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The generalized numerical index of a Banach space is introduced, and its properties on certain Banach spaces are studied. Ed-dari’s
theorem on the numerical index is extended to the generalized index and polynomial numerical index of a Banach space. The
denseness of numerical strong peak holomorphic functions is also studied.

1. Introduction and Preliminaries

Let𝑋 and 𝑌 be Banach spaces over a scalar field F , where F is
the real field R or the complex field C. We denote by 𝐵

𝑋
and

𝑆
𝑋
its closed unit ball and unit sphere, respectively. Let𝑋∗ be

the dual space of 𝑋. An 𝑁-homogeneous polynomial 𝑃 from
𝑋 to 𝑌 is a mapping such that there is an𝑁-linear (bounded)
mapping 𝐿 from 𝑋 to 𝑌 such that 𝑃(𝑥) = 𝐿(𝑥, . . . , 𝑥) for
every 𝑥 in 𝑋. P(𝑁𝑋 : 𝑌) denotes the Banach space of all
𝑁-homogeneous polynomials from 𝑋 to 𝑌, endowed with
the norm ‖𝑃‖ = sup

𝑥∈𝐵𝑋
‖𝑃(𝑥)‖. A mapping 𝑄 : 𝑋 → 𝑌

is a polynomial if there exist a nonnegative integer 𝑚 and
𝑃
𝑘
∈ P(

𝑘
𝑋 : 𝑌), 𝑘 = 0, 1, . . . , 𝑚 such that𝑄 = 𝑃

0
+𝑃
1
+⋅ ⋅ ⋅+𝑃

𝑚
.

If 𝑃
𝑚
̸= 0, then we say that 𝑄 is a polynomial of degree 𝑚. We

denote by P(𝑋 : 𝑌) the normed space of all polynomials
from 𝑋 to 𝑌, endowed with the norm ‖𝑄‖ = sup

𝑥∈𝐵𝑋
‖𝑄(𝑥)‖.

We refer to [1] for background on polynomials on a Banach
space.

For two Banach spaces𝑋,𝑌 over a field F and aHausdorff
topological space𝐾, let

𝐶
𝑏 (𝐾 : 𝑌) := {𝑓 : 𝐾 → 𝑌 : 𝑓 be a bounded

continuous function on 𝐾} .
(1)

Then 𝐶
𝑏
(𝐾 : 𝑌) is a Banach space under the sup norm ‖𝑓‖ :=

sup{‖𝑓(𝑡)‖
𝑌
: 𝑡 ∈ 𝐾} and P(

𝑁
𝑋 : 𝑌) is a closed subspace of

𝐶
𝑏
(𝐵
𝑋
: 𝑌) for each𝑁 ≥ 1. We just write 𝐶

𝑏
(𝐾) andP(

𝑁
𝑋)

instead of 𝐶
𝑏
(𝐾 : F) andP(

𝑁
𝑋 : F), respectively.

For complex Banach spaces𝑋 and 𝑌, we denote that

𝐴
𝑏
(𝐵
𝑋
: 𝑌) := {𝑓 ∈ 𝐶

𝑏
(𝐵
𝑋
: 𝑌) : 𝑓 is holomorphic on 𝐵∘

𝑋
}

𝐴
𝑢
(𝐵
𝑋
: 𝑌) := {𝑓 ∈ 𝐴

𝑏
(𝐵
𝑋
: 𝑌) : 𝑓 is

uniformly continuous} ,
(2)

where 𝐵∘
𝑋
is the interior of 𝐵

𝑋
. Then𝐴

𝑏
(𝐵
𝑋
: 𝑌) and𝐴

𝑢
(𝐵
𝑋
:

𝑌) are closed subspaces of 𝐶
𝑏
(𝐵
𝑋
: 𝑌). In case that 𝑌 is the

complex scalar field C, we write 𝐴
𝑏
(𝐵
𝑋
) and 𝐴

𝑢
(𝐵
𝑋
) instead

of 𝐴
𝑏
(𝐵
𝑋
: 𝑌) and 𝐴

𝑢
(𝐵
𝑋
: 𝑌), respectively. The closed

subspace of 𝐴
𝑢
(𝐵
𝑋
: 𝑌) consisting of all weakly uniformly

continuous functions is denoted by 𝐴
𝑤𝑢
(𝐵
𝑋
: 𝑌). We denote

by 𝐴(𝐵
𝑋
: 𝑋) one of 𝐴

𝑏
(𝐵
𝑋
: 𝑋), 𝐴

𝑢
(𝐵
𝑋
: 𝑋), and 𝐴

𝑤𝑢
(𝐵
𝑋
:

𝑋). Notice that if 𝑋 is finite dimensional, 𝐴
𝑏
(𝐵
𝑋
: 𝑋) =

𝐴
𝑢
(𝐵
𝑋
: 𝑋) = 𝐴

𝑤𝑢
(𝐵
𝑋
: 𝑋).

Given a real or complex Banach space 𝑋, we denote by 𝜏
the product topology of the set 𝑆

𝑋
×𝑆
𝑋
∗ , where the topologies

on 𝑆
𝑋
and 𝑆

𝑋
∗ are the norm topology of 𝑋 and the weak-∗

topology of𝑋∗, respectively. The setΠ(𝑋) := {(𝑥, 𝑥∗) ∈ 𝑆
𝑋
×

𝑆
𝑋
∗ : ‖𝑥‖ = ‖𝑥

∗
‖ = 1 = 𝑥

∗
(𝑥)} is a 𝜏-closed subset of 𝑆

𝑋
×𝑆
𝑋
∗ .

The spatial numerical range of 𝑓 in 𝐶
𝑏
(𝐵
𝑋
: 𝑋) is defined [2]

by𝑊(𝑓) = {𝑥∗(𝑓(𝑥)) : (𝑥, 𝑥∗) ∈ Π(𝑋)}, and the numerical
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radius of 𝑓 is defined by V(𝑓) = sup{|𝜆| : 𝜆 ∈ 𝑊(𝑓)}. Let
𝑓 be an element of 𝐶

𝑏
(𝐾 : 𝑋). We say that 𝑓attains its norm

if there is some 𝑡 ∈ 𝐾 such that ‖𝑓‖ = ‖𝑓(𝑡)‖
𝑋
. 𝑓 is said to

be a (norm) peak function at 𝑡 if there exists a unique 𝑡 ∈ 𝐾
such that ‖𝑓‖ = ‖𝑓(𝑡)‖

𝑋
. It is clear that every (norm) peak

function in 𝐶
𝑏
(𝐾 : 𝑋) is norm attaining. A peak function 𝑓

at 𝑡 is said to be a (norm) strong peak function if whenever
there is a sequence {𝑡

𝑘
}
∞

𝑘=1
in 𝐾 with lim

𝑘
‖𝑓(𝑡

𝑘
)‖
𝑋
= ‖𝑓‖,

{𝑡
𝑘
}
∞

𝑘=1
converges to 𝑡 in𝐾. It is easy to see that if𝐾 is compact,

then every peak function is a strong peak function. Given a
subspace 𝐻 of 𝐶

𝑏
(𝐾), we denote by 𝜌𝐻 the set of all points

𝑡 ∈ 𝐾 such that there is a strong peak function 𝑓 in 𝐻 with
‖𝑓‖ = |𝑓(𝑡)|.

Similarly we introduce the notion of numerical peak
functions. Let 𝑓 be an element of 𝐶

𝑏
(𝐵
𝑋
: 𝑋). If there

is some (𝑥, 𝑥∗) ∈ Π(𝑋) such that V(𝑓) = |𝑥∗(𝑓(𝑥))|, we
say [3] that 𝑓attains its numerical radius. 𝑓 is said ([4, 5])
to be a numerical peak function at (𝑥, 𝑥∗) if there exist a
unique (𝑥, 𝑥∗) ∈ Π(𝑋) such that V(𝑓) = |𝑥∗(𝑓(𝑥))|. In this
case, (𝑥, 𝑥∗) is said to be the numerical peak point of 𝑓. It
is clear that every numerical peak function in 𝐶

𝑏
(𝐵
𝑋
: 𝑋)

is numerical radius attaining. The numerical peak function
𝑓 at (𝑥, 𝑥∗) is called a numerical strong peak function if
whenever there is a sequence {(𝑥

𝑘
, 𝑥
∗

𝑘
)}
∞

𝑘=1
in Π(𝑋) such

that lim
𝑘
|𝑥
∗

𝑘
(𝑓(𝑥

𝑘
))| = V(𝑓), then {(𝑥

𝑘
, 𝑥
∗

𝑘
)}
∞

𝑘=1
converges to

(𝑥, 𝑥
∗
) in 𝜏-topology. In this case, (𝑥, 𝑥∗) is said to be the

numerical strong peak point of 𝑓. We say that a numerical
strong peak function 𝑓 at (𝑥, 𝑥∗) is said to be a very strong
numerical peak function if whenever there is a sequence
{(𝑥

𝑘
, 𝑥
∗

𝑘
)}
∞

𝑘=1
in Π(𝑋) satisfying lim

𝑛
|𝑥
∗

𝑘
(𝑓(𝑥

𝑘
))| = V(𝑓), we

get lim
𝑘
𝑥
𝑘
= 𝑥 and lim

𝑘
𝑥
∗

𝑘
= 𝑥

∗ in the norm topology. If 𝑋
is finite dimensional, then every numerical peak function is a
very strong numerical peak function.

In 1996, Choi andKim [6] initiated the study of denseness
of norm or numerical radius attaining nonlinear functions,
especially homogeneous polynomials on aBanach space.Using
the perturbed optimization theorem of Bourgain [7] and
Stegall [8], they proved that if a real or complex Banach
space𝑋 has the Radon-Nikodým property, then the set of all
norm attaining functions in P(

𝑘
𝑋) is norm-dense. For the

definition and properties of the Radon-Nikodým property,
see [9]. Concerning the numerical radius, it was also shown
that if 𝑋 has the Radon-Nikodým property, then the set of
all numerical radii attaining functions inP(𝑘𝑋 : 𝑋) is norm-
dense. Acosta et al. [10] proved that if a complex Banach space
𝑋 has the Radon-Nikodým property, then the set of all norm
attaining functions in𝐴

𝑏
(𝐵
𝑋
) is norm-dense. Recently, it was

shown in [11] that if 𝑋 has the Radon-Nikodým property,
the set of all (norm) strong peak functions in 𝐴

𝑏
(𝐵
𝑋
) is

dense. Concerning the numerical radius, Acosta and Kim [3]
showed that the set of all numerical radii attaining functions
in 𝐴

𝑏
(𝐵
𝑋
: 𝑋) is dense if 𝑋 has the Radon-Nikodým

property. When 𝑋 is a smooth (complex) Banach space with
the Radon-Nikodým property, it is shown in [5] that the set
of all numerical strong peak functions is dense in 𝐴(𝐵

𝑋
: 𝑋).

As a corollary, if 1 < 𝑝 < ∞ and 𝑋 = 𝐿
𝑝
(𝜇) for a measure

space 𝜇, then the set of all norm and numerical strong peak
functions in 𝐴(𝐵

𝑋
: 𝑋) is a dense 𝐺

𝛿
-subset of 𝐴(𝐵

𝑋
: 𝑋).

In this case, every numerical strong peak function is a very
strong numerical peak function. It is also shown in [5] that
the set of all norm and numerical strong peak functions in
𝐴(𝐵

𝑙1
: 𝑙
1
) is a dense 𝐺

𝛿
-subset of 𝐴(𝐵

𝑙1
: 𝑙
1
).

Let us briefly sketch the content of this paper. In Section 2,
to extend the results of a finite dimensional space to an
infinite dimensional space by approximation, we introduce
the following notions. A Banach space 𝑋 has the (FPA)-
property with {𝜋

𝑖
, 𝐹
𝑖
}
𝑖∈𝐼

if

(1) each 𝜋
𝑖
is a norm-one projection with the finite

dimensional range 𝐹
𝑖
,

(2) given 𝜖 > 0, for every finite-rank operator 𝑇 from 𝑋
into a Banach space𝐹 and for every finite dimensional
subspace 𝐺 of𝑋, there is 𝜋

𝑖
such that

𝑇 − 𝑇𝜋𝑖
 ≤ 𝜖,

𝐼𝐺 − 𝜋𝑖|𝐺
 ≤ 𝜖. (3)

As examples, we show that𝑋has the (FPA)-property if at least
one of the following conditions is satisfied.

(a) It has a shrinking and monotone finite-dimensional
decomposition.

(b) 𝑋 = 𝐿
𝑝
(𝜇), where 𝜇 is a finite measure and 1 ≤ 𝑝 <

∞.

We show that if 𝑋 has the (FPA)-property, then the set
of all polynomials 𝑄 ∈ P(𝑋 : 𝑋) such that there exist
a finite dimensional subspace 𝐹 and norm-one projection
𝜋 : 𝑋 → 𝐹 such that 𝜋 ∘ 𝑄 ∘ 𝜋 = 𝑄 and 𝑄|

𝐹
is a norm,

and numerical peak function as a mapping from 𝐵
𝐹
into 𝐹 is

dense in 𝐴
𝑤𝑢
(𝐵
𝑋
: 𝑋).

A subset Γ of Π(𝑋) is called a numerical boundary for
a subspace 𝐻 of 𝐶

𝑏
(𝐵
𝑋
: 𝑋) if V(𝑓) = sup{|𝑥∗(𝑓(𝑥))| :

(𝑥, 𝑥
∗
) ∈ Γ} for every 𝑓 ∈ 𝐻 (see [4, 12]). The projections

{𝜋
𝑖
, 𝐹
𝑖
}
𝑖∈𝐼

are said to be parallel to a numerical boundary Γ of
𝐻 if each 𝜋

𝑖
has the image 𝐹

𝑖
and


⟨𝑥
∗𝐹𝑖
, 𝜋
𝑖 (𝑥)⟩


=

𝑥
∗𝐹𝑖


⋅
𝜋𝑖 (𝑥)

 , ∀ (𝑥, 𝑥
∗
) ∈ Γ, ∀𝑖 ∈ 𝐼.

(4)

A projection 𝜋 : 𝑋 → 𝑋 is said to be strong if whenever
{𝜋(𝑥

𝑘
)}
∞

𝑘=1
is norm-convergent to 𝑦 ∈ 𝑆

𝑋
for a sequence

{𝑥
𝑘
}
∞

𝑘=1
in 𝐵

𝑋
, {𝑥

𝑘
}
∞

𝑘=1
is norm-convergent to 𝑦.

Recall that a Banach space𝑋 is said to be locally uniformly
convex if 𝑥 ∈ 𝑆

𝑋
, and there is a sequence {𝑥

𝑛
} in 𝐵

𝑋
satisfying

lim
𝑛
‖𝑥
𝑛
+ 𝑥‖ = 2, then lim

𝑛
‖𝑥
𝑛
− 𝑥‖ = 0. Notice that if 𝑋

is locally uniformly convex, then every norm-one projection
is strong. We prove that if a smooth Banach space 𝑋 has the
(FPA)-property and the corresponding projections are strong
and parallel to Π(𝑋), then the set of all norm and numerical
strong peak functions in 𝐴

𝑤𝑢
(𝐵
𝑋
: 𝑋) is dense. We also

prove that if a Banach space 𝑋 has the (FPA)-property with
{(𝜋

𝑖
, 𝐹
𝑖
)}
𝑖∈𝐼
, the corresponding projections are strong, parallel

toΠ(𝑋), and if each 𝜋∗
𝑖
: 𝑋

∗
→ 𝑋

∗ is strong, then the set of
all very strong numerical and norm strong peak functions is
dense in 𝐴

𝑤𝑢
(𝐵
𝑋
: 𝑋).

In Section 3, we extend the recent result of Ed-dari [13].
Let 𝑋 be a complex Banach space and 𝐻 a subspace of
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𝐴
𝑏
(𝐵
𝑋
: 𝑋). We introduce the 𝐻-numerical index by

𝑁(𝐻) := inf{V(𝑓) : 𝑓 ∈ 𝐻, ‖𝑓‖ = 1}. When𝐻 = P(𝑘𝑋 : 𝑋)
for some 𝑘 ≥ 1, the polynomial numerical index 𝑁(𝐻) is
usually denoted by 𝑛(𝑘)(𝑋), which was first introduced and
studied by Choi et al. [14]. We refer to [15–20] for some
recent results about polynomial numerical index. For a norm-
one projection 𝜋 with range 𝐹 and for any subspace 𝐻 of
𝐴
𝑏
(𝐵
𝑋
: 𝑋), define 𝐻

𝐹
= {𝜋 ∘ 𝑓 ∘ 𝜋|

𝐹
: 𝐵
𝐹
→ 𝐹 : 𝑓 ∈ 𝐻}.

We prove that if 𝑋 has the (FPA)-property with {(𝜋
𝑖
, 𝐹
𝑖
)}
𝑖∈𝐼

and the corresponding projections are parallel to a numerical
boundary of a subspace 𝐻, then 𝑁(𝐻) = inf

𝑖∈𝐼
𝑁(𝐻

𝐹𝑖
). In

fact, 𝑁(𝐻) is a decreasing limit of the right-hand side with
respect to the inclusion partial order. If 𝑋 is a real Banach
space, we get a similar result (seeTheorem 14). As a corollary
we also extended Ed-dari’s result to the polynomial numerical
indices of 𝑙

𝑝
. In fact, Kim [17] extended Ed-dari’s result [13,

Theorem 2.1] to the polynomial numerical indices of (real or
complex) 𝑙

𝑝
of order 𝑘 as follows: Let 1 < 𝑝 < ∞ and 𝑘 ∈ N be

fixed. Then 𝑛(𝑘)(𝑙
𝑝
) = inf{𝑛(𝑘)(𝑙𝑚

𝑝
) : 𝑚 ∈ N} and the sequence

{𝑛
(𝑘)
(𝑙
𝑚

𝑝
)}
𝑚∈N is decreasing.

2. Banach Spaces with the (FPA)-Property and
Denseness of Numerical Peak Holomorphic
Functions

Following [21, Definition 1.g.1], a Banach space𝑋 has a finite-
dimensional Schauder decomposition (FDD for short) if there
is a sequence {𝑋

𝑛
} of finite-dimensional spaces such that

every 𝑥 ∈ 𝑋 has a unique representation of the form 𝑥 =
∑
∞

𝑛=1
𝑥
𝑛
, where 𝑥

𝑛
∈ 𝑋

𝑛
for every 𝑛. In such a case, the

projections given by 𝑃
𝑛
(𝑥) = ∑

𝑛

𝑖=1
𝑥
𝑖
are linear and bounded

operators. If, moreover, for every 𝑥∗ ∈ 𝑋∗, it is satisfied that
‖𝑃
∗

𝑛
𝑥
∗
− 𝑥

∗
‖ → 0, the FDD is called shrinking. The FDD is

said to bemonotone if ‖𝑃
𝑛
‖ = 1 for every 𝑛.

The following proposition is easy to prove and its proof is
omitted.

Proposition 1. The following two conditions on a Banach
space are equivalent.

(1) A Banach space 𝑋 has the (FPA)-property.
(2) Given 𝜖 > 0, {𝑥

1
, . . . , 𝑥

𝑚
} ⊂ 𝑋 and {𝑥∗

1
, . . . , 𝑥

∗

𝑛
} ⊂ 𝑋

∗,
there is a norm-one projection 𝑃 : 𝑋 → 𝑋 such that
𝑃 has a finite rank, and for each 𝑖 = 1, . . . , 𝑚 and for
each 𝑗 = 1, . . . , 𝑛, there exist 𝑦

𝑖
∈ 𝑋 and 𝑦∗

𝑗
∈ 𝑋

∗ such
that ‖𝑃𝑦

𝑖
− 𝑥

𝑖
‖ ≤ 𝜖 and ‖𝑃∗𝑦∗

𝑗
− 𝑥

∗

𝑗
‖ ≤ 𝜖.

Example 2. Assume that 𝑋 is a complex Banach space
satisfying at least one of the following conditions.

(1) It has a shrinking and monotone finite-dimensional
decomposition.

(2) 𝑋 = 𝐿
𝑝
(𝜇), where 𝜇 is a finite measure and 1 ≤ 𝑝 <

∞.
Then𝑋 has the (FPA)-property.

Proof. Let 𝑇 : 𝑋 → 𝐹 be a linear operator from𝑋 to a finite
dimensional space 𝐹 and 𝐺 a finite dimensional subspace 𝐺

of𝑋. Given 𝜖 > 0, there is an 𝜖/3-net {𝑔
1
, . . . , 𝑔

𝑛
} in 𝐵

𝐺
and 𝑇

can be written as ∑𝑚
𝑖=1
𝑥
∗

𝑖
⊗ 𝑦

𝑖
for some 𝑥∗

1
, . . . , 𝑥

∗

𝑚
∈ 𝑋

∗ and
𝑦
1
, . . . , 𝑦

𝑚
∈ 𝐹.

(1) Suppose that 𝑋 has a shrinking monotone finite-
dimensional decomposition. Then there is𝑁 ∈ N such that

max
1≤𝑖≤𝑚

𝑦𝑖
 ⋅

𝑚

∑

𝑖=1

𝑃
∗

𝑁
𝑥
∗

𝑖
− 𝑥

∗

𝑖

 ≤ 𝜖, max
1≤𝑗≤𝑛


𝑃
𝑁
𝑔
𝑗
− 𝑔

𝑗


≤
𝜖

3
.

(5)

Then for any 𝑥 ∈ 𝐵
𝑋
,

𝑇𝑃𝑁𝑥 − 𝑇𝑥
 =



𝑚

∑

𝑖=1

(𝑃
∗

𝑁
𝑥
∗

𝑖
) (𝑥) 𝑦𝑖 −

𝑚

∑

𝑖=1

𝑥
∗

𝑖
(𝑥) 𝑦𝑖



≤ max
1≤𝑗≤𝑛

𝑦𝑖
 ⋅

𝑚

∑

𝑖=1

𝑃
∗

𝑁
𝑥
∗

𝑖
− 𝑥

∗

𝑖

 ≤ 𝜖,

(6)

hence ‖𝑇𝑃
𝑁
− 𝑇‖ ≤ 𝜖. For any 𝑥 ∈ 𝐵

𝐺
, there is 𝑔

𝑗
such that

‖𝑥−𝑔
𝑗
‖ ≤ 𝜖/3, then because the decomposition is monotone,

𝑃𝑁𝑥 − 𝑥
 ≤

𝑃
𝑁
(𝑥 − 𝑔

𝑗
)

+

𝑃
𝑁
𝑔
𝑗
− 𝑔

𝑗


+

𝑥 − 𝑔

𝑗



≤ 2

𝑥 − 𝑔

𝑗


+

𝑃
𝑁
𝑔
𝑗
− 𝑔

𝑗


≤ 𝜖.

(7)

So taking 𝑃 = 𝑃
𝑁
, we obtained the desired result.

(2) Suppose that 𝑋 = 𝐿𝑝(𝜇). We may assume that 𝜇 is a
probability measure. For each 1 ≤ 𝑖 ≤ 𝑚, there is 𝑠

𝑖
∈ 𝐿

𝑞
(𝜇)

such that 1/𝑝 + 1/𝑞 = 1 and 𝑥∗
𝑖
(𝑓) = ∫𝑓𝑠

𝑖
𝑑𝜇 (𝑓 ∈ 𝐿

𝑝
(𝜇)).

Then there is a sub-𝜎-algebra F generated by finite disjoint
subsets such that

max
1≤𝑗≤𝑛

𝑦𝑖
 ⋅

𝑚

∑

𝑖=1

𝐸 (𝑠𝑖 | F) − 𝑠𝑖
𝑞
≤
𝜖

2
,

max
1≤𝑖≤𝑛

𝐸 (𝑔𝑖 | F) − 𝑔𝑖
𝑝
≤
𝜖

3
.

(8)

Define a projection 𝑃 : 𝑋 → 𝑋 as 𝑃𝑓 = 𝐸(𝑓 | F). It is
clear that 𝑃 is a norm-one projection. For any 𝑓 ∈ 𝐵

𝑋
,

𝑇𝑃𝑓 − 𝑇𝑓
 =



𝑚

∑

𝑖=1

(𝑥
∗

𝑖
) (𝑃𝑓) 𝑦

𝑖
−

𝑚

∑

𝑖=1

𝑥
∗

𝑖
(𝑓) 𝑦

𝑖



≤ max
1≤𝑗≤𝑛

𝑦𝑖
 ⋅

𝑚

∑

𝑖=1

𝑥
∗

𝑖
(𝑃𝑓) − 𝑥

∗

𝑖
(𝑓)


≤ max
1≤𝑗≤𝑛

𝑦𝑖


⋅

𝑚

∑

𝑖=1


∫
𝐾

(𝐸 (𝑓 | F) − 𝑓) 𝐸 (𝑠
𝑖
| F) 𝑑𝜇



+ max
1≤𝑗≤𝑛

𝑦𝑖


⋅

𝑚

∑

𝑖=1


∫
𝐾

(𝐸 (𝑓 | F) − 𝑓) (𝐸 (𝑠
𝑖
| F) − 𝑠

𝑖
) 𝑑𝜇
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= 0 + max
1≤𝑗≤𝑛

𝑦𝑖


⋅

𝑚

∑

𝑖=1


∫
𝐾

(𝐸 (𝑓 | F) − 𝑓)

× (𝐸 (𝑠
𝑖
| F) − 𝑠

𝑖
) 𝑑𝜇



≤ max
1≤𝑗≤𝑛

𝑦𝑖
 ⋅ 2

𝑚

∑

𝑖=1

𝑓
𝑝

𝐸 (𝑠𝑖 | F) − 𝑠𝑖
𝑞
≤ 𝜖.

(9)

On the other hand, for any 𝑓 ∈ 𝐵
𝐺
, there is 𝑔

𝑗
such that ‖𝑓 −

𝑔
𝑗
‖ ≤ 𝜖/3. So

𝑃𝑓 − 𝑓
 ≤

𝑃 (𝑓 − 𝑔

𝑗
)

+

𝑃𝑔
𝑗
− 𝑔

𝑗


+

𝑥 − 𝑔

𝑗



≤ 2

𝑓 − 𝑔

𝑗


+

𝑃𝑔
𝑗
− 𝑔

𝑗


≤ 𝜖.

(10)

We obtained the desired result. The proof is complete.

We will say that a 𝑘-linear mapping 𝐿 : 𝑋 × ⋅ ⋅ ⋅ × 𝑋 → 𝑌
is of finite-type if it can be written as

𝐿 (𝑥
1
, . . . , 𝑥

𝑘
) =

𝑚

∑

𝑖=1

𝑥
∗

1,𝑖
(𝑥
1
) ⋅ ⋅ ⋅ 𝑥

∗

𝑘,𝑖
(𝑥
𝑘
) 𝑦
𝑖
, ∀𝑥

1
, . . . , 𝑥

𝑘
∈ 𝑋

(11)

for some𝑚 ∈ N, 𝑥∗
1,1
, . . . , 𝑥

∗

𝑘,𝑚
in 𝑋∗ and 𝑦

1
, . . . , 𝑦

𝑚
in 𝑌. We

will denote by 𝐿
𝑓
(
𝑘
𝑋 : 𝑌) the space of all 𝑘-linear mappings

from 𝑋 to 𝑌 of finite type. If a polynomial 𝑃 is associated
with such a 𝑘-linear mapping, we will say that it is a finite-
type polynomial.

Proposition 3. Suppose that a Banach space𝑋 has the (FPA)-
property with {(𝜋

𝑖
, 𝐹
𝑖
)}
𝑖
. Then the set of all polynomials 𝑄 ∈

P(𝑋 : 𝑋) such that there exists a projection 𝜋
𝑖
: 𝑋 → 𝐹

𝑖
such

that 𝜋
𝑖
∘ 𝑄 ∘ 𝜋

𝑖
= 𝑄 and 𝑄|

𝐹𝑖
is a norm and numerical peak

function as a mapping from 𝐵
𝐹𝑖
to 𝐹

𝑖
is dense in 𝐴

𝑤𝑢
(𝐵
𝑋
: 𝑋).

Proof. We follow the ideas in [10]. The subset of continuous
polynomials is always dense in 𝐴

𝑢
(𝐵
𝑋
: 𝑋). Given 𝑓 ∈

𝐴
𝑢
(𝐵
𝑋
: 𝑋) and 𝑛 ∈ N, it is the limit in 𝐴

𝑢
(𝐵
𝑋
: 𝑋) of

sequence of functions {𝑓
𝑛
}
𝑛
defined by 𝑓

𝑛
(𝑥) := 𝑓((𝑛/(𝑛 +

1))𝑥). Then 𝑓
𝑛
belongs to 𝐴

𝑏
(((𝑛 + 1)/𝑛)𝐵

𝑋
: 𝑋). Thus the

Taylor series expansion of 𝑓
𝑛
at 0 converges uniformly on 𝐵

𝑋

for all 𝑛.
We will also use the fact that if∑∞

𝑘=0
𝑃
𝑘
is the Taylor series

expansion of 𝑓 ∈ 𝐴
𝑤𝑢
(𝐵
𝑋
: 𝑋) at 0, then 𝑃

𝑘
is weakly

uniformly continuous on 𝐵
𝑋
for all 𝑘.

Since 𝑋 has the (FPA)-property, 𝑋∗ has the approxima-
tion property (see [22, Lemma 3.1]). Then the subspace of
𝑘-homogeneous polynomials of finite-type restricted on 𝐵

𝑋

is dense in the subspace of all 𝑘-homogeneous polynomials
which are weakly uniformly continuous on 𝐵

𝑋
(see [1,

Proposition 2.8]). Thus the subspace of the polynomials of
finite-type restricted to the closed unit ball of 𝑋 is dense in
𝐴
𝑤𝑢
(𝐵
𝑋
: 𝑋).

Assume that 𝑃 is a finite-type polynomial that can be
written as a finite sum 𝑃 = ∑

𝑛

𝑘=0
𝑃
𝑘
, where each 𝑃

𝑘

is an homogeneous finite-type polynomial with degree 𝑘.
Consider the symmetric 𝑘-linear form 𝐴

𝑘
associated with

the corresponding polynomial 𝑃
𝑘
. Since 𝑃

𝑘
is a finite-type

polynomial, then 𝑇
𝑘
: 𝑋 → 𝐿

𝑓
(
𝑘−1
𝑋 : 𝑋) given by

𝑇
𝑘 (𝑥) (𝑥1, . . . , 𝑥𝑘−1) := 𝐴𝑘 (𝑥, 𝑥1, . . . , 𝑥𝑘−1) , ∀𝑥 ∈ 𝑋

(12)

is a linear finite-rank operator for any 1 ≤ 𝑘 ≤ 𝑛.
The direct sum of these operators, that is, the operator

𝑇 : 𝑋 →

𝑛

⨁

𝑘=1

𝐿
𝑓
(
𝑘−1
𝑋 : 𝑋) (13)

given by 𝑇(𝑥) := (𝑇
1
(𝑥), . . . , 𝑇

𝑛
(𝑥)), for all 𝑥 ∈ 𝑋, is also of

finite rank.
By the assumption on𝑋, given any 𝜖 > 0, there is a norm-

one projection 𝜋 := 𝜋
𝑖
: 𝑋 → 𝑋 with a finite-dimensional

range such that ‖𝑇 − 𝑇𝜋‖ ≤ 𝜖 and ‖𝜋|
𝐺
− 𝐼
𝐺
‖ ≤ 𝜖, where 𝐺 is

the span of⋃𝑛
𝑘=1
𝑃
𝑘
(𝑋).

Let 𝐵
𝑘
be the symmetric 𝑘-linear mapping given by 𝐵

𝑘
:=

𝐴
𝑘
∘ (𝜋, . . . , 𝜋), and let 𝑄

𝑘
be the associated polynomial. It

happens that 𝑄
𝑘
= 𝑃

𝑘
∘ 𝜋. Now for ‖𝑥‖ ≤ 1, we have

𝑃𝑘 ∘ 𝜋 (𝑥) − 𝑃𝑘 (𝑥)


=



𝑘−1

∑

𝑗=0

(
𝑘

𝑗
)𝐴

𝑘
((𝑥 − 𝜋 (𝑥))

𝑘−𝑗
, 𝜋(𝑥)

𝑗
)



=



𝑘−1

∑

𝑗=0

(
𝑘

𝑗
) (𝑇

𝑘
− 𝑇

𝑘
∘ 𝜋) (𝑥) ((𝑥 − 𝜋 (𝑥))

𝑘−𝑗−1
, 𝜋(𝑥)

𝑗
)



≤

𝑘−1

∑

𝑗=0

(
𝑘

𝑗
)
𝑇𝑘 − 𝑇𝑘 ∘ 𝜋

 ‖𝑥‖ ‖𝑥 − 𝜋 (𝑥)‖
𝑘−𝑗−1
‖𝜋 (𝑥)‖

𝑗

≤ 𝜖

𝑘−1

∑

𝑗=0

(
𝑘

𝑗
) 2

𝑘−𝑗−1
≤ 4

𝑘
𝜖.

(14)

Then ‖𝑃
𝑘
∘ 𝜋 − 𝑃

𝑘
‖ ≤ 4

𝑘
𝜖 and

𝜋 ∘ 𝑃𝑘 ∘ 𝜋 − 𝑃𝑘


≤
𝜋 ∘ 𝑃𝑘 ∘ 𝜋 − 𝜋 ∘ 𝑃𝑘

 +
𝜋 ∘ 𝑃𝑘 − 𝑃𝑘

 ≤ 2 ⋅ 4
𝑘
𝜖.

(15)

Let 𝑅
𝑘
= 𝜋 ∘ 𝑃

𝑘
∘ 𝜋 and 𝑅 = 𝑃

0
+ ∑

𝑛

𝑘=1
𝑅
𝑘
. Then ‖𝑅 − 𝑃‖ ≤

2𝑛4
𝑛
𝜖. By [5, Theorem 2.9], there is a numerical and norm

peak polynomial 𝑄 : 𝜋(𝑋) → 𝜋(𝑋) of degree ≤ 𝑛 such that
‖𝑅|

𝜋(𝑋)
−𝑄


‖ ≤ 𝜖. Setting𝑄 := 𝑄 ∘ 𝜋, ‖𝑃 − 𝑄‖ ≤ (2𝑛4𝑛 + 2)𝜖.

The proof is done.

Remark 4. If 𝑋 is a Banach space satisfying the (FPA)-
property, then the set of polynomials in 𝐵

𝐴𝑤𝑢(𝐵𝑋:𝑋)
which has

a nontrivial invariant subspace and has a fixed point is dense
in 𝐵

𝐴𝑤𝑢(𝐵𝑋:𝑋)
.

Notice that if 𝑋 is locally uniformly convex, then every
norm-one projection is strong. Indeed, suppose that if 𝜋 :
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𝑋 → 𝐹 is a norm-one projection and if {𝜋(𝑥
𝑘
)}
∞

𝑘=1
in 𝐵

𝑋

converges to 𝑦 ∈ 𝑆
𝐹
, then

1 = lim
𝑘



𝜋 (𝑥
𝑘
) + 𝑦

2



= lim
𝑘



𝜋 (𝑥
𝑘
+ 𝑦)

2



≤ lim
𝑘



𝑥
𝑘
+ 𝑦

2


≤ 1

(16)

shows that lim
𝑘
‖𝑥
𝑘
+ 𝑦‖ = 2 and lim

𝑘
‖𝑥
𝑘
− 𝑦‖ = 0 since𝑋 is

locally uniformly convex.
The following lemma is proved in [5].

Lemma 5 (see [5]). Let𝑋 be a complex Banach space and 𝑓 ∈
𝐴
𝑏
(𝐵
𝑋
: 𝑋). Suppose that there are 𝑦 ∈ 𝐵

𝑋
and 𝑦∗ ∈ 𝐵

𝑋
∗

such that |𝑦∗(𝑦)| = ‖𝑦∗‖ ⋅ ‖𝑦‖. Then |𝑦∗(𝑓(𝑦))| ≤ V(𝑓). In
particular, ‖𝑓(0)‖ ≤ V(𝑓).

Theorem 6. Suppose that a smooth Banach space 𝑋 has
the (FPA)-property with {𝜋

𝑖
, 𝐹
𝑖
}
𝑖∈𝐼

and the corresponding
projections are strong and parallel to Π(𝑋). Then the set of all
numerical and norm strong peak functions in 𝐴

𝑤𝑢
(𝐵
𝑋
: 𝑋) is

dense.

Proof. By Proposition 3, the set of all polynomials𝑄 such that
there exists norm-one projection 𝜋 := 𝜋

𝑖
: 𝑋 → 𝐹 such that

𝜋 ∘𝑄 ∘𝜋 = 𝑄 and𝑄|
𝐹
is a norm and numerical peak function

as a mapping from 𝐵
𝐹
to 𝐹 is dense in 𝐴

𝑤𝑢
(𝐵
𝑋
: 𝑋).

Fix corresponding 𝑄 and 𝜋 and assume that V
𝐹
(𝑄) =

|𝑦
∗

0
(𝑄(𝑦

0
))| and ‖𝑄(𝑦

1
)‖ = ‖𝑄‖ for some (𝑦∗

0
, 𝑦
0
) ∈ Π(𝐹)

and 𝑦
1
∈ 𝐵

𝐹
, where V

𝐹
(𝑄) is the numerical radius of the map

𝑄|
𝐹
: 𝐵
𝐹
→ 𝐹.

Suppose that there is a sequence {(𝑥
𝑘
, 𝑥
∗

𝑘
)}
∞

𝑘=1
in Π(𝑋)

such that lim
𝑘
|𝑥
∗

𝑘
(𝑄(𝑥

𝑘
))| = V(𝑄). Then

⟨𝑥
∗

𝑘
, 𝑄 (𝑥

𝑘
)⟩
 =
⟨𝑥

∗

𝑘

𝐹
, 𝑄 (𝜋 (𝑥

𝑘
))⟩
 → V (𝑄) . (17)

We may assume that the sequence {(𝜋(𝑥
𝑘
), 𝑥

∗

𝑘
|
𝐹
)}
∞

𝑘=1
con-

verges to (𝑦, 𝑦∗) ∈ 𝐵
𝐹
× 𝐵

𝐹
∗ in the norm topology. So

V(𝑄) = |𝑦∗(𝑄(𝑦))| ≥ V
𝐹
(𝑄). Since 𝜋 is parallel to Π(𝑋),

|⟨𝑦
∗
, 𝑦⟩| = ‖𝑦

∗
‖ ⋅ ‖𝑦‖. By Lemma 5,

V (𝑄) = 𝑦
∗
(𝑄 (𝑦))

 ≤ V𝐹 (𝑄) . (18)

So V(𝑄) = |𝑦∗(𝑄(𝑦))| = V
𝐹
(𝑄). Since𝑄|

𝐹
is a numerical peak

function, ‖𝑦‖ = 1 = ‖𝑦∗‖ and 𝑦 = 𝑦
0
and 𝑦∗ = 𝑦∗

0
.

Since 𝜋 is strong, lim
𝑛
𝑥
𝑛
= 𝑦

0
. Let 𝑥∗ be the weak-∗ limit

point of the sequence {𝑥∗
𝑛
}. Then 𝑥∗(𝑦) = 1 and ‖𝑥∗‖ = 1 =

‖𝑥
∗
|
𝐹
‖, and

V (𝑄) = 𝑥
∗
(𝑄 (𝑦))

 =
𝑦
∗
(𝑄 (𝑦))

 = V𝐹 (𝑄) (19)

implies that 𝑥∗|
𝐹
= 𝑦

∗ since 𝑄|
𝐹
is a numerical strong peak

function. Hence 𝑥∗ is unique because𝑋 is smooth.Therefore
{𝑥
∗

𝑛
}
∞

𝑛=1
converges weak-∗ to 𝑥∗. The proof is complete.

Theorem 7. Suppose that a Banach space 𝑋 space has the
(FPA)-property with {𝜋

𝑖
, 𝐹
𝑖
}
𝑖∈𝐼

and the corresponding projec-
tions are strong and parallel to Π(𝑋). One also assumes that
each 𝜋∗

𝑖
: 𝑋

∗
→ 𝑋

∗ is strong. Then the set of all very
strong numerical and norm strong peak functions is dense in
𝐴
𝑤𝑢
(𝐵
𝑋
: 𝑋).

Proof. By Proposition 3, the set of all polynomials𝑄 such that
there exists norm-one projection 𝜋 := 𝜋

𝑖
: 𝑋 → 𝐹 such that

𝜋 ∘𝑄 ∘𝜋 = 𝑄 and𝑄|
𝐹
is a norm and numerical peak function

as a mapping from 𝐵
𝐹
to 𝐹 is dense in 𝐴

𝑤𝑢
(𝐵
𝑋
: 𝑋).

Fix corresponding 𝑄 and 𝜋 and assume that V
𝐹
(𝑄) =

|𝑦
∗

0
(𝑄(𝑦

0
))| and ‖𝑄(𝑦

1
)‖ = ‖𝑄‖ for some (𝑦∗

0
, 𝑦
0
) ∈ Π(𝐹)

and 𝑦
1
∈ 𝐵

𝐹
, where V

𝐹
(𝑄) is the numerical radius of the map

𝑄|
𝐹
: 𝐵
𝐹
→ 𝐹.

Suppose that there is a sequence {(𝑥
𝑘
, 𝑥
∗

𝑘
)}
∞

𝑘=1
in Π(𝑋)

such that lim
𝑘
|𝑥
∗

𝑘
(𝑄(𝑥

𝑘
))| = V(𝑄). Then

⟨𝑥
∗

𝑘
, 𝑄 (𝑥

𝑘
)⟩
 =
⟨𝑥

∗

𝑘

𝐹
, 𝑄 (𝜋 (𝑥

𝑘
))⟩
 → V (𝑄) . (20)

We may assume that the sequence {(𝜋(𝑥
𝑘
), 𝑥

∗

𝑘
|
𝐹
)}
∞

𝑘=1
con-

verges to (𝑦, 𝑦∗) ∈ 𝐵
𝐹
× 𝐵

𝐹
∗ in the norm topology. So

V(𝑄) = |𝑦∗(𝑄(𝑦))| ≥ V
𝐹
(𝑄). Since 𝜋 is parallel to Π(𝑋),

|⟨𝑦
∗
, 𝑦⟩| = ‖𝑦

∗
‖ ⋅ ‖𝑦‖. By Lemma 5,

V (𝑄) = 𝑦
∗
(𝑄 (𝑦))

 ≤ V𝐹 (𝑄) . (21)

So V(𝑄) = |𝑦∗(𝑄(𝑦))| = V
𝐹
(𝑄). Since𝑄|

𝐹
is a numerical peak

function, ‖𝑦‖ = 1 = ‖𝑦∗‖ and 𝑦 = 𝑦
0
and 𝑦∗ = 𝑦∗

0
.

Since 𝜋 is strong, lim
𝑛
𝑥
𝑛
= 𝑦

0
. Fix 𝑧∗ ∈ 𝑆

𝑋
∗ to be a Hahn-

Banach extension of 𝑦∗. Let 𝑥∗ be the weak-∗ limit point
of the sequence {𝑥∗

𝑛
}
∞

𝑛=1
. Then 𝑥∗(𝑦) = 1 and ‖𝑥∗‖ = 1 =

‖𝜋
∗
(𝑥
∗
)‖ and

V (𝑄) = 𝑥
∗
(𝑄 (𝑦))

 =
𝑦
∗
(𝑄 (𝑦))

 = V𝐹 (𝑄) (22)

implies that 𝜋∗(𝑥∗)|
𝐹
= 𝑦

∗ since 𝑄|
𝐹
is a numerical strong

peak function so 𝜋∗(𝑥∗) = 𝜋∗(𝑥∗).
Hence lim

𝑛
𝜋
∗
(𝑥
∗

𝑛
) = 𝜋

∗
(𝑧
∗
) and ‖𝜋∗(𝑧∗)‖ = 1. Now we

get ‖𝑥∗
𝑛
− 𝜋

∗
(𝑧
∗
)‖ → 0 by the assumption. This shows that

lim
𝑛
‖𝑥
∗

𝑛
−𝜋

∗
(𝑧
∗
)‖ = 0.Therefore 𝑥∗ = 𝜋∗(𝑧∗) and𝑄 is a very

strong numerical peak function at (𝑦, 𝜋∗(𝑧∗)).This completes
the proof.

Corollary 8. Suppose that 𝑋 = ℓ
𝑝
with 1 < 𝑝 < ∞. Then the

set of all very strong numerical and norm strong peak functions
is dense in 𝐴

𝑤𝑢
(𝐵
𝑋
: 𝑋).

Proof. Let {𝜋
𝑖
, 𝐹
𝑖
}
∞

𝑖=1
be a projection consisting of 𝑖th natural

projections. Then these projections satisfy the conditions in
Theorem 7. The proof is done.

3. Generalized Numerical Index

Proposition 9. Let 𝑋 be a (real or complex) Banach spaces
and let 𝐻 be a closed subspace of 𝐶

𝑏
(𝐵
𝑋
: 𝑋). If 𝑋 has the

(FPA)-property with {𝜋
𝑖
, 𝐹
𝑖
}
𝑖∈𝐼
, then𝑁(𝐻) ≥ inf

𝑖∈𝐼
𝑁(𝐻

𝐹𝑖
). In

particular, 𝑛(𝑘)(𝑋) ≥ inf
𝑖∈𝐼
𝑛
(𝑘)
(𝐹
𝑖
) for each 𝑘 ≥ 1.

Proof. Let𝑓 ∈ 𝑆
𝐻
. Given 𝜖 > 0, there is a normone projection

𝜋with a finite dimensional range𝐹 such that ‖𝜋∘𝑓∘𝜋‖ ≥ 1−𝜖.
Let 𝑔 = 𝜋 ∘ 𝑓 ∘ 𝜋|

𝐹
as a map in𝐻

𝐹
and

V
𝐹
(𝑔) ≥ 𝑁 (𝐻

𝐹
)
𝑔
 ≥ 𝑁 (𝐻𝐹) (1 − 𝜖) . (23)



6 Abstract and Applied Analysis

Then there is (𝑦, 𝑦∗) ∈ Π(𝐻
𝐹
) such that V

𝐻𝐹
(𝑔) = |𝑦

∗
(𝑔(𝑦))|

since 𝐹 is finite dimensional. Notice that (𝑦, 𝜋∗(𝑦∗)) ∈ Π(𝑋)
and so

V
𝐹
(𝑔) =

𝜋
∗
𝑦
∗
(𝑓 (𝜋 (𝑦)))

 =
𝜋
∗
𝑥
∗
(𝑓 (𝑦))

 ≤ V𝐻 (𝑓) .
(24)

Hence V
𝐻
(𝑓) ≥ (1−𝜖)𝑁(𝐻

𝐹
) ≥ (1−𝜖)inf

𝑖∈𝐼
𝑁(𝐻

𝐹𝑖
).Therefore

𝑁(𝐻) ≥ inf
𝑖∈𝐼
𝑁(𝐻

𝐹𝑖
).

Proposition 10. Let 𝑋 be a complex Banach space and let 𝐻
be a subspace of 𝐴

𝑏
(𝐵
𝑋
: 𝑋) with a numerical boundary Γ.

Suppose that a norm-one finite dimensional projection (𝜋, 𝐹)
is parallel to Γ. Then for any 𝑓 ∈ 𝐻

𝐹
,

V
𝐹
(𝑓) = V

𝑋
(𝑓 ∘ 𝜋) , (25)

where V
𝑋
(𝑓 ∘ 𝜋) is a numerical radius as a function 𝑓 ∘ 𝜋 :

𝐵
𝑋
→ 𝑋.

Proof. It is clear that V
𝐹
(𝑓) ≤ V

𝑋
(𝑓 ∘ 𝜋). For the converse,

choose a sequence {(𝑥
𝑛
, 𝑥
∗

𝑛
)}
∞

𝑛=1
in Γ such that

V
𝑋
(𝑓 ∘ 𝜋) = lim

𝑛

𝑥
∗

𝑛
(𝑓 (𝜋 (𝑥

𝑛
)))
 = lim𝑛 ⟨𝑥

∗

𝑛

𝐹
, 𝑓 (𝜋 (𝑥

𝑛
))⟩ .

(26)

Since {𝜋(𝑥
𝑛
)}
∞

𝑛=1
is in the finite dimensional space 𝐹, we may

assume that {𝜋(𝑥
𝑛
)}
∞

𝑛=1
converges to 𝑦 ∈ 𝐵

𝐹
and {𝑥∗

𝑛
|
𝐹
}
∞

𝑛=1

converges to 𝑦∗ ∈ 𝐵
𝐹
∗ . Then |⟨𝑦∗, 𝑦⟩| = ‖𝑦∗‖ ⋅ ‖𝑦‖. Thus by

Lemma 5,

V
𝑋
(𝑓 ∘ 𝜋) =

𝑦
∗
(𝑓 (𝑦))

 ≤ V𝐹 (𝑓) . (27)

The proof is complete.

For the real Banach spaces, we get the following lemma
for a homogeneous polynomial.

Lemma 11. Let𝑋 be a real or complex Banach space, and let𝑓
be a 𝑘-homogeneous polynomial. If there are 𝑦 ∈ 𝐵

𝑋
and 𝑦∗ ∈

𝐵
𝑋
∗ such that |𝑦∗(𝑦)| = ‖𝑦∗‖ ⋅ ‖𝑦‖, then |𝑦∗(𝑓(𝑦))| ≤ V(𝑓).

Proof. If𝑦∗ = 0, then it is clear. Sowemay assume that𝑦∗ ̸= 0.
We may assume that 𝑦 ̸= 0. The

𝑦
∗
(𝑓 (𝑦))

 ≤



𝑦
∗

𝑦
∗

𝑦


𝑘
(𝑓 (𝑦))



=



𝑦
∗

𝑦
∗

(𝑓(
𝑦

𝑦


))



≤ V (𝑓) .

(28)

This completes the proof.

If we use Lemma 11 instead of Lemma 5 in the proof of
Proposition 10, we get the following.

Proposition 12. Let𝑋 be a real or complex Banach space, and
let Γ be a numerical boundary of P(𝑘𝑋 : 𝑋), where 𝑘 is a
natural number. Suppose that a norm-one finite dimensional
projection (𝜋, 𝐹) is parallel to Γ. Then for any 𝑓 ∈ P(𝑘𝐹 : 𝐹),

V
𝐹
(𝑓) = V

𝑋
(𝑓 ∘ 𝜋) , (29)

where V
𝑋
(𝑓 ∘ 𝜋) is a numerical radius as a function 𝑓 ∘ 𝜋 :

𝐵
𝑋
→ 𝑋.

Now we get the extensions of the results of Ed-dari [13]
and Kim [17] in the complex case.

Theorem 13. Let𝑋 be a complex Banach space, and let𝐻 be a
subspace of𝐴

𝑏
(𝐵
𝑋
: 𝑋)with a numerical boundary Γ. Suppose

that the Banach space𝑋 has the (FPA)-property with {𝜋
𝑖
, 𝐹
𝑖
}
𝑖∈𝐼

and that the corresponding projections are parallel to Γ. Then

𝑁(𝐻) = inf
𝑖∈𝐼

𝑁(𝐻
𝐹𝑖
) . (30)

In fact, 𝑁(𝐻) is a decreasing limit of the right-hand side with
respect to the inclusion partial order.

Proof. For any 𝑓 ∈ 𝐻
𝐹
, V
𝐹𝑖
(𝑓) = V

𝑋
(𝑓 ∘ 𝜋

𝑖
) by Proposition 10.

V
𝐹𝑖
(𝑓) = V

𝑋
(𝑓 ∘ 𝜋) ≥ ‖𝑓 ∘ 𝜋‖𝑁(𝐻) = ‖𝑓‖𝑁(𝐻). Hence

𝑁(𝐻
𝐹𝑖
) ≥ 𝑁(𝐻) and it is easy to see that if 𝐹

𝑖
⊂ 𝐹

𝑗
, then

𝑁(𝐻) ≤ 𝑁(𝐻
𝐹𝑗
) ≤ 𝑁(𝐻

𝐹𝑖
). Hence 𝑁(𝐻) ≤ inf

𝑖∈𝐼
𝑁(𝐻

𝐹𝑖
).

The converse is clear by Proposition 9.

For the general case we get a similar result about the
polynomial numerical index if we use Proposition 12 in the
proof of Theorem 13.

Theorem 14. Let𝑋 be a real or complex Banach space, and let
Γ be a numerical boundary ofP(𝑘𝑋 : 𝑋), where 𝑘 is a natural
number. Suppose that𝑋 has the (FPA)-property with {𝜋

𝑖
, 𝐹
𝑖
}
𝑖∈𝐼

and that the corresponding projections are parallel to Γ. Then

𝑛
(𝑘)
(𝑋) = inf

𝑖∈𝐼

𝑛
(𝑘)
(𝐹
𝑖
) . (31)

In fact, 𝑛(𝑘)(𝑋) is a decreasing limit of the right-hand side with
respect to the inclusion partial order.

Proposition 15. Let 𝑋 be a real Banach space, and let Γ be
a numerical boundary of P(𝑘𝑋 : 𝑋), where 𝑘 is a natural
number. Suppose that𝑋 has the (FPA)-property with {𝜋

𝑖
, 𝐹
𝑖
}
𝑖∈𝐼

and that the corresponding projections are parallel to Γ. If
𝑛
(𝑘)
(𝑋) = 1 and 𝑘 ≥ 2, then𝑋 is one-dimensional.

Proof. We will use the fact [20] that if 𝑋 is a real finite-
dimensional Banach space with 𝑛(𝑘)(𝑋) = 1 and 𝑘 ≥ 2, then
𝑋 is one-dimensional. By Theorem 14, we get 1 = 𝑛(𝑘)(𝑋) =
inf
𝑖∈𝐼
𝑛
(𝑘)
(𝐹
𝑖
) and 𝑛(𝑘)(𝐹

𝑖
) = 1 for all 𝑖 ∈ 𝐼 and 𝐹

𝑖
’s are one-

dimensional. Suppose on the contrary that 𝑋 is not one-
dimensional. Then we can choose two dimensional subspace
𝐺, and there is 𝑖 ∈ 𝐼 with ‖𝑖𝑑

𝐺
− 𝜋

𝑖
|
𝐺
‖ ≤ 1/2. Then there

are 𝑥∗ ∈ 𝑆
𝑋
∗ and 𝑎 ∈ 𝑋 such that 𝜋

𝑖
(𝑥) = 𝑥

∗
(𝑥)𝑎 for all

𝑥 ∈ 𝑋. Because𝐺 is two-dimensional, there exists𝑤 ∈ 𝐺∩𝑆
𝑋

with 𝑥∗(𝑤) = 0. So ‖𝑤 − 𝜋
𝑖
(𝑤)‖ = ‖𝑤‖ ≤ 1/2, which is a

contradiction to ‖𝑤‖ = 1. Therefore, 𝑋 is one-dimensional,
and the proof is done.

Example 16. Let (𝐹
𝑖
)
∞

𝑖=1
be a sequence of finite-dimensional

Banach spaces, and consider the following spaces. For each
1 < 𝑝 < ∞,

𝑋
𝑝
:= {(𝑥

𝑖
)
∞

𝑖=1
: 𝑥
𝑖
∈ 𝐹

𝑖
, (
𝑥𝑖
)
∞

𝑖=1
∈ ℓ
𝑝
} (32)
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with the norm


(𝑥
𝑖
)
∞

𝑖=1


= (

∞

∑

𝑖=1

𝑥𝑖


𝑝
)

1/𝑝

(33)

is a Banach space with the shrinking and monotone finite-
dimensional decomposition with the projections

𝑃
𝑛
((𝑥

𝑖
)
∞

𝑖=1
) = (𝑥

1
, . . . , 𝑥

𝑛
, 0, 0, . . .) , (𝑛 ∈ N) . (34)

The space 𝑋
0
:= {(𝑥

𝑖
)
∞

𝑖=1
: 𝑥
𝑖
∈ 𝐹

𝑖
, (‖𝑥

𝑖
‖)
∞

𝑖=1
∈ 𝑐
0
} with the

norm ‖(𝑥
𝑖
)
∞

𝑖=1
‖ = sup

𝑖∈N‖𝑥𝑖‖ is also a Banach space with the
shrinking and monotone finite-dimensional decomposition
with the same projections 𝑃

𝑛
. Then it is easy to check that

Π(𝑋
𝑝
) is parallel to the projections (𝑃

𝑛
, 𝑃
𝑛
(𝑋
𝑝
)) for each 1 <

𝑝 < ∞ and 𝑝 = 0. So we get the following result. For each
𝑘 ∈ N and each 1 < 𝑝 < ∞ (or 𝑝 = 0),

𝑛
(𝑘)
(𝑋
𝑝
) = lim

𝑛→∞
𝑛
(𝑘)
(𝑋
𝑛

𝑝
) , (35)

where 𝑋𝑛
𝑝
= 𝐹

1
⊕
𝑝
𝐹
2
⊕
𝑝
⋅ ⋅ ⋅ ⊕

𝑝
𝐹
𝑛
and for complex Banach

spaces; we get

𝑁(𝐴(𝐵
𝑋𝑝
: 𝑋

𝑝
)) = lim

𝑛→∞
𝑁(𝐴(𝐵

𝑋
𝑛

𝑝

: 𝑋
𝑛

𝑝
)) . (36)

Corollary 17. Let 𝑘 ≥ 1 be a natural number and 1 < 𝑝 < ∞.
Then for a real or complex case,

lim
𝑚→∞

𝑛
(𝑘)
(ℓ
𝑚

𝑝
) = 𝑛

(𝑘)
(ℓ
𝑝
) ≤ 𝑛

(𝑘)
(𝐿
𝑝 (0, 1)) . (37)

For the complex case we get

lim
𝑚→∞

𝑁(𝐴
𝑏
(𝐵
ℓ
𝑚

𝑝

: ℓ
𝑚

𝑝
))

= 𝑁(𝐴
𝑏
(𝐵
ℓ𝑝
: ℓ
𝑝
)) ≤ 𝑁(𝐴

𝑏
(𝐵
𝐿𝑝(0,1)

: 𝐿
𝑝 (0, 1))) .

(38)
Proof. We give only the first part, since the proof of the next
is similar. Let𝐻 = P( 𝑘ℓ

𝑝
). Then ℓ

𝑝
has the (FPA)-property

with projections {𝜋
𝑖
, ℓ
𝑖

𝑝
}
∞

𝑖=1
, where each 𝜋

𝑖
is the 𝑖th natural

projection. Notice that given projections are parallel toΠ(𝑋).
Hence𝑁(𝐻) = inf

𝑖∈𝐼
𝑁(𝐻

𝐹𝑖
) by Theorem 13. Notice that𝐻

𝐹𝑖

is isometrically isomorphic toP(𝑘ℓ𝑖
𝑝
).

On the other hand, if we let 𝐻 = P(𝑘𝐿
𝑝
(0, 1)). Then

𝐿
𝑝
(0, 1) has (FPA)-property with projections {𝜋

𝑖
, 𝐹
𝑖
}, where

each 𝜋
𝑖
is the conditional expectation with respect to the sub-

𝜎-algebra generated by finitely many disjoint subsets. Hence
𝑁(𝐻) ≥ inf

𝑖∈𝐼
𝑁(𝐻

𝐹𝑖
). Notice also that 𝐹

𝑖
is isometrically

isomorphic to ℓ𝑚
𝑝

for some 𝑚. So 𝐻
𝐹𝑖

is isometrically
isomorphic toP(𝑘ℓ𝑚

𝑝
). The proof is complete.
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