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A Selective Advantage to
Immigrant Genes in a Daphnia

Metapopulation
Dieter Ebert,1,2,3*† Christoph Haag,1,2,3* Mark Kirkpatrick,4

Myriam Riek,1,2 Jürgen W. Hottinger,1,2,3 V. Ilmari Pajunen2,5

Immigrants to habitats occupied by conspecific organisms are usually expected
to be competitively inferior, because residents may be locally adapted. If
residents are inbred, however,mating between immigrants and residents results
in offspring that may enjoy a fitness advantage from hybrid vigor. We dem-
onstrate this effect experimentally in a natural Daphnia metapopulation in
which genetic bottlenecks and local inbreeding are common. We estimate that
in this metapopulation, hybrid vigor amplifies the rate of gene flow several
times more than would be predicted from the nominal migration rate. This can
affect the persistence of local populations and the entire metapopulation.

Gene flow between populations can be both a
creative and a constraining force in evolution
(1–3). The introduction of new genetic material
into a population increases local genetic diver-
sity and helps the spread of favorable alleles
across metapopulations. On the other hand, it
reduces genetic variation between populations

and hinders local adaptation. In inbred popula-
tions, the consequences of migration may be
particularly important: If the hybrid offspring of
immigrants and residents are competitively su-
perior, their hybrid vigor will amplify the gene
flow caused by migration (4–6). Furthermore,
the demographic consequences of increased
vigor could prevent the decline and even the
extinction of populations (7–12). The magni-
tude of hybrid vigor is, however, controversial.
Highly inbred populations may have low genet-
ic loads because inbreeding exposes recessive
deleterious alleles to purging by natural selec-
tion (13–17).

In subdivided populations with local ex-
tinctions and colonizations, genetic bottle-
necks can be frequent, leading to increased
homozygosity (15, 16, 18). If homozygosity
results in a fitness reduction (inbreeding de-
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pression), then small amounts of immigration
can have disproportional effects on the vigor
and persistence of local populations. This
will in turn influence the extinction and col-
onization dynamics of the whole metapopu-
lation (4–6 ).

To test whether hybrid vigor has an effect
on the genetic structure of local populations,
we studied the consequences of immigration
in small populations of the water flea Daph-
nia magna. This planktonic crustacean occurs
in various bodies of water, ranging from large
ponds, with genetically diverse populations,
to small intermittent pools, characterized by
low genetic diversity. In our metapopulation,
D. magna inhabits small pools (0.5 to 20 m2

and 0.1 to 0.5 m deep) on the rocky banks of
islands along the Swedish and Finnish Baltic
Sea coast (19–22). The number of these rock
pool populations is thought to be larger than
105, with one to a few hundred pools per
island. In our study area around Tvärminne in
southern Finland, local extinction rates are
about 20% per year, estimated over an 18-
year study including 507 pools (21, 23).
About 5% of the empty pools are colonized
per year, and the proportion of occupied
pools has remained around 20% since 1983.
The life cycle of D. magna begins with the
hatching of females from resting eggs in
spring, followed by asexual reproduction for
up to 12 generations. At the end of the sea-
son, sexual reproduction produces resting
eggs that survive the winter and also serve as
dispersal stages.

In 1998, a population genetic survey of 96
D. magna populations with known age indi-
cated that local populations are often founded
by a single clone, followed by a population
increase due to clonal expansion (24 ). Such
genetic bottlenecks lead to substantial in-
breeding during sexual reproduction, which
is most extreme when a single founder clone
produces resting eggs by mating with clonal
brothers and sisters (known as selfing) (25).
The frequent occurrence of genetic bottle-
necks makes this metapopulation an ideal site
to study the impact of local inbreeding on the
success of immigrants.

To test whether hybrid vigor occurs in this
metapopulation, we introduced immigrant
genotypes into 22 D. magna populations and
monitored the fate of their outbred offspring
over one summer season. We chose 22 rock
pool populations on nine islands in July 1999.
These rock pools were known to be continu-
ously inhabited by D. magna for at least 2
years before the beginning of the study. Of
the five genetic loci known to be polymor-
phic in these metapopulations, the 22 studied
populations were polymorphic at none (12
populations), one (six populations), or two
loci (four populations), which is typical of the
metapopulation. In July 1999, we removed all
D. magna from these populations and kept
200 to 500 females from each population
with minimal selection in the laboratory. To
remove resting eggs that may have been pro-
duced earlier in that season, we removed the
water and most of the soft sediments from the

pools. Comparable disturbances occur natu-
rally in this metapopulation, where storms on
the Baltic Sea frequently wash out parts of or
even entire pools (19, 21). We also collected
22 clones from different pools within the
study area and propagated them in the labo-
ratory. These we designated as our experi-
mental immigrant clones.

Two weeks later, after rain had refilled the
pools, we brought 200 individuals of the
populations back into their original pools and
added 200 individuals of one immigrant
clone into each pool (26 ). In each experimen-
tal pool, the immigrant clone differed from
the local clones at at least one allozyme
marker locus. To avoid bias due to potential
fitness effects of the genetic markers, we used
multiple alleles at four loci. The genetic
markers allowed us to distinguish between
hybrids, offspring of local residents, and
selfed offspring of the immigrant clone after
the populations had undergone one round of
sexual recombination, i.e., in spring of the
following year.

Rock pools were left undisturbed until we
took the first samples in May 2000. From
these samples, we genotyped 66 to 122 ani-
mals and also founded laboratory populations
using 200 to 300 females each. This was done
to duplicate the natural rock pool experiment
under controlled laboratory conditions so that
we could decouple the effect of inbreeding
from uncontrolled environmental effects,
such as the local pool environment, predators,
and further immigrants from the same or
other Daphnia species (27 ). Second and third
samples were taken from all populations
about 60 and 100 days after the first samples
had been collected.

Our hypothesis was that the outbred off-
spring would increase in frequency as the
result of hybrid vigor. Figure 1 shows that
this was the case in all rock pool popula-
tions where we recovered hybrids in May
2000 (all but pool 15). It was also the case
in 17 of 18 laboratory populations (Fig. 1)
(28). The changes in genotype frequencies
in the field and the laboratory were highly
correlated with each other (r � 0.71 to 0.93
for the three offspring types, P � 0.002,
n � 16), and the increase of outbred geno-
types did not differ significantly among
them ( paired t test: t � 0.52, P � 0.61, n �
16). Hybrids also increased significantly in
the time period between the second and the
third sample (P � 0.01 in the field and the
laboratory) at a time when genotypes with
very low fitness (e.g., due to castrating
homozygous recessive mutations) had al-
ready been purged. Therefore, the observed
hybrid vigor is at least partially due to
deleterious effects of alleles with weak to
intermediate effect (6, 29). As selection
against such alleles is weak, they can accu-
mulate to high frequencies. High genetic

Fig. 1. Frequency changes of hybrids, residents, and inbred immigrants during asexual competition.
The left plot of each pair of area plots shows frequency changes in the natural rock pools, whereas
the right plots show changes in the laboratory. The population numbers are given on the right. All
plots have the same y axis (genotype frequencies ranging from 0 to 1) and x axis (sampling events
at 0, 60, and 100 days). The first sampling date was between 18 May and 5 June 2000 (depending
on the emergence of Daphnia from resting eggs), the second between 18 and 21 July 2000, and the
third on 28 August 2000. Empty places for two of the rock pool area plots and area plots including
only the first and the second sample indicate extinction of these populations after the first or the
second sample, respectively. Only 19 of the 22 populations are shown, because populations 4 and
11 went extinct during the winter and in population 18 only residents were found (sample
size �300). No hybrids were detected in population 15 and no inbred immigrants in populations
12, 13, and 22. In all other populations, we found all three offspring types.
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loads have been reported for Daphnia (30 –
32).

We believe that hybrid vigor best explains
our results, as a number of alternative hypoth-
eses can be excluded. First, because we used a
different immigrant clone for each population,
it is unlikely that all of them carried superior
alleles (33). Second, although rare genotypes
could have had an advantage by, for example,
exploiting unoccupied niches, we rejected this
hypothesis because hybrids increased in fre-
quency irrespective of their initial frequencies
in May 2000 (Fig. 1). Third, although residents
may suffer from locally adapted predators or
parasites (34, 35), predators were excluded
from the laboratory, and the increase of hybrids
did not differ significantly between populations
infected with a parasite or not (36). Fourth,
mating success cannot explain our results (37–
39) as hybrid success was measured during the
asexual phase of the Daphnia life cycle.

One key effect of hybrid vigor is an in-
crease in effective gene flow (4 ). We esti-
mate that 2 years after a natural immigration
event (where immigrants represent a much
smaller fraction of the population than in our
experiments), the effective rate of gene flow
is about 35 times larger than would be pre-
dicted by the number of immigrants alone,
and it will even increase further in the fol-
lowing years (40). The amount by which
gene flow is amplified depends on the causes
and magnitude of hybrid vigor. It may be
much smaller in genetically more diverse
Daphnia populations but may be high in oth-
er systems characterized by frequent extinc-
tions and recolonizations.

Amplified gene flow caused by hybrid
vigor may account for lower observed levels
of population differentiation than predicted
by models based on neutral effects (4, 6,
41–43) and may influence the evolution of
dispersal (44 ). An important effect of hybrid
vigor is the “genetic rescue” of populations
from extinction, because it may influence
extinction and colonization dynamics of the
whole metapopulation (5). Although we did
not show a link between population persis-
tence and inbreeding depression, such a rela-
tion has been shown before (9, 11, 12) and is
likely to apply to Daphnia metapopulations
as well. In this light, gene flow is an essential
component for the persistence of metapopu-
lations. Thus, our study gives clear empirical
support for the need to maintain gene flow in
the management and conservation of subdi-
vided populations.

Reference and Notes
1. P. R. Ehrlich, P. H. Raven, Science 165, 1228 (1969).
2. E. Mayr, Animal Species and Evolution (Harvard Univ.
Press, Cambridge, MA, 1963).

3. M. Slatkin, Science 236, 787 (1987).
4. P. K. Ingvarsson, M. C. Whitlock, Proc. R. Soc. London
Ser. B 267, 1321 (2000).

5. C. M. Richards, Am. Nat. 155, 383 (2000).

6. M. C. Whitlock, P. K. Ingvarsson, T. Hatfield, Heredity
84, 452 (2000).

7. R. Lande, Evolution 48, 1460 (1994).
8. M. Lynch, J. Cornery, R. Bürger, Am. Nat. 146, 489
(1995).

9. I. M. Saccheri et al., Nature 392, 491 (1998).
10. R. Frankham, Conserv. Biol. 12, 665 (1998).
11. R. L. Westemeier et al., Science 282, 1695 (1998).
12. T. Madsen, R. Shine, M. Olsson, H. Wittzell, Nature
402, 34 (1999).

13. R. Lande, D. W. Schemske, Evolution 39, 24 (1985).
14. S. C. H. Barrett, D. Charlesworth, Nature 352, 522
(1991).

15. L. F. Keller, J. N. Arcese, M. Smith, W. M. Hochachka,
S. C. Stearns, Nature 372, 356 (1994).

16. D. Charlesworth, B. Charlesworth, Annu. Rev. Ecol.
Syst. 18, 237 (1987).

17. E. H. Bryant, L. M. Meffert, L. M. McCommas, Am. Nat.
136, 542 (1990).

18. C. R. Darwin, The Effects of Cross and Self Fertilization
in the Vegetable Kingdom ( John Murray, London,
1876).

19. E. Ranta, Arch. Hydrobiol. 87, 205 (1979).
20. I. Hanski, E. Ranta, J. Anim. Ecol. 52, 263 (1983).
21. V. I. Pajunen, Ann. Zool. Fennici 23, 131 (1986).
22. S. Ås, J. Bengtsson, T. Ebenhard, in Ecological Princi-
ples of Nature Conservation, L. Hansson, Ed. (Elsevier,
London, 1992), pp. 201–251.

23. V. I. Pajunen, I. Pajunen, unpublished data.
24. In 1998, we genotyped 22 to 44 D. magna from all 96
pools (out of 507) occupied in the study region at five
polymorphic loci using allozyme electrophoresis (45).
Twenty-nine independent (i.e., pools not connected
to other pools) new colonizations were recorded in
this summer, none of which was polymorphic at
more than two loci. In 26 of these populations, only
one genotype was found. Of these, five were fixed at
a heterozygote locus, suggesting that they may have
been colonized by only one clone each. One popula-
tion was composed of two heterozygote clones (ge-
notypes AA/Bb and Aa/BB) with strong linkage dis-
equilibrium (P � 0.01), suggesting that it may have
been colonized by two polymorphic clones. The find-
ing of five fixed heterozygotes among 29 newly
colonized populations is in contrast to the finding of
only one fixed heterozygotes among the 67 older
populations (colonized in 1997 or earlier) that under-
went at least one season of sexual reproduction (P �
0.009, Fisher exact test). At least three of the 29 new
populations resulted from interisland migration, be-
cause no other D. magna populations were present
on these islands during previous years.

25. With selfing, the inbreeding coefficient F of the entire
population will be at least 0.50 in the following year.
As resting eggs usually come in pairs, founding events
may include two clones that are related to each other
as full or half sibs. Then F in the following year would
be at least 0.25 or 0.125, respectively.

26. Under natural conditions, the number of immigrants
is likely to be very small relative to the number of
residents. To minimize stochastic events influencing
the fate of the immigrants during our experiment, we
introduced the local residents and the immigrants in
equal numbers.

27. Laboratory populations were kept in white buckets
filled with 8 liters of artificial medium. Populations
were kept at 18°C and 18:6 hours light:dark cycle and
were fed daily with 1.5 � 107 cells of Scenedesmus
gracilis. Five liters of the medium was exchanged
after 6 and 11 weeks. Population size was 250 to 400.
Predators and competitors were excluded from these
populations.

28. The genotype frequency differences between the last
successful sample (third sample, unless extinction
occurred after the second sample) and the first sam-
ple were tested with a Wilcoxon sign rank test
(paired test). While the hybrids increased significant-
ly (field: Z � 68, P � 0.0001, n � 16; laboratory: Z �
82.5, P � 0.0001, n � 18), the residents (field: Z �
�60, P� 0.0001, n� 16; laboratory: Z� �65.5, P�
0.0028, n � 18) and the selfed immigrant offspring
decreased significantly (field: Z� �44.5, P� 0.0005,
n � 15; laboratory: Z � �60, P � 0.0001, n � 16).
Tests excluded population 15, because no hybrids
were found.

29. B. Charlesworth, D. Charlesworth, M. T. Morgan, Na-
ture 347, 380 (1990).

30. D. J. Innes, J. Hered. 80, 6 (1989).
31. L. De Meester, Oecologia 96, 80 (1993).
32. M. Lynch, H. W. Deng, Am. Nat. 144, 242 (1994).
33. The genetic markers used to trace the genotypes
during asexual competition had no influence on the
advantage of the hybrids relative to the residents
[analysis of variance; field: F(3,7) � 0.27, P � 0.85;
laboratory: F(3,11) � 1.49, P � 0.27].

34. D. Ebert, Science 265, 1084 (1994).
35. C. C. Wilson, P. D. N. Hebert, Ecology 73, 1462 (1992).
36. Fourteen populations in the field and 12 populations
in the laboratory harbored at least one out of three
naturally occurring parasites: two microsporidia and
one bacterium. There was no significant difference in
hybrid frequency increase between infected and un-
infected populations [laboratory populations:
F(1,16) � 0.97, P � 0.34; field: F(1,14) � 0.21, P �
0.65].

37. P. Sinnock, Am. Nat. 104, 469 (1970).
38. C. S. Jones et al., Proc. R. Soc. London Ser. B 260, 251
(1995).

39. L. De Meester, J. Vanoverbeke, Proc. R. Soc. London
Ser. B 266, 2471 (1999).

40. The impact of hybrid vigor on gene flow can be
quantified by the “effective migration rate” m*(t),
defined as the migration rate that would have the
same impact on the genetic composition of the
population as an equivalent number of copies of a
migrant gene t years after it arrives if hybrid vigor
was absent. The following argument applies to
selected as well as neutral genes. In the Daphnia
metapopulation, migrants arrive as resting eggs
before the growing season of year 1 or as asexual
females during it. They form clones during year 1
that mate with residents to produce F1 hybrid
resting eggs. At the end of year 1, m*(1) � m
because hybrid vigor is not yet expressed. If the
number of immigrants is small relative to residents
and Daphnia mate randomly or disassortatively,
then virtually all immigrants mate with residents.
Thus, m*(2) � wF1 m, where wF1 is the mean
fitness of the hybrids relative to residents. From
our data during the 100-day study period (repre-
senting about one sexual generation), we estimate
m*(2) � 33.7m using the laboratory data and
36.0m using the field data. The fitness of hybrids
was estimated as

wF1 � ��1 � p1	p3
/� p1(1� p3	]

where p1 and p3 are the frequencies of the hybrids at
the beginning and end of the experiment (about one
sexual generation). As replicates in which p3 � 1
(hybrids went to fixation) were not included, our
estimates of wF1 are underestimates. In subsequent
years, m* can be determined for genes that are
unlinked to other loci under selection: m*(t) �
wF1wB(1)wB(2) . . . wB(t�2)m, where wB(1) is the mean
fitness of individuals resulting from the first back-
cross between the F1 and residents and WB ( i) is the
mean fitness of offspring from backcross i – 1 and
residents. This expression for m* is an approximation
that holds so long as the frequency of matings be-
tween backcross individuals is negligible in all years.
The value of m*(t) will grow in successive years if the
backcrosses have higher fitness than the residents,
reaching an asymptote as the population reaches
linkage equilibrium. We do not have the fitnesses of
the backcrosses, and so we calculate m* using a
simple model that assumes that fitness differences
are caused by deleterious mutations of equal effect
at unlinked loci. Assuming that the mutations have
multiplicative effects, then the fitness of a genotype
can be described by the numbers of homo- and
heterozygous mutants that they carry. We write the
relative fitness effects of a single locus as 1, (1 – hs),
and (1 – s) for genotypes with 0, 1, and 2 copies of a
mutation. Assume that migrants and residents each
consist of a single clone that is entirely homozygous,
with the migrants and residents fixed for alternative
alleles at im and ir, loci, respectively. Calculations then
show that

3



ht
tp

://
do

c.
re

ro
.c

h

wF1 �
�1 � hs	�im � ir	

�1 � s	 ir
,

wB�1	 � �1 �
1

2
hs	 im�2 � s � hs

2�1 � s	 � ir
and that the fitnesses of later backcrosses con-
verge geometrically on 1 at a rate of 1/2 per sexual
generation (year). Using parameter values suggest-
ed for Daphnia (46 ) (s � 0.14 and h � 0.3) and
setting im � ir � 55 to give an F1 fitness similar to
what we observed, we obtain m*(2) � 35.7m,

m*(3) � 234m, and m*(�) � 6703m. Lower values
of m*, but still substantially greater than 1, can be
obtained when im and ir have more modest values.
Thus, hybrid vigor can make gene flow many times
stronger than would be predicted from the nominal
migration rate under these conditions.

41. P. Pamilo, S. Pálsson, O. Savolainen, Hereditas 130,
257 (1999).

42. B. Charlesworth, M. Nordborg, D. Charlesworth, Gen-
et. Res. Camb. 70, 155 (1997).

43. A. G. Young, T. Boyle, T. Brown, Trends Ecol. Evol. 11,
413 (1996).

44. I. Olivieri, P. H. Gouyon, in Metapopulation Biology,

I. A. Hanski, M. E. Gilpin, Eds. (Academic Press, San
Diego, CA, 1997), pp. 293–324.

45. P. D. N. Hebert, M. J. Beaton, Methodologies for
Allozyme Analysis Using Cellulose Acetate Electro-
phoresis (Helena Laboratories, Beaumont, TX, ed. 2,
1993).

46. H. W. Deng, M. Lynch, Genetics 147, 147 (1997).
47. We thank T. Kawecki, M. Ackermann, D. Meyer, and S.
Zweizig for critical comments to earlier version of the
manuscript. This work was supported by the Swiss
Science Foundation and NSF grant DEB-9973221

4


