑡) and commutators. We denote
each term of𝐻

𝑘
(𝑡) by𝐶

𝜅
(𝜉) and associate it with a binary tree

𝜅 ∈ T
𝑘
, where T

𝑘
is a set which includes all trees with the same

number 𝑘 of integrals and commutators.Then, we can rewrite
(41) as

𝑢 (𝑡) =

∞

∑

𝑘=0

∑

𝜅∈T𝑘

𝛼 (𝜅) ∫

𝑡

0

𝐶
𝜅
(𝜉) 𝑑𝜉, 𝑡 ≥ 0, (42)

where

𝛼 (𝜅) =

𝐵
𝑘

𝑘!

𝑘

∏

𝑖=1

𝛼 (𝜅
𝑖
) , 𝑘 ∈ Z

+

. (43)
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Figure 3: Lie group structural deviation.
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Figure 4: Simulation results for the aircraft avoiding obstacles.

Compute: 𝑔
𝑎𝑏
, 𝑉

𝑏

𝑎𝑏
, 𝑇, 𝛿

𝑎
, 𝛿

𝑟
, 𝛿

𝑒
at 𝜏

𝑗
, 𝑗 = 1, . . . , 𝑁 + 1

Minimizing: Cost Function
Subject to:

𝑔
0
= 𝑔

𝑖
, 𝑉

0
= 𝑉

𝑖
, 𝑔

𝑁+1
= 𝑔

𝑓
, 𝑉

𝑁+1
= 𝑉

𝑓
,

𝑖, 𝑓 denote initial time and terminal time.
and
(i) dynamics constraints: (25), (26)
(ii) path constraints
(iii) decision variables bounds:

𝑔 (𝜏
𝑖
) ∈ [𝑔

𝑙
, 𝑔

𝑢
] , 𝑉 (𝜏

𝑖
) ∈ [𝑉

𝑙
, 𝑉

𝑢
]

𝑇 (𝜏
𝑖
) ∈ [𝑇

𝑙
, 𝑇

𝑢
] , 𝛿

𝑎
∈ [𝛿

𝑎𝑙
, 𝛿

𝑎𝑢
],

𝛿
𝑟
∈ [𝛿

𝑟𝑙
, 𝛿

𝑟𝑢
] , 𝛿

𝑒
∈ [𝛿

𝑒𝑙
, 𝛿

𝑒𝑢
]

where 𝑙, 𝑢 denote lower limit and upper limit.

Algorithm 2: Problem formulation of the NLP.
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Table 1: Parameters of numerical test.

Time 𝑡 ∈ [0, 240] s
Mass 𝑚 = 1 kg
Moment of inertia 𝐽 = diag [1, 2.8, 2] kg⋅m2

Initial orientation 𝑅
𝑎𝑏
(0) = 𝐼

3×3

Initial position 𝑝
𝑎

𝑎𝑏
(0) = [0, 0, 0]

𝑇 m
Initial linear velocity 𝜐

𝑏

𝑎𝑏
(0) = [0, 0, 1]

𝑇 m/s
Initial angular velocity 𝜔

𝑏

𝑎𝑏
(0) = [1, 1, 0]

𝑇 rad/s

It is worthwhile to note that, unlike right trivialization in
[13], here, we take left-trivialized tangent of local coordinate
map, thus

𝐵
𝑘
=

{

{

{

1

2

, for 𝑘 = 1,

𝐵
𝑘
, for 𝑘 ̸= 1.

(44)

Based on the binary tree theory, we can find the following
𝑝th-order approximate solution of (36),

𝑢
[𝑝]

(𝑡) =

𝑝−1

∑

𝑚=0

∑

𝜅∈F𝑚

𝛼 (𝜅) ∫

𝑡

0

𝐶
𝜅
(𝜉) 𝑑𝜉, (45)

where F
𝑚
is the set of all 𝑚-power rooted trees. Thereby, we

give the Magnus series terms with its coefficients 𝛼(𝜅) under
left trivialization in Table 2, which correspond to the top eight
orders rooted trees.

Then, we use Gauss pseudospectral method to solve (45),
so that we get the approximate solution of (36) at the Gauss
points 𝑡

𝑘
< 𝜏

1
, . . . , 𝜏

𝑁
< 𝑡

𝑘+1
and the endpoint 𝑡

𝑘+1
≜

𝑡
𝑘
+ ℎ. To begin with, assume that all of velocities 𝑉𝑏

𝑎𝑏
(𝜏

𝑖
) at

the Gauss points are known previously; we use the Lagrange
polynomials at these points to approximate the velocity at any
time 𝑡 ∈ [𝑡

𝑘
, 𝑡

𝑘+1
] as follows:

𝑉
𝑏

𝑎𝑏
(𝑡) ≈

𝑁

∑

𝑖=1

𝐿
𝑖
(

𝑡 − 𝑡
𝑘

ℎ

) ⋅ 𝑉
𝑏

𝑎𝑏
(𝜏

𝑖
) . (46)

Next, through transforming (46) into [0, 1] via an affine
transformation 𝜉 = (𝑡−𝑡

𝑘
)/ℎ, and inserting it to (45), we have

𝑢
[𝑝]

(𝑡) = 𝐼
1
(𝑡) +

1

2

𝐼
2
(𝑡) +

1

4

𝐼
3
(𝑡) +

1

12

𝐼
4
(𝑡) +

1

24

𝐼
5
(𝑡)

+

1

24

𝐼
6
(𝑡) +

1

8

𝐼
8
(𝑡) + ⋅ ⋅ ⋅ ,

(47)

where each term 𝐼(𝑡) is the following form of multivariate
quadrature:

𝐼 (𝑡)

= ∫

𝑡

0

∫

𝜉𝑚2

0

∫

𝜉𝑚3

0

⋅ ⋅ ⋅

∫

𝜉𝑚𝑠

0

L (ℎ ⋅ 𝑉
𝑏

𝑎𝑏
(𝜉

1
) , . . . , ℎ ⋅ 𝑉

𝑏

𝑎𝑏
(𝜉

𝑠
)) 𝑑𝜉

𝑠
⋅ ⋅ ⋅ 𝑑𝜉

2
𝑑𝜉

1

= ∫

𝑆

L (ℎ ⋅ 𝑉
𝑏

𝑎𝑏
(𝜉

1
) , . . . , ℎ ⋅ 𝑉

𝑏

𝑎𝑏
(𝜉

𝑠
)) 𝑑𝜉

𝑠
⋅ ⋅ ⋅ 𝑑𝜉

2
𝑑𝜉

1
,

(48)

where 𝑆 = {𝜉
1
, . . . , 𝜉

𝑠
∈ R|𝜉

1
∈ [0, 𝑡], 𝜉

ℓ
∈ [0, 𝜉

𝑚ℓ
], 𝑚

ℓ
∈

{1, 2, . . . , ℓ − 1}, ℓ = 2, 3, . . . , 𝑠} and L denotes multivariate
function.

The same as the univariate case, we use the following
quadrature formulae (49) and (50) to evaluate the approxi-
mate solution of (48) at 𝜏

1
, . . . , 𝜏

𝑁
and 𝑡

𝑘+1
, respectively:

𝐼 (𝜏
𝑖
)

= ∫

̃
𝑆
𝑖

L (ℎ ⋅ 𝑉
𝑏

𝑎𝑏
(𝜉

1
) , . . . , ℎ ⋅ 𝑉

𝑏

𝑎𝑏
(𝜉

𝑠−1
)) 𝑑𝜉

𝑠−1
⋅ ⋅ ⋅ 𝑑𝜉

2
𝑑𝜉

1

≈ ∑

𝑘∈𝐶
𝑁

𝑠−1

𝑎
𝑖

𝑘
L (ℎ ⋅ 𝑉

𝑏

𝑎𝑏
(𝜉

𝑘1
) , . . . , ℎ ⋅ 𝑉

𝑏

𝑎𝑏
(𝜉

𝑘𝑠−1
)) ,

𝑎
𝑖

𝑘
= ∫

̃
𝑆
𝑖

𝑠−1

∏

ℓ=1

𝐿
𝑘ℓ
(𝜉

ℓ
) 𝑑𝜉

ℓ
, 𝑘

1
, 𝑘

2
, . . . , 𝑘

𝑠−1
∈ 𝑘,

(49)

where 𝑆𝑖 = {𝜉
1
, . . . , 𝜉

𝑠−1
∈ R | 𝜉

1
∈ [0, 𝑐

𝑖
], 𝜉

ℓ
∈ [0, 𝜉

𝑚ℓ
], 𝑚

ℓ
∈

{1, 2, . . . , ℓ − 1}, ℓ = 2, 3, . . . , 𝑠 − 1}, and 𝐶
𝑁

𝑠−1
is the set of all

combinations of (𝑠 − 1)-tuples 𝑘 from the set {1, 2, . . . , 𝑁},
excluding 𝑠 − 1 repeats of the same number in the set.

One has

𝐼 (𝑡
𝑘+1

)

= ∫

̃
𝑆

L (ℎ ⋅ 𝑉
𝑏

𝑎𝑏
(𝜉

1
) , . . . , ℎ ⋅ 𝑉

𝑏

𝑎𝑏
(𝜉

𝑠
)) 𝑑𝜉

𝑠
⋅ ⋅ ⋅ 𝑑𝜉

2
𝑑𝜉

1

≈ ∑

𝑘∈𝐶
𝑁

𝑠

𝑏
𝑘
L (ℎ ⋅ 𝑉

𝑏

𝑎𝑏
(𝜉

𝑘1
) , . . . , ℎ ⋅ 𝑉

𝑏

𝑎𝑏
(𝜉

𝑘𝑠
))

𝑏
𝑘
= ∫

̃
𝑆

𝑠

∏

ℓ=1

𝐿
𝑘ℓ
(𝜉

ℓ
) 𝑑𝜉

ℓ
, 𝑘

1
, 𝑘

2
, . . . , 𝑘

𝑠
∈ 𝑘,

(50)

where 𝑆 = {𝜉
1
, . . . , 𝜉

𝑠
∈ R|𝜉

1
∈ [0, 1], 𝜉

ℓ
∈ [0, 𝜉

𝑚ℓ
], 𝑚

ℓ
∈

{1, 2, . . . , ℓ − 1}, ℓ = 2, 3, . . . , 𝑠} and 𝐶
𝑁

𝑠
is similar to 𝐶𝑁

𝑠−1
.

Through computing 𝐼(𝑡) of (47) term by term, we obtain
𝑝th-order approximate solution 𝑢

[𝑝]

(𝑡) of 𝑢(𝑡) at the discrete
points. As seen from (48), 𝐼(𝑡) depends on the velocities at
the Gauss points, and the velocities need to be solved in an
iterative manner which will be explained in next section.
Thereby, the solutions of configuration at the Gauss points
need to be also determined in an iterative manner. Finally,
we use 𝑢[𝑝]

(𝜏
𝑖
) at the Gauss points to compute configuration

corresponding to the same points via the following formula:

𝑔
𝑎𝑏
(𝜏

𝑖
) = 𝑔

𝑎𝑏
(𝑡

𝑘
) ⋅ 𝑓 (𝑢

[𝑝]

(𝜏
𝑖
)) . (51)

There are several choices of local coordinatemap𝑓 : g →

𝐺, such as exponential map and Cayley map [21]. We incline
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Table 2: Magnus series terms corresponding to the top eight orders rooted trees.
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𝑏

𝑎𝑏
(𝜉

2
) , [𝑉

𝑏

𝑎𝑏
(𝜉

2
) , [𝑉

𝑏

𝑎𝑏
(𝜉

2
) , [𝑉

𝑏

𝑎𝑏
(𝜉

2
) , 𝑉

𝑏

𝑎𝑏
(𝜉

1
)]]]] 𝑑𝜉

2
𝑑𝜉

2
𝑑𝜉

2
𝑑𝜉

2
𝑑𝜉

1
𝐼
23
(𝑡) −1/720

Table 3: The top eight orders reduced truncated Magnus series expansion.

Order 𝑞 𝑝 Reduced Magnus series expansion
2 1 1 𝑢

[2]

(𝑡) = 𝐼
1
(𝑡)

4 2 3 𝑢
[4]

(𝑡) = 𝐼
1
(𝑡) +

1

2

𝐼
2
(𝑡)

6 3 5 𝑢
[6]

(𝑡) = 𝐼
1
(𝑡) +

1

2

𝐼
2
(𝑡) +

1

4

𝐼
3
(𝑡) +

1

12

𝐼
4
(𝑡) +

1

24

𝐼
5
(𝑡) +

1

24

𝐼
6
(𝑡) +

1

8

𝐼
8
(𝑡)

8 4 7

𝑢
[8]

(𝑡) = 𝐼
1
(𝑡) +

1

2

𝐼
2
(𝑡) +

1

4

𝐼
3
(𝑡) +

1

12

𝐼
4
(𝑡) +

1

24

𝐼
5
(𝑡) +

1

24

𝐼
6
(𝑡) +

1

8

𝐼
8
(𝑡) +

1

16

𝐼
10
(𝑡)

+

1

48

𝐼
11
(𝑡) +

1

48

𝐼
13
(𝑡) +

1

48

𝐼
15
(𝑡) +

1

48

𝐼
19
(𝑡) +

1

144

𝐼
20
(𝑡) −

1

720

𝐼
23
(𝑡) +

1

24

𝐼
7
(𝑡)

+

1

48

𝐼
15
(𝑡) +

1

144

𝐼
16
(𝑡) +

1

48

𝐼
17
(𝑡)

to the Cayley map, since it is very easy to compute, despite
it is only an approximation to the integral curve defined by
exponential map as follows:

caySE(3) (𝑢) = [

[

caySO(3)
(𝜔) 𝐴cay (𝜔) ⋅ 𝜐

0 1

]

]

caySO(3)
(𝜔) = 𝐼

3
+

4

4 + ‖𝜔‖
2
(�̂� +

(�̂�)
2

2

) ,

(52)

where ‖ ⋅ ‖ is a standard Euclidean norm, and

𝐴cay (𝜔) =
2

4 + ‖𝜔‖
2
(2𝐼

3
+ �̂�) . (53)

In the same way, after 𝑢
[𝑝]

(𝑡
𝑘+1

) is obtained via evalu-
ating 𝐼(𝑡

𝑘+1
) termwise, we use (52) to update configuration

𝑔
𝑎𝑏
(𝑡

𝑘+1
) at the endpoint 𝑡

𝑘+1
,

𝑔
𝑎𝑏
(𝑡

𝑘+1
) = 𝑔

𝑎𝑏
(𝑡

𝑘
) ⋅ 𝑓 (𝑢

[𝑝]

(𝑡
𝑘+1

)) . (54)
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3.2.2. Computing Velocities at the Gauss Points and the
Endpoint. As mentioned above, here, we can directly use
general pseudospectral in Section 3.1 to compute velocities at
the Gauss points 𝜏

1
, . . . , 𝜏

𝑁
and the endpoint 𝑡

𝑘+1
. However,

due to (26) being implicit, we have to use iterative algorithm
to solve it. When computing configurations in the preceding
section, we assumed that 𝑉𝑏

𝑎𝑏
(𝜏

𝑖
), 𝑖 = 1, . . . , 𝑁 in (46) are

known in advance. Hence, we need to give their solutions,
and we are going to do it in this section.

To begin with, we write (26) at all of the Gauss points in
a compact matrix form,

[

[

[

[

[

[

[

𝑉
𝑏

𝑎𝑏

(new)

(𝜏
1
)

𝑉
𝑏

𝑎𝑏

(new)

(𝜏
2
)

...
𝑉

𝑏

𝑎𝑏

(new)

(𝜏
𝑁
)

]

]

]

]

]

]

]

=

𝑡
𝑘+1

− 𝑡
𝑘

2

𝐷
−1

⋅

[

[

[

[

[

[

[

Π
−1

⋅ (𝐵 (𝑉
𝑏

𝑎𝑏

(old)
(𝜏

1
)) ⋅ 𝑉

𝑏

𝑎𝑏

(old)
(𝜏

1
) + 𝐹 (𝜏

1
, 𝑔

(old)
𝑎𝑏

(𝜏
1
)))

Π
−1

⋅ (𝐵 (𝑉
𝑏

𝑎𝑏

(old)
(𝜏

2
)) ⋅ 𝑉

𝑏

𝑎𝑏

(old)
(𝜏

2
) + 𝐹 (𝜏

2
, 𝑔

(old)
𝑎𝑏

(𝜏
2
)))

...
Π

−1

⋅ (𝐵 (𝑉
𝑏

𝑎𝑏

(old)
(𝜏

𝑁
)) ⋅ 𝑉

𝑏

𝑎𝑏

(old)
(𝜏

𝑁
) + 𝐹 (𝜏

2
, 𝑔

(old)
𝑎𝑏

(𝜏
𝑁
)))

]

]

]

]

]

]

]

− 𝐷
−1

⋅

[

[

[

[

[

𝑑
10

𝑑
20

...
𝑑
𝑁0

]

]

]

]

]

⋅ 𝑉
𝑏

𝑎𝑏
(𝑡

𝑘
) ,

(55)

where 𝐷 ∈ R𝑁×𝑁 is the submatrix of 𝐷 in Section 3.1, and it
is a reversible matrix,

𝐷 =

[

[

[

[

[

𝑑
11

𝑑
12

⋅ ⋅ ⋅ 𝑑
1𝑁

𝑑
21

𝑑
22

⋅ ⋅ ⋅ 𝑑
2𝑁

...
... d

...
𝑑
𝑁1

𝑑
𝑁2

⋅ ⋅ ⋅ 𝑑
𝑁𝑁

]

]

]

]

]

. (56)

By computing the velocity deviation between adjacent
iterative steps, we determine whether or not to terminate the
iterative process. It is noteworthy that we must ensure that
computing configurations and velocities at the same Gauss
points.

Finally, after the final satisfying iterative results of the
velocities at the Gauss points are obtained, we use the
following formula to compute velocity at the endpoint:

𝑉
𝑏

𝑎𝑏
(𝑡

𝑘+1
) = 𝑉

𝑏

𝑎𝑏
(𝑡

𝑘
) +

𝑡
𝑘+1

− 𝑡
𝑘

2

×

𝑁

∑

𝑖=1

𝜔
𝑖
⋅ 𝑓 (𝑉

𝑏

𝑎𝑏

(new)

(𝜏
𝑖
) , 𝑔

(new)

𝑎𝑏
(𝜏

𝑖
)) .

(57)

3.2.3. 4th-Order Algorithm of Geometric Pseudospectral
Method. In accordance with the aforementioned basic prin-
ciple of geometric pseudospectral method, we develop a 4th-
order algorithm for the rigid-body dynamics evolution over
time.
Implementation and the Order Condition. Legendre-Gauss
point 𝜏

𝑖
is the root of Legendre polynomial 𝑃

𝑁
(𝜏) =

(1/2
𝑁

𝑁!)(𝑑
𝑁

/𝑑𝜏
𝑁

){[𝜏
2

− 1]

𝑁

} of degree𝑁. In fact, a conve-
nient way to compute the Legendre-Gauss points is via the
eigenvalues of the following tridiagonal Jacobi matrix:

𝐽 =

[

[

[

[

[

[

0 𝛽
1

𝛽
1

0 𝛽
2

d d d
d 0 𝛽

𝑁−1

𝛽
𝑁−1

0

]

]

]

]

]

]

, 𝛽
𝑛
=

𝑛

√4𝑛
2
− 1

. (58)

Due to the fact that (25)-(26) are implicit, therefore,
we have to use iterative algorithm to update the velocities
and configurations at the Gauss points. In the interactive
processes, we need to compute the velocity deviation and
configuration deviation, respectively, between the adjacent
interative steps. For velocity deviation, since the Lie algebra
space se(3) in which the velocities belong is isomorphic
to R6, so we are able to use minus directly. However, for
configuration deviation, because configuration space is a
nonlinear manifold, we introduce the following natural error
of configuration [27]:

𝑒 = (𝑔
(step+1)
𝑎𝑏

)

−1

𝑔
(step)
𝑎𝑏

= [
(𝑅

(step+1)
)

𝑇

𝑅
(step)

(𝑅
(step+1)

)

𝑇

(𝑝
(step)

− 𝑝
(step+1)

)

0 1

] .

(59)

By the way, the reason why we choose the previousmetric
is its intuitive physical meaning; taking SE(2) as an example,
the 2-norm ‖(𝑅

(step+1)
)

𝑇

𝑅
(step)

‖
2
denotes angle difference

Δ𝜃 = 𝜃
(step+1)

− 𝜃
(step) between configurations, and the 2-

norm ‖(𝑅
(step+1)

)

𝑇

(𝑝
(step)

− 𝑝
(step+1)

)‖
2
denotes distance dif-

ference Δ𝑑 = √(𝑥
(step+1)

− 𝑥
(step)

)
2

+ (𝑦
(step+1)

− 𝑦
(step)

)
2

between configurations.The last one required to pay attention
to is to ensure computing configurations and velocities at the
same Gauss points.

Turning to order condition of the algorithm, there are
something worthy of our attention. Firstly, if we consider the
time symmetry of the Magnus series expansion, the number
of terms belong to (47) can be further reduced [13]. According
to the time symmetry, function 𝑢

[𝑝]

(𝑡) can be expanded as
the odd power of time 𝑡, and then 𝑢

[2𝑞]

(𝑡) = 𝑢
2𝑞−1

(𝑡) +

O(𝑡2𝑞+1). For this purpose, we provide the top eight orders
reduced truncatedMagnus series expansion in Table 3 which
have been used in step 2.2.3.3 and step 2.2.6.1 of Algorithm 1.
Secondly, let the Magnus series expansion be truncated up to
the𝑝th-order trees for𝑔

𝑎𝑏
(𝑡

𝑘+1
) and𝑝−1th-order trees for the

intermediate stages 𝑔
𝑎𝑏
(𝜏

𝑖
), then the resulting schemes have
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𝑝th-order [32]. Moreover, [2] stated that the interpolatory
quadrature formula with 𝑁 Gauss points is 2𝑁th-order. In
summary, our 4th-order geometric pseudospectral method
only depends on two Gauss points.

3.3. Numerical Test on Free-Floating Rigid Body. In this
section, the performance of Algorithm 1 is tested through
evolution of the following free-floating rigid body dynamics
equations (60)-(61) on SE(3). Note that, under the condition
of no external force, (60)-(61) are equivalent to (25)-(26).
Table 1 summarizes the parameters used in the numerical test
as follows:

[
�̇�
𝑎𝑏
(𝑡) �̇�

𝑎

𝑎𝑏
(𝑡)

0 0

] = [

𝑅
𝑎𝑏
(𝑡) 𝑝

𝑎

𝑎𝑏
(𝑡)

0 1
] [

�̂�
𝑏

𝑎𝑏
(𝑡) 𝜐

𝑏

𝑎𝑏
(𝑡)

0 0

] ,

(60)

[

�̇�
𝑏

𝑎𝑏
(𝑡)

̇𝜐
𝑏

𝑎𝑏
(𝑡)

] = [

𝐽 0

0 𝑚𝐼
3

]

−1

[

[

̂
𝐽𝜔

𝑏

𝑎𝑏
(𝑡) 0

0 −𝑚�̂�
𝑏

𝑎𝑏
(𝑡)

]

]

[

[

𝜔
𝑏

𝑎𝑏
(𝑡)

𝜐
𝑏

𝑎𝑏
(𝑡)

]

]

.

(61)

For making the numerical test more comparable, we
select four 4th-order numerical methods used to compare
with geometric pseudospectral method (GPM), including
ode45 [33], implicit 4th-order Runge-Kutta (RKi), explicit
4th-order RKMK (RKMK) [13], and 4th-order Gauss pseu-
dospectral method (PM) [24], where iterative number and
tolerance of the child loop of GPM and PM are set to
10 and 10

−14, respectively. Among the previous methods,
ode45 is the build-in integrator from MATLAB which is a
variable-step method and whose results would be used as
the ground truth with a specified tolerance 10−14. Both RKi
and PM are the methods in Euclidean space. RKMK is an
approximate Runge-Kutta method on Lie group [15]. It is
worth mentioning that each test must be carried out under
the same step size.

In order to intuitively present the difference between
these methods, the 240 seconds evolving trajectories of the
free-floating rigid body for a large step size are shown in
Figure 1. As seen from the evolution versus time, the positions
of PM is closest to the ground truth, and that of GPM take
second place, but that of RKi and RKMK deviate from the
true values to varying degrees. The potential reason resulted
in accuracy of GPM being lower than PM is that position of
PM is computed by iterative operator with specified iterative
numbers and tolerance directly, but position of GPM is
truncated to a specific order before iterative operator. Despite
inferior to PM, the proposed method is obviously superior to
RKi and RKMK in position accuracy. As can be seen, error
accumulates faster in translational components 𝑝𝑎

𝑎𝑏
than in

rotational components 𝑅
𝑎𝑏
. This could be explained by the

fact that rotation is decoupled from translation and hence
has its own error dynamics, whereas translation suffers from
small cumulative errors in rotation. In addition, we also give
the total computational time in the first line and the average
time per step in parenthesis. Obviously, RKMK needs the
least time since it is an explicit method. Both GPM and PM
need less time thanRKi. Fromorientation, linear velocity, and

angular velocity, there is no obvious difference, so we need to
further compare these methods quantitatively.

In order to quantitatively compare the proposed method
with the other threemethods, deviation statistics and runtime
statistics over 10 runs using a wide range of initial condi-
tions on a 240 seconds evolution are provided in Figure 2.
Figure 2(a) shows the position deviation against timesteps.
It conforms that the accuracy of the GPM is superior to
RKi and RKMK under the same large step size, although
it is inferior to PM in average position deviation, and the
relationship of position deviation between the four methods
is consistent with that of Figure 1. In Figure 2(b), we give
the orientation deviation against timesteps by calculating
the metric ‖logSO(3)

(𝑅
𝑇

ode45𝑅𝑎𝑏
)‖

2

of SO(3) [27], where 𝑅ode45
denotes the orientation of the free-floating rigid body which
is computed by ode45. It should be noted that 𝑅ode45
transforms from the unit quaternion [26], since in ode45
unit quaternion is selected for parameterizing orientation at
this point. Figure 2(c) shows the averaged computation time
of four methods. As can be seen, computational efficiency
of GPM is inferior to that of RKMK, because RKMK is
an explicit method. However, our method requires less
computation time than RKi and is nearly twice as efficient as
RKi on average.

Finally, we examine the conservativeness of Lie group
structure. Considering that configuration is parameterized
by unit quaternion in ode45 and implicit RK method, we
only compare the proposed method with explicit RKMK
and Gauss pseudospectral method. As mentioned, the group
element of SO(3) satisfies 𝑅

𝑎𝑏
𝑅
𝑇

𝑎𝑏
= 𝐼, and we compute

deviation ‖𝐼
3×3

− 𝑅
𝑇

𝑅‖
∞

for evaluating structural conser-
vativeness of the algorithms [5]. Figure 3 illustrates that
Gauss pseudospectral method in Euclidean space has no
conservativeness of Lie group structure, since it is not a
Lie group method; RKMK and geometric pseudospectral
method on Lie group are able to preserve Lie group structure
with accuracy approaching to machine accuracy.

4. Simulation and Control
Application of Aircraft

It is seen from the numerical test in the previous sec-
tion that the proposed method has better accuracy, stable
structural conservativeness, and satisfying computational
efficiency. Thus, it is able to meet the fidelity and timeliness
requirements of aircraft dynamics simulation. In view of the
aircraft dynamics is complex and underactuated, we adopt
optimal control to generate flyable trajectories of aircraft.
As mentioned in Section 1, pseudospectral method of the
Gauss form can be easily applied to optimal control of the
aircraft or other vehicles and satisfies optimization condition.
Reference [23] shows that solving the NLP derived from the
pseudospectral transcription of the Gauss form is exactly
equivalent to solve discrete first-order necessary conditions.
The KKT conditions of the NLP are exactly equivalent to
the discrete first-order necessary conditions of the Bolza
problem. And, KKTmultipliers can be mapped to the costate
of the continuous-time optimal control problem via costate
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mapping principle. Because our geometric pseudospectral
discretization scheme is also based on Gauss points, we can
use it to transcribe a continuous aircraft optimal control
problem into a discrete nonlinear programming problem
(NLP). Then, the resulting NLP can be solved by many well-
known optimization techniques [34, 35]. For this purpose,
we follow the Gauss pseudospectral transcription approach
introduced in [36]. The optimal control problem can be
formulated as in Algorithm 2.

Depending on the specified scenario, cost functions
include minimum control effort, minimum time, obstacle
avoidance, and the quickest manoeuver. For further details
regarding the optimization setup, one can consult to [36].
In this work, referring to the geometric optimal control
framework proposed in [37], rotation component𝑅

𝑎𝑏
of𝑔

𝑎𝑏
is

not treated as our decision variable, for three reasons: firstly,
during the optimization, 𝑅

𝑎𝑏
can be reconstructed from �̂�

𝑏

𝑎𝑏

internally through evaluating (45), (51), and (54); secondly,
the Lie group structural conservativeness could not be con-
sidered by NLP solvers, unless additional constraint with
respect to structural conservativeness is introduced, which
may affect optimality; moreover, computational efficiency is
improved. We take obstacle avoidance as our example, with
optimal control which is implemented using the combination
of GPOPS [36] in MATLAB and SNOPT package in TOM-
LAB version 7.7 [38]. Figure 4 shows simulation results for
an aircraft avoiding obstacles. Their detailed analysis is the
subject of on-going work and will be presented in a future
paper.

5. Conclusions

A completely left invariant rigid-body dynamics model of
aircraft on SE(3) is established. For the left invariance of rigid-
body dynamics model in body-fixed frame, an equivalent
differential equation on se(3) is given under left trivialization.
Accordingly, based on Magnus series expansion and expo-
nential map, the solutions of configuration equation at the
Gauss points and the endpoint are obtained. Velocities on
se(3) at the discrete points are computed based on general
pseudospectral method, since se(3) is isomorphic to R6.
Thereby, a 4th-order numerical method called geometric
pseudospectral method is developed. Through a series of
numerical tests and comparison with other numerical meth-
ods on Lie group and Euclidean space, the proposed method
has a comprehensive advantage in accuracy, computational
efficiency, and Lie group structural conservativeness. Finally,
the way of applying our method to aircraft simulation and
optimal control is illustrated.

For the future work, we will further analyze its perfor-
mance in aircraft simulation and control. For presence of a
large number of tedious commutator operator inmultivariate
quadrature, we will try to find an alternative method to
simplify the calculation process so that extend our method
to the higher order. Moreover, we will extend the proposed
method to a broader kind of left invariant rigid-body dynam-
ics systems in engineering.

Appendix

The top eight orders truncated Magnus series expansion of
𝑢(𝑡) under left trivialization (see Tables 2 and 3).
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