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A number of particle properties stem from the use of 𝛾0 as adjunctator (Bargmann-Pauli) in the Dirac theory (spin alignment,
Dirac current, etc.). The early motivations for accepting 𝛾0 as adjunctator were representation-dependent, mildly bearing relation
to the actual conditions forcing 𝛾0 as adjunctator. Representation-independent approaches to the physical predictions of the Dirac
equation are somewhat new, here presented as being the reasons for 𝛾0 as adjunctator of the Dirac theory, together with the essential
role of the latter in the physical aspects of the theory.

1. Introduction

The definition of the Dirac operators (𝛽, �⃗�) as 𝛾
0(1, ⃗𝛾),

satisfying [𝛾
𝜇
, 𝛾

]
]
+

= 2𝑔
𝜇]

⋅ 1, that is, a Clifford algebra
C𝑙
1,3
(𝐶), does not include any information on how adjoint

operators are constructed. In representation-dependent
form, as matrices, the adjoints are constructed as (𝛾

𝜇†
)
𝛼,𝛽

= (𝛾
𝜇
)
∗

𝛼,𝛽
; however, such representation-dependent solu-

tions also include representation-specific artifacts, often non-
physical. The importance of presenting properties in repre-
sentation-independent form, stemming from minimal infor-
mation in the abstract definition of the foundations, thus
cannot be emphasized enough.

The adjunctator (algebra element that constructs the
adjoint) is present in a number of particle properties (current
definition, spin alignment, etc.). In Dirac theory, this is the
Bargmann-Pauli [1–3] adjunctator 𝛾0 and its unicity is crucial
to knowing that the physical quantities used are well defined.

The initial demand in determining how the adjoint is
constructed for (𝛾0, ⃗𝛾) was from theDirac-1928 equation itself
as follows:

E = H = �⃗� ⋅ p⃗ + 𝛽𝑚𝑐
|𝜓
, (1)

whereE is the energy,H theHamiltonian, (𝛽, �⃗�) Dirac’s initial
matrices, and 𝜓 the system’s wave function. Since E = E† it
seemed natural to ask that H = H†. This is rather ad-hoc, all
that the above relation has to offer being Im{⟨H† −H⟩

𝜓
} = 0.

Leaving such “physics” arguments behind, the real aspects
can be now explored. Little attention was given to this
topic; however Pauli [3] did have interest in it at the time.
His arguments though representation dependent (with one
minor inaccuracy) offer the only explanation to date on this
topic. The only representation-independent study [4, 5] is
about the unicity of the adjunctator together with a pleiad of
related studies [6, 7].

In the Dirac algebra (of the 𝛾
𝜇 matrices), the adjoint

operators form another representation of the same algebra,
as the arguments of Pauli [3] show the following:

[𝛾
𝜇†
, 𝛾

]†
]
−
= −[𝛾

𝜇
, 𝛾

]
]
−

†
= 2𝑔
𝜇] ⋅ 1 ⇒ 𝛾

𝜇†
= B𝛾𝜇B−1.

(2)

The two representations are thus related through a similarity
transformation B termed adjunctator or hermitiser [1, 2],
with the following properties:

(i) (𝛾𝜇†)† = 𝛾
𝜇
= B−1†𝛾𝜇B† = (B−1†B)𝛾𝜇(B−1†B)−1 ⇒

[B−1†B, 𝛾𝜇]
−
= 0 for all 𝜇 = 0, 3, respectively, B† =

𝜆B.
(ii) (B†)† = (𝜆B)† = |𝜆|

2B = B ⇒ |𝜆| = 1.

The reasons for the consecrated B = 𝛾
0 must thus lie in the

mathematical foundations of the bispinor space and cannot
be collected from the Lagrangian conditions already using
𝛾
0 as adjunctator, other ad hoc conditions (shown in the
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beginning), or representation-specific arguments leading to
generalisations not pertinent to the problem.

The representation-independent conditions applicable
are

(i) self-adjointness: any X2 = 1 has real eigenvalues;
hence X = X†. For example, X = 𝜎

𝑖
, 𝛾
0
, 𝛾
5, and so

forth;
(ii) positive definiteness: for any X, its norm squared

‖X𝜓‖2 = ⟨X𝜓 | X𝜓⟩ ≥ 0; hence B must be such that
X†X ≥ 0, ∀X.

Respectively they are the mathematical translation of under-
standing the scalar-product. The early arguments of Pauli
[3] relied on counting representation-dependent anti-/sym-
metric matrices. This eludes the above two conditions and
leads to one minor misconclusion on B.

2. Structure of the Scalar Product

Let Γ = 𝛾
𝜇
𝛾
]
⋅ ⋅ ⋅ 𝛾
𝜌; then Γ

†
= B𝛾𝜌 ⋅ ⋅ ⋅ 𝛾]𝛾𝜇B−1 = sign ⋅BΓB−1.

It is useful thus to define

Γ
def
= B−1Γ†B, (3)

with the trivial action of complex conjugation on scalars and
a generalisation of this on operators as follows:

(i) XY = YX,

(ii) X−1 = X −1,
(iii) R + 𝑖C = R−𝑖C, forR andC “standard”, that is,R = R

and C = C;

(iv) ΓΓ = ΓΓ; that is, ΓΓ is standard;
(v) 𝜆X + 𝜇Y = 𝜆X + 𝜇Y;
(vi) if R + 𝑖C = 0; then both R and C are zero since 0 =

R − 𝑖C = 0.

With this notation, it is easier to understand the action of B
as follows:

Γ
†
= B Γ B−1 (4)

and to further discover the adjunctator:B† = 𝜆B = BBB−1 ⇒
B = 𝜆B. The operator B is comprised of a standard and
antistandard part: B = R + 𝑖C, where both R and C are
standard. Therefore B = 𝜆B translates to R − 𝑖C = 𝜆R + 𝑖𝜆C,
which takes into account that 𝜆 = 𝜆

𝑅
+ 𝑖𝜆
𝐶
and also in view

of property (vi) becomes.

(
𝜆
𝑅
− 1 −𝜆

𝐶

𝜆
𝐶

𝜆
𝑅
+ 1

)(
R
C) = 0. (5)

Respectively, the determinant must vanish (which for |𝜆| = 1,
the case at hand, actually does).The condition from (5) is that
R ∼ C, or B = 𝑧R where 𝑧 is a unit complex number relevant
only for aesthetical purposes as follows:

Γ
†
= (𝑧B) Γ(𝑧B)−1 = BΓB−1. (6)

The only effect of 𝑧 is that of choice: with 𝑧 = 1, B† = B,
with 𝑧 = 𝑖, B† = −B, with 𝑧 = 𝑒

𝑖𝜃/2, B† = 𝑒
𝑖𝜃B—therefore

𝑧 can be chosen 1, hence B standard and B† = B. The
property of significance is that the adjunctator is, up to a unit
complex multiplier, standard. The arguments in [3] of count-
ing symmetric and antisymmetric matrices, though reaching
the same conclusion, forbid B† = −B which, as shown above,
could have served equally well.

3. Self-Adjoint Operators

The simplest proof from this point on is by looking at the
generators of the Dirac algebra-(�⃗�, ⃗𝑔), where �⃗� = 𝛾

0
⃗𝛾𝛾
5 and

⃗𝑔 = (𝛾
5
, −𝑖𝛾
0
𝛾
5
, 𝛾
0
); the two sets defining two isomorphic

halves of the space [8] are shown as follows:

�⃗� × �⃗� = 2𝑖�⃗�, with 𝜎
2

𝑖
= 1,

⃗𝑔 × ⃗𝑔 = 2𝑖 ⃗𝑔, with 𝑔
2

𝑖
= 1.

(7)

The two halves of the space admit various other represen-
tations, such as (1 − 𝛾

5
)�⃗�/2 and (1 + 𝛾

5
)�⃗�/2; however, the

one presented is the most convenient for the task at hand.
The endomorphism between the two halves is S = 1 + �⃗� ⃗𝑔 =

1 + 𝛾
0
𝛾
1
− 𝑖𝛾
2
+ 𝑖𝛾
0
𝛾
1
𝛾
2.

The two halves seem identical; however from the adjunc-
tation point of view they differ as follows:

(𝜎
1
, 𝜎
2
, 𝜎
3
) = (𝜎

1
, 𝜎
2
, 𝜎
3
) ,

(𝑔
1
, 𝑔
2
, 𝑔
3
) = (−𝑔

1
, −𝑔
2
, 𝑔
3
) .

(8)

Encouraged by the fact that 𝜎2
𝑖
= 1 and 𝑔

2

𝑖
= 1, we explore

under what conditions �⃗�† = �⃗� and ⃗𝑔
†
= ⃗𝑔.

For the first half of the space, we seek an adjunctator in
the form of 𝐵 = 𝜆 + ⃗𝑎�⃗�, where [𝜆, �⃗�]

−
= 0 and [ ⃗𝑎, �⃗�]

−
= 0.

With some loss of generality, we let [𝜆, ⃗𝑎]
−
= 0 and ⃗𝑎 × ⃗𝑎 = 0,

for the sake of exemplifying the mechanisms in place. Under
this adjunctator;

�⃗�
†
= �⃗� +

2

𝜆2 − ⃗𝑎2
[ ⃗𝑎
2
�⃗�
⊥
− 𝜆 ⃗𝑎 × �⃗�] . (9)

For 𝑋 = �⃗��⃗�, in order that 𝑋†𝑋 ≥ 0, it is evident that ⃗𝑎 = 0,
leaving 𝜆 = scalar + LIN{ ⃗𝑔}.

For the second half of the space, similar arguments follow,
only that in this case the 𝑔

𝑖
’s are not similar to the 𝜎

𝑖
’s. Further

restricting generality, assume ⃗𝑎 = 𝑎 ⃗𝑒
3
; then

⃗𝑔
†
= ⃗𝑔 −

2

𝜆2 − ⃗𝑎2
[𝜆
2
⃗𝑔
⊥
− 𝜆 ⃗𝑎 × ⃗𝑔] (10)

The role of ⃗𝑎 = 0 in the first half transfers here to 𝜆 = 0.
It can be seen that 𝐵 = 𝑔

3
performs �⃗�† = �⃗� and ⃗𝑔

†
= ⃗𝑔,

which for any operator in the space satisfies𝑋†𝑋 ≥ 0.
Conversely, without proof, if �⃗�† = �⃗� and ⃗𝑔

†
= ⃗𝑔, then any

operator in the space satisfies𝑋†𝑋 ≥ 0.
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Let 𝑋 = 𝛾
0
𝑋𝛾
0 be an operation with the same properties

as X, mainly just complex conjugating the coefficients in a
sum of operators. If A = B𝛾0, then𝑋

†
= A𝑋A−1 and

𝜎
†

𝑖
= A�̃�
𝑖
A−1 = A𝜎

𝑖
A−1 = 𝜎

𝑖
,

𝑔
†

𝑖
= A𝑔
𝑖
A−1 = A𝑔

𝑖
A−1 = 𝑔

𝑖
,

(11)

as assumed, hinted by the fact that 𝜎
𝑖
and 𝑔
𝑖
squared are unity

and have real eigenvalues. This implies that

[A, 𝜎
𝑖
]
−
= 0, ∀𝑖 = 1, 3,

[A, 𝑔
𝑖
]
−
= 0, ∀𝑖 = 1, 3,

(12)

and in turn

A𝛾0𝛾𝑖𝛾5 = 𝛾
0
𝛾
𝑖
𝛾
5
𝐴,

A𝛾0 = 𝛾
0A,

A𝛾5 = 𝛾
5A.

(13)

Respectively, both [A, 𝛾𝑖]
−

= 0 and [A, 𝛾0]
−

= 0; that is,
[A, 𝛾𝜇]

−
= 0, ∀𝜇 = 0, 1, or A = 1.

All these exemplifications point to the asymmetry—with
respect to adjunctation—of the two halves of the space and to
the fact that 𝑔

3
= 𝛾
0 may be the Bargmann-Pauli adjunctator.

4. Positive Definiteness of 𝑋†𝑋

Amore involved argument is that B should be such that𝑋†𝑋
is positive definite for any 𝑋; that is: A𝑋A−1𝑋 ≥ 0, which
is the matrix version of understanding the scalar product.
Since (�⃗�, ⃗𝑔) have the same properties, and the arbitrariness
of𝑋 imposes equal constraints on both, that is, any property
holding for𝑋(�⃗�, ⃗𝑔)must also hold for𝑋( ⃗𝑔, �⃗�), it follows that
A is symmetric in (�⃗�, ⃗𝑔) as follows:

A = 𝑏 ⋅ 1 + ⃗𝑎 (�⃗� + ⃗𝑔) + 𝑀
𝑖𝑗
(𝜎
𝑖
𝑔
𝑗
+ 𝜎
𝑗
𝑔
𝑖
) . (14)

In the above, ⃗𝑎 and 𝑀
𝑖𝑗
are unjustifiable anisotropies; hence

⃗𝑎 = 0 and𝑀
𝑖𝑗
= 𝛽𝛿
𝑖,𝑗
; thereforeA reduces toA=𝛼⋅1+𝛽S, with

A−1=(𝛼 − 𝛽S)/(𝛼2 − 4𝛽
2
), where S2=4 ⋅ 1. The A𝑋A−1𝑋 ≥ 0

inequality becomes

A𝑋A−1𝑋 = (𝛼
2
− 4𝛽
2
)
−1

× [𝛼
2
𝑋
𝜎
− 𝛽
2
𝑋
𝑔
+ 𝛼𝛽S (𝑋

𝜎
− 𝑋
𝑔
)]𝑋
𝜎
≥ 0,

(15)

where 𝑋
𝜎
= 𝑋(�⃗�, ⃗𝑔) and 𝑋

𝑔
= 𝑋( ⃗𝑔, �⃗�), S playing the go-

between role: S𝑋
𝜎
= 𝑋
𝑔
S and 𝑋

𝜎
S= S𝑋

𝑔
. Let 𝑋

𝜎
= 𝑋
𝑔
=

𝜆 + 𝜇S; then (15) (using S̃= S) becomes

A𝑋A−1𝑋 = (𝛼
2
− 4𝛽
2
)
−1

× [𝜆 (𝛼
2
− 𝛽
2
) + 𝜇 (𝛼

2
+ 𝛽
2
) + 8𝜇𝛼𝛽]

× (𝜆 + 𝜇S) ≥ 0.

(16)

Expanding the above,

A𝑋A−1𝑋 = (𝛼
2
− 4𝛽
2
)
−1

× [(𝜆𝜇 + 𝜆𝜇) 𝛼
2S + (𝜆𝜇 − 𝜆𝜇) 𝛽

2S

+ |𝜆|
2
(𝛼
2
− 𝛽
2
) + 4 (𝜆𝜇 + 𝜆𝜇) 𝛼𝛽

+ 8𝛼𝛽
𝜇

2S + 4

𝜇

2
(𝛼
2
+ 𝛽
2
)

+ 4 (𝜆𝜇 − 𝜆𝜇) 𝛼𝛽 ] ≥ 0,

(17)

where the imaginary boxed terms disappear for 𝛽 = 0; hence
A ∼ 1 and B = 𝛾

0 (qed). Note that the expectation values of
S= 1+�⃗� ⋅ ⃗𝑔 can be 1/4 and 7/4, stemming from the product of
two independent 1/2 angular momenta.

In general form (without the anisotropy argument), the
proof ends annihilating all ⃗𝑎 and nondiagonal𝑀

𝑖𝑗
coefficients

for the same reason above: the existence of imaginary terms
in a relation that needs to be real and positive.

The unicity issue has been addressed by direct construc-
tion, although proof in this respect can be found in [4, 5].

Another aspect of interest is the possibility of using
the bar in place of (adjunctation)† on the helicity-positive
subspace as follows:

(𝜓 | 𝜙)
def
= ⟨C𝜓 | C𝜙⟩ . (18)

In this case, B=CC>0, the C operator taking the in-between
bearing role of 𝛾0. Evidently, any operator satisfying SS= 1
invaries the new scalar product of (𝜓 | 𝜙).The particularity of
this context is that anyC satisfies the scalar product and norm
conditions (i.e., absolutely arbitrary scalar product), leading
from the physics point of view to arbitrary many Lorentz
invariant conserved currents.

5. Dirac Currents

Another interesting aspect is that two Lorentz invariant
quantities which include charge density ⟨𝜌⟩ = |𝜓(𝑥)|

2 can be
defined: 𝜌B𝛾𝜇 and 𝜌B𝛾𝜇𝛾5. Of these two, only the former is
conserved: 𝜕

𝜇
⟨𝜌B𝛾𝜇⟩

𝜓
= 0.

It is clear that if the adjunctator B is not unique, more
than one such conserved Lorentz invariant quantity can be
defined. The transformation properties under space-, time-,
and space-time inversion for 𝑗𝜇 = ⟨𝜌𝛾

0
𝛾
𝜇
⟩
𝜓
are

𝑗
𝜇
(𝜓)

P
→ −𝑗

𝜇
(𝜓) ,

𝑗
𝜇
(𝜓)

T
→ −𝑗

𝜇
(𝜓) ,

𝑗
𝜇
(𝜓)

PT
→ 𝑗
𝜇
(𝜓) ,

(19)

where U†
𝑃
=−U
𝑃
, U†
𝑇
=−U
𝑇

and U†
𝑃𝑇
=U
𝑃𝑇

were evidently
included. The notation 𝑎

𝜇 refers to 𝑔
𝜇]
𝑎]. Above, 𝑗

𝜇 is not
an operator, but rather the product: 𝑗𝜇 = ⟨𝜌⟩

𝜓
⋅ ⟨k𝜇⟩

𝜓
. Its
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transformation properties seem to differ from textbook elec-
trodynamics by the minus sign.This comes from the fact that
charge density is better defined as a pseudoscalar under both
space- and time-inversion [9–12]. Incidentally, this also solves
the problem of not finding a representation-independent
charge-conjugation operator C, since time reversal does this
automatically for all currents, without the need of a specific
charge-conjugation operator for each current in its own
space.

6. Conclusion

It has been shown in representation-independent form that
the adjunctator for the Dirac space is the 𝛾0 matrix.This is an
important result, as the adjunctator enters the definition of
the Dirac current and multiple adjunctators would imply the
possibility of defining multiple currents, which, incidentally,
is possible for the positive helicity subspace.

As the adjunctator plays also the role of parity transfor-
mation, its unicity is essential to the theory. Furthermore,
together with time inversion, it defines complete coordinate
inversion, which reverses all currents—without the need for
a charge-conjugation operator. The latter is impossible to
define in representation-independent form, which in itself is
a statement over why it does not exist and why it is important
to have representation-independent results.
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