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We extend ordinary Padé approximation, which is based on a set of standard polynomials as {1, 𝑥, . . . , 𝑥𝑛}, to a new extended
Padé approximation (Müntz Padé approximation), based on the general basic function set {1, 𝑥𝜆, 𝑥2𝜆, . . . , 𝑥𝑛𝜆} (0 < 𝜆 ≤ 1) (the
particular case of Müntz polynomials) using general Taylor series (based on fractional calculus) with error convergency. The
importance of this extension is that the ordinary Padé approximation is a particular case of our extended Padé approximation.
Also the parameterization (𝜆 is the corresponding parameter) of new extended Padé approximation is an important subject which,
obtaining the optimal value of this parameter, can be a good question for a new research.

1. Introduction

Rational approximations of an arbitrary function are an
important topic in numerical analysis due to their high
applications in physical sciences, chemistry, engineering, and
other applied sciences [1, 2].The Padé approximation is a par-
ticular and classical type of rational fraction approximation.
The idea of this approximation is to expand a function as a
ratio of two power series and determining both the numer-
ator and denominator coefficients using the coefficients of
Taylor series expansion of a function 𝑓(𝑥) [1]. The Padé
approximation is the best approximation of a function by
a rational function of a given order [1]. The technique was
developed around 1890 by Henri Padé, but it goes back to
George Freobenius who introduced the idea and investigated
the features of rational approximations of power series. The
Padé approximation is usually superior when functions con-
tain poles, because the use of rational function allows them to
be well represented [1]. The Padé approximation often gives
better approximation of the function than truncating its Tay-
lor series, and it may still work where the Taylor series does
not converge [1]. For these reasons, Padé approximation is
used extensively in computer calculations. The Padé approx-
imation has also been used as an auxiliary function in Dio-
phantine approximation and transcendental number theory,
though for sharp results ad hoc methods in some sense

inspired by the Padé theory typically replace them. Since it
provides an approximation to the function throughout the
whole complex plane, the study of Padé approximation is
simultaneously a topic in mathematical approximation the-
ory and analytic function theory. The generalized Padé
approximation is given in [2]. For the connection of Padé
approximation with continued fractions and orthogonal
polynomials, see [2]. Also multivariate Padé approximation
was done by [3]. Two versions of this approximation which
concerned with interpolation problems are Hermite-Padé
and Newton-Padé approximations and they are in fact ratio-
nal interpolation problems [4–6]. In this paper, using the
generalized Taylor series (based on fractional calculus), we
extend ordinary Padé approximation to the general Müntz
padé approximation. The paper is organized as follows. In
Sections 1.1 to 1.3, we introduce an ordinary Padé approx-
imation (and their properties), present the Müntz polyno-
mials (rational Müntz functions and suitable theorems), and
also generalize Taylor series (based on fractional calculus),
respectively. Also Müntz Padé approximation is presented in
Section 2. The uniqueness and convergence analysis results
are given in Section 3. Some numerical tests are presented in
Section 4. Two applications of this extended Padé approxima-
tion (Müntz Padé approximation) on the numerical solution
of sound and vibration problem and microwave heating
model in a slab using differential equations are given in
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Section 5. Finally we have monitored a brief conclusion in
Section 6.

1.1. Ordinary Padé Approximation. Suppose that we are given
a power series ∑∞

𝑖=0
𝑐
𝑖
𝑧
𝑖, represent a function 𝑓(𝑧), so that

𝑓 (𝑧) =

∞

∑
𝑖=0

𝑐
𝑖
𝑧
𝑖

. (1)

This expansion is the fundamental starting point of any anal-
ysis using Padé approximation. A Padé approximation is a
rational fraction as

[
𝐿

𝑀
] =

𝑎
0
+ 𝑎
1
𝑧 + ⋅ ⋅ ⋅ + 𝑎

𝐿
𝑧
𝐿

𝑏
0
+ 𝑏
1
𝑧 + ⋅ ⋅ ⋅ + 𝑏

𝑀
𝑧𝑀
, (2)

which has a Maclaurin expansion which agrees with (1) as
far as possible. Notice that, in (2), there are 𝐿 + 1 numerator
coefficients and 𝑀 + 1 denominator coefficients. There is a
more or less irrelevance common factor between them, and
for definiteness we take 𝑏

0
= 1. So there are 𝐿+1 independent

numerator coefficients and 𝑀 independent denominator
coefficients,making𝑀+𝐿+1unknown coefficients in all.This
number suggests that normally the [𝐿/𝑀] out to fit the power
series (1) through the orders 1, 𝑧, . . . , 𝑧𝐿+𝑀. For the notation
of formal power series, we have

∞
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𝑖
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𝑖
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) , (3)

and returning to (3) and cross-multiplying, we find that
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𝑀
𝑧
𝑀
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) .

(4)

Equating the coefficients of 𝑧𝐿+1, 𝑧𝐿+2, . . . , 𝑧𝐿+𝑀 from (4), we
find
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(5)

If 𝑗 < 0, we define 𝑐
𝑗
= 0 for consistency. Since 𝑏

0
= 1,

(5) becomes a set of𝑀 linear equations for the𝑀 unknown
denominator coefficients and we obtain
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from which the 𝑏
𝑖
may be found. The numerator coefficients

𝑎
0
, . . . , 𝑎

𝐿
follow immediately from (4) by equating the coef-

ficients of 1, 𝑧, . . . , 𝑧𝐿 as
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(7)

Thus (4) and (7) normally determine the Padé numerator
and denominator which are called Padé equations and we
have constructed an [𝐿/𝑀]Padé approximationwhich agrees
with ∑∞

𝑖=0
𝑐
𝑖
𝑧
𝑖 through order 𝑧𝐿+𝑀. If the given power series

converge to the same function for |𝑧| < 𝑅with (0 < 𝑅 < +∞),
then a sequence of Padé approximation may converge for
𝑧 ∈ 𝐷, where𝐷 is a domain longer than |𝑧| < 𝑅 [1].

Remark 1. In general, Padé approximation does not exist (for
an arbitrary function with respect to particular 𝐿 and𝑀) [1].

Theorem 2. If the Padé approximation [𝐿/𝑀] exists, then it
will be unique [2].

1.2. Müntz Polynomials. An interesting generalization of
Weierstrass theorem (1885) (density of polynomials set in
𝐶[𝑎, 𝑏], equipped with a supremum norm) goes back to the
German mathematician Herman Müntz. He performed this
generalization by a suitable tool which is named Müntz
polynomials. For presenting his theorem, first we introduce
a definition and a remark.

Definition 3. Suppose 𝜆
0
< 𝜆
1
< ⋅ ⋅ ⋅ ∈ R; then, the set

{𝑥
𝜆0 , 𝑥
𝜆1 , . . .} is named as a set of Müntz or Müntz polyno-

mials [6].

Remark 4. Let (𝜆
𝑖
)
∞

𝑖=0
be any sequences of distinct real num-

bers and 𝑎 > 0; then,

{
∑
𝑛

𝑖=0
𝑎
𝑖
𝑥
𝜆𝑖

∑
𝑛

𝑖=0
𝑏
𝑖
𝑥𝜆𝑖
; 𝑎
𝑖
, 𝑏
𝑖
∈ R, 𝑛 ∈ N} , (8)

is dense in 𝐶[𝑎, 𝑏] [6].

Theorem 5 (generalized Müntz theorem). If 0 ≤ 𝜆
0
< 𝜆
1
<

⋅ ⋅ ⋅ → +∞, then the Müntz polynomials with respect to these
sequences are dense in 𝐿2[0, 1], if and only if ∑∞

𝑖=0
𝜆
𝑖

−1

= ∞

[6].

Remark 6. In this paper, by considering 𝜆
𝑘
= 𝑘𝜆, 𝑘 =

1, 2, . . . (0 < 𝜆 ≤ 1) which is a particular case of Müntz
polynomials, we introduce a new and extended Müntz Padé
approximation. Also, it is clear that by considering 𝜆

𝑘
= 𝑘, we

can obtain the classical Weierstrass theorem [6].
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1.3. Generalized Taylor Series. In calculus, Taylor’s theorem
gives an approximation of a 𝑘-times differentiable function
𝑓(𝑥) around a given point 𝑥

0
by a 𝑘th order Taylor polyno-

mial as

𝑓 (𝑥) ≃

𝑛

∑
𝑘=0

𝑓
(𝑘)

(𝑥
0
)

𝑘!
(𝑥 − 𝑥

0
)
𝑘

, (9)

with the error

𝑒 (𝑥) =
𝑓
(𝑛+1)(𝜍)

(𝑛 + 1)!
(𝑥 − 𝑥

0
)
𝑛+1

, 𝜍 ∈ (𝑥
0
, 𝑥) , (10)

and for analytical polynomials, we have

𝑓 (𝑥) =

∞

∑
𝑘=0

𝑓
(𝑘)

(𝑥
0
)

𝑘!
(𝑥 − 𝑥

0
)
𝑘

. (11)

Taylor’s theorem also generalizes to multivariate and vector
valued functions. But the generalized version of this theorem
from fractional calculus view or the theory of derivatives of
arbitrary order was done by [7], because of its high appli-
cations in solving fractional ordinary differential equations
integral ordinary differential equations and obtaining an
operational matrix, and so forth. For this purpose, we need
some definitions in fractional calculus.

Definition 7. TheCaputo fractional derivative of𝑓(𝑥)of order
𝜆 > 0 with 𝑎 ≥ 0 is defined as

(𝐷
𝜆

𝑎
𝑓) (𝑥) =

1

Γ (𝛽 − 𝜆)
∫
𝑥

𝑎

𝑓
(𝛽)

(𝑡)

(𝑥 − 𝑡)
𝜆−𝛽+1

𝑑𝑡, (12)

for 𝛽 − 1 < 𝜆 ≤ 𝛽, 𝛽 ∈ N, 𝑥 ≥ 𝑎.
From Caputo fractional derivative, we have

𝐷
𝜆

𝑎
𝐶 = 0,

𝐷
𝜆

𝑎
𝑥
𝛿

=

{{{

{{{

{

0, if 𝛿 ∈ {1, . . . , 𝛽 − 1} ,
Γ (𝛿 + 1)

Γ (𝛿 + 1 − 𝜆)
(𝑥)
𝛿−𝜆

, if 𝛿 ∈ N, 𝛿 ≥ 𝛽 ,

or 𝛿 > 𝛽 − 1,
(13)

where 𝛽 = ⌈𝜆⌉ and 𝜆 ≥ 0. However, the Caputo fractional
derivative is a linear operator which means

𝐷
𝜆

𝑎
(𝛾𝑓 + 𝜃𝑔) = 𝛾𝐷

𝜆

𝑎
(𝑓) + 𝜃𝐷

𝜆

𝑎
(𝑔) . (14)

For more literature review of fractional calculus, see [8].

Theorem 8. Suppose that 𝐷𝑘𝜆
𝑎
𝑓(𝑥) ∈ 𝐶(𝑎, 𝑏], for 𝑘 =

0, 1, . . . , 𝑛 + 1, where 0 < 𝜆 ≤ 1; then, one has

𝑓 (𝑥) =

𝑛

∑
𝑘=0

𝐷
𝑘𝜆

𝑎
𝑓 (𝑎)

Γ (𝜆𝑘 + 1)
(𝑥 − 𝑎)

𝑘𝜆

+
𝐷
(𝑛+1)𝜆

𝑎
𝑓 (𝜍)

Γ ((𝑛 + 1) 𝜆 + 1)
(𝑥 − 𝑎)

(𝑛+1)𝜆

,

(15)

where 𝑎 ≤ 𝜍 ≤ 𝑏, for all 𝑥 ∈ (𝑎, 𝑏], and𝐷(𝑛)𝜆
𝑎

= 𝐷
𝜆

𝑎
⋅ 𝐷
𝜆

𝑎
⋅ ⋅ ⋅ 𝐷
𝜆

𝑎
,

(𝑛-times) [7].

If we consider 𝑎 = 0, then we obtain a fractional Maclau-
rin series and in a similar manner as the arbitrary function
𝑓(𝑧) that has an infinite Caputo differentiable at point 𝑎
named as analytical functions on𝐷 in a fractional sense if

𝑓 (𝑧) =

∞

∑
𝑘=0

𝐷
𝑘𝜆

𝑎
𝑓 (𝑎)

Γ (𝜆𝑘 + 1)
(𝑧 − 𝑎)

𝑘𝜆

, ∀𝑧 ∈ 𝐷. (16)

2. Müntz Padé Approximations

Now by using the general Taylor series (based on fractional
calculus), we generalize the classical and ordinary Padé
approximations to a new and extended Müntz Padé approx-
imation. For this goal, we present the Müntz Padé approx-
imation as a ratio of two Müntz polynomials constructed
from the coefficients of generalized Taylor series expansion
of a function. Also in a similar approach from ordinary
Padé approximation, we prove the uniqueness of Müntz Padé
approximation. Now in a similar manner from ordinary Padé
approximation, suppose that 𝑓(𝑥) is an analytical function
(from fractional calculus) in the neighborhood of 𝑎 = 0, and
then we can write 𝑓(𝑥)

𝑓 (𝑥) =

∞

∑
𝑘=0

𝑐
𝑘
𝑧
𝜆𝑘

, 𝑐
𝑘
=

𝐷
𝑘𝜆

𝑎

Γ (𝑘𝜆 + 1)
, (17)

and also Müntz Padé approximation is defined as a ratio of
two Müntz polynomials as

[
𝐿

𝑀
] =

𝑎
0
+ 𝑎
1
𝑧
𝜆

+ ⋅ ⋅ ⋅ + 𝑎
𝐿
𝑧
𝐿𝜆

𝑏
0
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1
𝑧𝜆 + ⋅ ⋅ ⋅ + 𝑏

𝑀
𝑧𝑀𝜆

, (18)

and then we suppose that [𝐿/𝑀] (Müntz Padé approxima-
tion) has a Maclaurin series (17) or

∞

∑
𝑖=0

𝑐
𝑖
𝑧
𝜆𝑖

=
𝑎
0
+ 𝑎
1
𝑧
𝜆

+ ⋅ ⋅ ⋅ + 𝑎
𝐿
𝑧
𝐿𝜆

𝑏
0
+ 𝑏
1
𝑧𝜆 + ⋅ ⋅ ⋅ + 𝑏

𝑀
𝑧𝑀𝜆

+ 𝑂 (𝑧
𝐿𝜆+𝑀𝜆+1

) . (19)

By cross multiplying, we find that

(𝑏
0
+ 𝑏
1
𝑧
𝜆

+ ⋅ ⋅ ⋅ + 𝑏
𝑀
𝑧
𝑀𝜆

) (𝑐
0
+ 𝑐
1
𝑧
𝜆

+ ⋅ ⋅ ⋅ )

= 𝑎
0
+ 𝑎
1
𝑧
𝜆

+ ⋅ ⋅ ⋅ + 𝑎
𝐿
𝑧
𝐿𝜆

+ 𝑂 (𝑧
𝐿𝜆+𝑀𝜆+1

) .

(20)

Equating the coefficients 𝑧𝜆𝐿+𝜆, 𝑧𝜆𝐿+2𝜆, . . . , 𝑧𝜆𝐿+𝜆𝑀, from (20)
we obtain a system of equations similar to (5) and we
can obtain 𝑏

𝑖
coefficients. Also immediately by equating the

coefficients of 1, 𝑧𝜆, . . . , 𝑧𝐿𝜆, we can obtain 𝑎
𝑖
coefficients in

a recursion formula as (7). Thus by assumption of existence
of [𝐿/𝑀] Müntz Padé approximation, for establishing the
uniqueness of this approximation, we must prove that the
matrix of system of (5) is nonsingular, but we perform the
proof of the uniqueness of Müntz Padé approximation by a
different approach in the next section.

Remark 9. Let 𝜆 = 1; then, we can obtain the ordinary Padé
approximation.
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3. Uniqueness and Convergence Analysis of
Müntz Padé Approximation

In this section, we present the uniqueness and convergence
analysis of Müntz Padé approximation in some theorems.

Theorem 10 (uniqueness). WhenMüntz Padé approximation
([𝐿/𝑀]) exists, then it is unique for any formal power series.

Proof. Assume that there are two such Müntz Padé approx-
imations 𝑈(𝑧)/𝑉(𝑧) and 𝑋(𝑧)/𝑌(𝑧), where the degrees of 𝑋
and𝑈 are less than or equal to 𝜆𝐿 and that of𝑌 and𝑉 are less
than or equal to 𝜆𝑀. Then by (19), we must have

𝑋 (𝑧)

𝑌 (𝑧)
−
𝑈 (𝑧)

𝑉 (𝑧)
= 𝑂 (𝑧

𝐿𝜆+𝑀𝜆+1

) , (21)

since both approximate the same series. If wemultiply (21) by
𝑌(𝑧)𝑉(𝑧), we obtain

𝑋 (𝑧)𝑉 (𝑧) − 𝑌 (𝑧)𝑈 (𝑧) = 𝑂 (𝑧
𝐿𝜆+𝑀𝜆+1

) , (22)

but the left-hand side of (22) is a polynomial of degree atmost
𝜆𝐿+𝜆𝑀 and thus is identically zero. Since neither 𝑌 nor𝑉 is
identically zero, we conclude

𝑋 (𝑧)

𝑌 (𝑧)
=
𝑈 (𝑧)

𝑉 (𝑧)
. (23)

Since, by definition, both𝑋 and 𝑌 and𝑈 and 𝑉 are relatively
prime and 𝑌(0) = 𝑉(0) = 1; we have shown that the two
supposedly different Müntz Padé approximants are the same.

Theorem 11 (convergency). Let𝑓(𝑧) be analytic in |𝑧| ≤ 𝑅 (in
fractional sense); then, an infinite subsequence of [𝐿/1]Müntz
Padé approximants converges to 𝑓(𝑧) uniformly in |𝑧| ≤ 𝑅.

Proof. By hypothesis, 𝑓(𝑧) is analytic in |𝑧| ≤ 𝑅 (in fractional
sense) and consequently within a large interval, |𝑧| < 𝜌, with
𝜌 > 𝜌


> 𝑅. Let

𝑓 (𝑧) =

∞

∑
𝑖=0

𝑐
𝑖
𝑧
𝜆𝑖

, with 𝑐
𝑖
= 𝑂((𝜌



)
−𝜆𝑖

) . (24)

The [𝐿/1]Müntz Padé approximation is given by

[
𝐿

1
] = 𝑐
0
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𝐿−1
𝑧
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+
𝑐
𝐿
𝑧
𝜆𝐿

1 − 𝑐
𝐿+1
𝑧𝜆/𝑐
𝐿

. (25)

If a subsequence of coefficients {𝑐
𝐿𝑗
, 𝑗 = 1, 2, . . .} are zero, then

[(𝐿
𝑗
− 1)/1] are truncated fractional Maclaurin expansions

which converge to 𝑓(𝑧) uniformly in |𝑧| ≤ 𝑅 < 𝜌. So we
assume that no infinite subsequence of {𝑐

𝐿
} vanishes and con-

sider 𝑟
𝐿
= 𝑐
𝐿+1
/𝑐
𝐿
which iswell defined for all sufficiently large

𝐿, because

𝑐
𝐿
𝑧
𝜆𝐿

= 𝑂(
𝑅

𝜌
)

𝜆𝐿

(26)
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Figure 1: The [3/5] Müntz Padé approximation of 𝑓(𝑥) = 𝑒𝑥 and
exact function of 𝜆 = 0.4.

the sequence of [𝐿/1] Müntz Padé approximation given by
(25) converges uniformly in |𝑧| < 𝑅 unless there exists a
sequence of values of 𝐿 for which 1−𝑐

𝐿+1
𝑧/𝑐
𝐿
= 0within |𝑧| <

𝜌
. Thus either a subsequence of the second row converges

uniformly or else for some 𝐿
0
and all 𝐿 > 𝐿

0
, |𝑐
𝐿
/𝑐
𝐿+1
| > 𝜌
. In

the latter case



𝑐
𝐿0

𝑐
𝐿


=

𝐿−1

∏
𝑖=𝐿0



𝑐
𝑖

𝑐
𝑖+1


> (𝜌


)
𝜆(𝐿−𝐿0)

, (27)

contradicting with (24), so the proof is completed.

4. The Test Experiments

Now in this section, in the two subsections, we show the
applications of the Müntz Padé approximation in the func-
tional approximation (see Section 4.1) and fractional calculus
fields.The advantage of using theMüntz Padé approximation
is shown for numerical approximation of fractional differen-
tial equations in Section 4.2.

4.1. Müntz Padé Approximation and Functional Approxima-
tion. In this section, we obtain the Müntz Padé approxima-
tions of𝑓(𝑥) = 𝑒𝑥, for different values of 𝜆. Figure 1 shows the
[3/5]Müntz Padé approximations of 𝑓(𝑥) = 𝑒𝑥 and 𝜆 = 0.4.

Also the [3/5]Müntz Padé approximation of 𝑓(𝑥) = 𝑒𝑥,
and 𝜆 = 0.65 is shown in Figure 2.

4.2. Müntz Padé Approximation and Fractional Calculus.
This section is devoted to presentation of some numerical
simulations obtained by applying the collocationmethod and
based on a new extended Padé approximation (Müntz Padé
approximation). The algorithm for numerical approximation
of solutions to the initial value problems for the fractional dif-
ferential equationswas implemented byMATLAB. In the case
of nonlinear equations, the MATLAB function 𝑓𝑠𝑜𝑙V𝑒 was
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Figure 2: Comparison between the [3/5] Müntz Padé approxima-
tion of 𝑓(𝑥) = 𝑒𝑥 and exact function of 𝜆 = 0.65.

used for solving the nonlinear system. In the case that the
exact solution 𝑦 to a problem is known, the dependence of
approximation errors on the discretization parameter 𝑛 is
estimated in 2-norm as

𝑒
𝑛
= √

𝑛

∑
𝑘=0

(𝑦
𝑛
(𝑥
𝑘
) − 𝑦 (𝑥

𝑘
))
2

, (28)

where 𝑦
𝑛
is the approximated solution corresponding to the

discretization parameter 𝑛.

Experiment 1. We start with a simple nonlinear problem [8]

𝐷
𝛼

(𝑦 (𝑥)) =
40320

Γ (9 − 𝛼)
𝑥
8−𝛼

− 3
Γ (5 + 𝛼/2)

Γ (5 − 𝛼/2)
𝑥
4−𝛼/2

+
9

4
Γ (𝛼 + 1) + (

3

2
𝑥
𝛼/2

− 𝑥
4

)
3

− (𝑦 (𝑥))
3/2

,

(29)

where we have a nonlinear and nonsmooth right-hand side.
The solution 𝑦 has a smooth derivative of order 0 < 𝛼 < 1 [8].
The analytical solution subject to the initial condition 𝑦(0) =
0 is given by

𝑦 (𝑡) = 𝑥
8

− 3𝑥
4+𝛼/2

+
9

4
𝑥
𝛼

. (30)

Now we approximate the exact solution of (29) or 𝑦𝜆(𝑥),
with the [𝑛/1]new and extended Padé approximation (Müntz
Padé approximation) as

𝑦
𝜆

(𝑥) ≃ 𝑦
𝜆

𝑛
(𝑥) =

𝑛

∑
𝑖=0

𝑐
𝑖
𝑥
𝑖𝜆

, (31)

and substituting it into (29), we obtain

Res(𝛼,𝜆)
𝑛

(𝑥) = 𝐷
𝛼

(𝑦
𝜆

𝑛
(𝑥)) − 𝑃 (𝛼, 𝑦 (𝑥) , 𝑥) ≃ 0, (32)
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Figure 3: [12/1] ordinary Padé approximation coefficients of 𝛼 =
0.5, 𝛽 = 0.25, and 𝛾 = 0.75 of Experiment 1.

where

𝑃 (𝛼, 𝑦 (𝑥) , 𝑥) =
40320

Γ (9 − 𝛼)
𝑥
8−𝛼

− 3
Γ (5 + 𝛼/2)

Γ (5 − 𝛼/2)
𝑥
4−𝛼/2

+
9

4
Γ (𝛼 + 1) + (

3

2
𝑥
𝛼/2

− 𝑥
4

)
3

− (𝑦 (𝑥))
3/2

.

(33)

For the collocation points, we use the first roots of the Jacobi
polynomial 𝑃(𝛽,𝛾)

𝑛
(𝑥) [9, 10], and then after enforcing the ini-

tial condition 𝑦(0) = 0, we obtain a system of nonlinear alge-
braic equations and we use the MATLAB function 𝑓𝑠𝑜𝑙V𝑒 for
solving the nonlinear system. Thus, substituting the colloca-
tion points into (32) yields

Res(𝛼,𝜆)
𝑛

(𝑥
(𝛽,𝛾)

𝑖
) = 𝐷

𝛼

(𝑦
𝜆

𝑛
(𝑥
(𝛽,𝛾)

𝑖
))

− 𝑃 (𝛼, 𝑦 (𝑥
(𝛽,𝛾)

𝑖
) , 𝑥
(𝛽,𝛾)

𝑖
) ≃ 0,

𝑖 = 0, . . . , 𝑛.

(34)

Now from (34) and its initial condition, we have 𝑛+2 algebraic
equations of 𝑛 + 1 unknown coefficients. Thus for obtaining
the unknown coefficients, we must eliminate one arbitrary
equation from these 𝑛+2 equations. But because of the neces-
sity of holding the boundary conditions, we eliminate the last
equation from (34). Finally, replacing the last equation of (34)
by the equation of initial condition, we obtain a system of 𝑛+1
equations of 𝑛+1 unknowns 𝑐

𝑖
. By implementing the method

as presented, for 𝑛 = 5 and also for different parameters
of 𝛽 and 𝛾, we obtain the approximate solutions. The [12/1]
ordinary and Müntz Padé coefficients approximation of this
problem are shown in Figures 3 and 4, respectively. We have
observed that this method (the new extended Padé approx-
imation (Müntz Padé approximation)) is very efficient for
numerical approximation of the fractional ordinary differen-
tial equations. Also, closer look at the results of the Müntz
Padé approximation scheme reveals that in this method of
solution the coefficients decrease faster than the classical case.
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Figure 4: [12/1] new Padé approximation coefficients of 𝜆 = 0.5,
𝛼 = 0.5, 𝛽 = 0.25, and 𝛾 = 0.75 of Experiment 1.

This is the advantage on the application of the Müntz Padé
approximation to the fractional ordinary differential equa-
tions.

Experiment 2. Consider the nonlinear fractional integro-
differential equation [11]

𝐷
1/2

𝑢 (𝑥) = 𝑓 (𝑥) 𝑢 (𝑥) + 𝑔 (𝑥) + √𝑥∫
𝑥

0

𝑢
2

(𝑡) 𝑑𝑡,

𝑦 (0) = 0,

(35)

where

𝑓 (𝑥) = 2√𝑥 + 2𝑥
3/2

− (√𝑥 + 𝑥
3/2

) ln (1 + 𝑥) ,

𝑔 (𝑥) =
2 arcsin ℎ (√𝑥)
√𝜋√1 + 𝑥

− 2𝑥
3/2

.

(36)

The exact solution of (35) is 𝑢(𝑥) = ln(1 + 𝑥). We implement
the collocationmethod based on the [10/1]newPadé approx-
imation of 𝜆 = 0.16, 𝛽 = 1, and 𝛾 = 1. The obtained results of
our method are presented in Table 1.

5. Application of Müntz
Padé Approximation in Vibration and
Electromagnetic Radiation Problems

In this section, we present two applications of Müntz Padé
approximation for numerical approximation of some appli-
cable ordinary differential equations.

Experiment 3. Consider the following model problem [12–
15]:

𝑑𝑥

𝑑𝑡
= 𝛼𝑥 + 𝜀𝑥

2

, 𝑥 (0) = 1, (37)

Table 1: The comparison between the collocation method based on
[10/1] Müntz Padé approximation and the exact solution of 𝜆 =
0.16, 𝛽 = 1, 𝛾 = 1, of Experiment 2.

𝑥 Exact Approximate Error
0.0 0.0000000000 0.0000000000 0.000000000
0.1 0.0953101798 0.0953103008 0.000000121
0.2 0.18232155679 0.1823218407 0.000000284
0.3 0.26236426446 0.2623649824 0.000000718
0.4 0.33647223662 0.3364726886 0.000000452
0.5 0.40546510810 0.40546528510 0.000000177
0.6 0.47000362924 0.4700043522 0.000000723
0.7 0.53062825106 0.5306290280 0.000000777
0.8 0.58778666490 0.58778755290 0.000000888
0.9 0.64185388617 0.64185410017 0.000000214
1.0 0.69314718055 0.69314789955 0.000000719

Table 2: Comparison between the [2/3] and [4/4] Müntz Padé
approximations of 𝛼 = 0.5, 𝜀 = 0.4, and 𝜆 = 0.5 of Experiment 3.

𝑡 Error of [2/3] Error of [4/4]
0.0 0.0012 0.0009
0.1 0.0010 −0.0004
0.2 0.0013 0.0006
0.3 0.0022 −0.0002
0.4 0.0014 0.0007
0.5 0.0012 0.0003

where 0 < 𝜀 ≤ 𝛼 ≤ 1 [12]. This model has high application in
the theory of sound and vibration [12]. The exact solution to
this initial value problem has the form

𝑥 (𝑡) =
𝛼 exp (𝛼𝑡)

(𝛼 + 𝜀 − 𝜀 exp (𝛼𝑡))
. (38)

Now for 𝛼 = 0.5, 𝜀 = 0.4, and 𝜆 = 0.5 and using [2/3] and
[4/4] Müntz Padé approximations, we obtain the following
results shown in Table 2.

Also the obtained results for different kinds of Müntz
Padé approximations are shown in Figure 5.

Experiment 4. Consider the following model problem [16]:

𝑑
2

𝑇

𝑑𝑦2
+ 𝜆𝑒
−𝑘𝑦

𝑇 = 0, (39)

with

𝑑𝑇

𝑑𝑦
(0) = 0, 𝑇 (1) = 1. (40)

This equation has high application in the theory of electro-
magnetic radiation and describes the steady state reaction-
diffusion equations with source term that arise in modeling
microwave heating in an infinite slab with isothermal walls
[16]. Also 𝜆 and 𝑘 represent the thermal absorptivity and
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Figure 5: A: the obtained results of [4/4] Müntz Padé approxima-
tion of experiment 3. B: the obtained results of [2/3] Müntz Padé
approximation of Experiment 3.

Table 3: Comparison between the [2/3] and [4/4] Müntz Padé
approximations of 𝑘 = 1 and 𝜆 = 0.5 of Experiment 4.

𝑦 Error of [2/3] Error of [4/4]
0.0 0.0002 0.0001
0.1 −0.0033 −0.0011
0.2 0.0014 0.0009
0.3 0.0003 0.0001
0.4 0.0026 −0.0012
0.5 0.0023 0.0021

electric field decay rate parameters, respectively. The exact
solution to this boundary value problem has the form

𝑇 (𝑦) = (𝐽
1
(2 (√𝜆/𝑘)) 𝑌

0
(−2 (√𝜆/𝑘√𝑒𝑘𝑦)))

× (𝐽
1
(2 (√𝜆/𝑘)) 𝑌

0
(−2 (𝑒

−𝑘/2√𝜆/𝑘))

+𝑌
1
(−2 (√𝜆/𝑘)) 𝐽

0
(2 (𝑒
−𝑘/2√𝜆/𝑘)))

−1

+ (𝑌
1
(2 (√𝜆/𝑘)) 𝐽

0
(−2 (√𝜆/𝑘√𝑒𝑘𝑦)))

× (𝐽
1
(2 (√𝜆/𝑘)) 𝑌

0
(−2 (𝑒

−𝑘/2√𝜆/𝑘))

+𝑌
1
(−2 (√𝜆/𝑘)) 𝐽

0
(2 (𝑒
−𝑘/2√𝜆/𝑘)))

−1

,

(41)

where 𝐽
0
, 𝐽
1
are Bessel functions of the first kind and𝑌

0
,𝑌
1
are

Bessel functions of the second kind. Now for 𝑘 = 1, and 𝜆 =
0.5 and using [2/3] and [4/4] Müntz Padé approximations,
we obtain the following results shown in Table 3.

6. Conclusion

In this paper, using the general Taylor series (based on frac-
tional calculus), we extend the ordinary Padé approximation

to the general Müntz Padé approximation. The importance
of this extension is that the ordinary Padé approximation is
a particular case of our Müntz Padé approximation (𝜆 = 1).
We have applied the method in the application of functional
approximation, fractional exponent, and vibration and elec-
tromagnetic radiationmodel problems and have obtained the
results with a good order of accuracy. Also the uniqueness
results and error analysis have been presented completely.
In addition, the test experiments have been presented for
showing the applicability and validity of the newMüntz Padé
approximation.
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Sound and Vibration, vol. 245, no. 4, pp. 753–756, 2001.

[14] I. V. Andrianov and J. Awrejcewicz, “Iterative determination of
homoclinic orbit parameters and Padé approximants,” Journal
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