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We investigate a stochastic SIS model with nonlinear incidence rate. We show that there exists a unique nonnegative solution to
the system, and condition for the infectious individuals 𝐼(𝑡) to be extinct is given. Moreover, we prove that the system has ergodic
property. Finally, computer simulations are carried out to verify our results.

1. Introduction

More attention has been paid to the epidemics models in
order to monitor and curb the spread of some human
diseases. A classical model is proposed by Kermack and
McKendrick in 1927 [1]. They divided the population into
three classes denoted by 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡), which expressed
the number of susceptible individuals, infective individuals,
and removed individuals at time 𝑡, respectively. The model
is called susceptible-infected-removed (SIR) model, and SIR
models were investigated by many researchers [2–4].

However some diseases, such as some sexually transmit-
ted and bacterial diseases, do not have permanent immunity.
In [5], they introduced a SIS model to describe the spread of
the disease, which takes the following form:

𝑑𝑆 (𝑡) = [𝜇𝑁 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) + 𝛾𝐼 (𝑡) − 𝜇𝑆 (𝑡)] 𝑑𝑡,

𝑑𝐼 (𝑡) = [𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝛾) 𝐼 (𝑡)] 𝑑𝑡

(1)

with initial values 𝑆
0
+ 𝐼
0

= 𝑁. 𝑁 is the total size of
the population. Where 𝑆(𝑡) and 𝐼(𝑡) express the number of
susceptible individuals and infective individuals at time 𝑡,
respectively, 𝜇 is the per capita birth (and death) rate, 𝛾 is
the rate at which infected individuals become cured, and 𝛽

is the per capita contact rate. In model (1), they assumed that
a rate of contacts by an infective individual with a susceptible

individual is proportional to population size, and model (1)
has been well studied [6].

In fact, population dynamics is inevitably affected by
environmental white noise, which is always present. Since
the parameters in the deterministic models are constant,
they have some limitations when we describe the epidemics
systems. Some researchers have paid their attention to the
stochastic epidemics model [7–9]. Especially, in [10], Gray et
al. consider that the parameter 𝛽 in (1) is perturbed with

𝛽 → 𝛽 + 𝜎�̇� (𝑡) , (2)

where 𝐵(𝑡) is Brownian motions and 𝜎 represents the inten-
sities of the white noise. Corresponding to the deterministic
model system (1), the stochastic system takes the following
form:

𝑑𝑆 (𝑡) = [𝜇𝑁 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) + 𝛾𝐼 (𝑡) − 𝜇𝑆 (𝑡)] 𝑑𝑡

− 𝜎𝑆 (𝑡) 𝐼 (𝑡) 𝑑𝐵 (𝑡) ,

𝑑𝐼 (𝑡) = [𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝛾) 𝐼 (𝑡)] 𝑑𝑡

+ 𝜎𝑆 (𝑡) 𝐼 (𝑡) 𝑑𝐵 (𝑡) .

(3)

Since 𝑆(𝑡) + 𝐼(𝑡) = 𝑁, then (3) is reduced to

𝑑𝐼 (𝑡) = [𝛽 (𝑁 − 𝐼 (𝑡)) 𝐼 (𝑡) − (𝜇 + 𝛾) 𝐼 (𝑡)] 𝑑𝑡

+ 𝜎 (𝑁 − 𝐼 (𝑡)) 𝐼 (𝑡) 𝑑𝐵 (𝑡) .

(4)
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For model (4), they pointed out that

(i) if (𝛽𝑁/(𝜇 + 𝛾) − 𝜎
2
𝑁
2
/2(𝜇 + 𝛾)) < 1 and 𝜎2 ≤ 𝛽/𝑁,

the disease 𝐼(𝑡) will die out with probability one;
(ii) if (𝛽𝑁/(𝜇 + 𝛾) − 𝜎

2
𝑁
2
/2(𝜇 + 𝛾)) > 1, then model (4)

has a unique stationary distribution.

The incidence rate in (4) is bilinear, and several authors
pointed out that the disease transmission process may have
a nonlinear incidence rate [11, 12]. In [13], Xiao and Ruan
propose an incidence rate

𝑔 (𝐼) 𝑆 =
𝛽𝐼𝑆

1 + 𝛼𝐼2
, (5)

where 𝛼 is the parameter that measures the psychological or
inhibitory effect, and 1/(1 + 𝛼𝐼2) describes the psychological
or inhibitory effect from the behavioral change of the suscep-
tible individuals when the number of infective individuals is
very large. It can be used to explain some phenomena; for
example, the outbreak of severe acute respiratory syndrome
(SARS) had such psychological effects on the general public
[14]: for a very large number of infective individuals, the
infection force may decrease as the number of infective
individuals increases. Some control measures and policies,
such as border screening, mask wearing, quarantine, isola-
tion, and so forth, can decrease the infection rate although
the number of infective individuals was getting relatively
larger. Equation (1) with nonlinear incidence rate (5) and the
disturbed parameter 𝛽 (𝛽 → 𝛽 + 𝜎�̇�(𝑡)) can be written as
follows:

𝑑𝑆 (𝑡) = [𝜇𝑁 −
𝛽𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝛼𝐼2 (𝑡)
+ 𝛾𝐼 (𝑡) − 𝜇𝑆 (𝑡)] 𝑑𝑡

−
𝜎𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝛼𝐼2 (𝑡)
𝑑𝐵 (𝑡) ,

𝑑𝐼 (𝑡) = [
𝛽𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝛼𝐼2 (𝑡)
− (𝜇 + 𝛾) 𝐼 (𝑡)] 𝑑𝑡 +

𝜎𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝛼𝐼2 (𝑡)
𝑑𝐵 (𝑡) .

(6)

The parameters appearing in (6) have the same meaning as
those above. Given that 𝑆(𝑡)+𝐼(𝑡) = 𝑁, it is sufficient to study
the SDE for 𝐼(𝑡),

𝑑𝐼 (𝑡) = [
𝛽 (𝑁 − 𝐼 (𝑡)) 𝐼 (𝑡)

1 + 𝛼𝐼2 (𝑡)
− (𝜇 + 𝛾) 𝐼 (𝑡)] 𝑑𝑡

+
𝜎 (𝑁 − 𝐼 (𝑡)) 𝐼 (𝑡)

1 + 𝛼𝐼2 (𝑡)
𝑑𝐵 (𝑡) ,

(7)

with initial value 𝐼(0) = 𝐼
0
∈ (0,𝑁). Notice that when 𝛼 =

0, system (7) becomes (4). In this paper, we will analyze the
dynamical behaviors of (7).

The organization of this paper is as follows. In the
next section, we show that there exists a unique positive
solution to (7). In Section 3, we carry out a qualitative
analysis of the model (7) and extinction conditions for 𝐼(𝑡)
is derived. We prove that the system has ergodic property
under some condition in Section 4. In Section 5, we present

some numerical simulations to illustrate our mathematical
findings. A brief conclusion is given in Section 6.

Throughout this paper, let (Ω,F, 𝑃) be a complete prob-
ability space with a filtration {F

𝑡
}
𝑡≥0

satisfying the usual
conditions (i.e., it is increasing and right continuous while
F
0
contains all P-null sets) and let 𝐵(𝑡) be a scalar Brownian

motion defined on the probability space.

2. Existence and Uniqueness of
the Global Positive Solution

In order for the model to make sense, we need to show
the solution is global and nonnegative. However, theorem of
existence and uniqueness (cf. Arnold [15] andMao [16]) is not
satisfied in (7). By using tools established by Mao et al. [17],
we will show existence and uniqueness of the global positive
solution of (7).

Theorem 1. For any given initial data 𝐼(0) = 𝐼
0
∈ (0,𝑁),

there exists a unique solution 𝐼(𝑡) ∈ (0,𝑁) for all 𝑡 ≥ 0 with
probability 1.

Proof. It is obvious that the coefficients of the SDE (7) are
locally continuous. For any given initial data 𝐼(0) = 𝐼

0
∈

(0,𝑁), there exists a unique maximal local solution 𝐼(𝑡) on
𝑡 ∈ [0, 𝜏

𝑒
), where 𝜏

𝑒
is the explosion time. In order to show

that the solution is global, it is sufficient to show 𝜏
𝑒
= ∞

a.s. Let 𝑚
0
> 0 be sufficiently large so that 𝐼

0
lies within the

interval [1/𝑚
0
, 𝑁−1/𝑚

0
]. For each integer𝑚 ≥ 𝑚

0
, we define

the stopping time

𝜏
𝑚
= inf {𝑡 ∈ [0, 𝜏

𝑒
) : 𝐼 (𝑡) ∉ (

1

𝑚
,𝑁 −

1

𝑚
)} , (8)

where, throughout this paper, we set inf 0 = ∞ (as usual 0
denotes the empty set). It is clear that 𝜏

𝑚
is increasing as𝑚 →

∞. Let 𝜏
∞
= lim
𝑚→∞

𝜏
𝑚
, whence 𝜏

∞
≤ 𝜏
𝑒
. It is easy to show

that 𝜏
∞

= ∞ a.s. implies 𝜏
𝑒
= ∞ a.s. and 𝐼(𝑡) ∈ (0,𝑁) a.s.

for all 𝑡 ≥ 0. Therefore, to complete this proof, it is enough to
show that 𝜏

∞
= ∞ a.s.

Define a function 𝑉 : (0,𝑁) → 𝑅
+

as follows:

𝑉 (𝑥) =
1

𝑥
+

1

𝑁 − 𝑥
. (9)

By Itô’s formula, we get
𝑑𝑉 (𝑥)

= {𝑥(−
1

𝑥2
+

1

(𝑁 − 𝑥)
2
)[

𝛽 (𝑁 − 𝑥)

1 + 𝛼𝑥2
− 𝜇 − 𝛾]

+
𝜎
2
𝑥
2
(𝑁 − 𝑥)

2

(1 + 𝛼𝑥2)
2

(
1

𝑥3
+

1

(𝑁 − 𝑥)
3
)}𝑑𝑡

+ {[−
1

𝑥2
+

1

(𝑁 − 𝑥)
2
]
𝜎𝑥 (𝑁 − 𝑥)

(1 + 𝛼𝑥2)
} 𝑑𝐵 (𝑡)

:= 𝐿𝑉 (𝑥) 𝑑𝑡 + {[−
1

𝑥2
+

1

(𝑁 − 𝑥)
2
]
𝜎𝑥 (𝑁 − 𝑥)

(1 + 𝛼𝑥2)
} 𝑑𝐵 (𝑡) ,

(10)
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where

𝐿𝑉 (𝑥) = 𝑥(−
1

𝑥2
+

1

(𝑁 − 𝑥)
2
)[

𝛽 (𝑁 − 𝑥)

1 + 𝛼𝑥2
− 𝜇 − 𝛾]

+
𝜎
2
𝑥
2
(𝑁 − 𝑥)

2

(1 + 𝛼𝑥2)
2

(
1

𝑥3
+

1

(𝑁 − 𝑥)
3
)

≤
𝜇 + 𝛾

𝑥
+

𝛽𝑁

𝑁 − 𝑥
+ 𝜎
2
𝑁
2
(
1

𝑥
+

1

𝑁 − 𝑥
)

≤ [(𝜇 + 𝛾) ∨ (𝛽𝑁) + 𝜎
2
𝑁
2
]𝑉 (𝑥) .

(11)

By almost the same method in the proof of [10], the desired
result will be obtained.

3. Extinction

In this section, we will point out the condition for 𝐼(𝑡) to be
extinct. We firstly do some preparation work.

Consider the following stochastic equation:

𝑑𝑋 (𝑡) = 𝑏 (𝑋 (𝑡)) 𝑑𝑡 + 𝜎 (𝑋 (𝑡)) 𝑑𝐵 (𝑡) , (12)

and assume that the coefficients𝜎 : 𝐽 → 𝑅, 𝑏 : 𝐽 → 𝑅 satisfy

(1) 𝜎2(𝑥) > 0, ∀𝑥 ∈ 𝐽,

(2) ∀𝑥 ∈ 𝐼, ∃𝜖 > 0 such that ∫𝑥+𝜖
𝑥−𝜖

((1 + |𝑏(𝑦)|)/𝜎
2
(𝑦))𝑑𝑦 <

∞,

where 𝐽 = (𝑙, 𝑟); −∞ ≤ 𝑙 < 𝑟 ≤ ∞.

Lemma 2 (see [18]). Assume that (1) and (2) hold, and let
𝑋(𝑡) be a weak solution of (12) in J, with nonrandom initial
condition𝑋

0
= 𝑥 ∈ 𝐽. Let 𝑝 be given by

𝑝 (𝑥) = ∫

𝑥

𝑐

𝑒
−∫

V

𝑐

(2𝑏(𝑦)/𝜎
2

(𝑦))𝑑𝑦
𝑑V, 𝑐 ∈ 𝐽. (13)

If 𝑝(𝑙+) > −∞, 𝑝(𝑟−) = ∞, then

𝑃( lim
𝑡→∞

𝑋 (𝑡) = 𝑙) = 𝑃(sup
𝑡≥0

𝑋 (𝑡) < 𝑟) = 1. (14)

Theorem 3. If 𝑅𝑠
0
:= 2(𝛽𝑁 − 𝜇 − 𝛾)/𝜎

2
𝑁
2
< 1, then for any

initial data 𝐼(0) = 𝐼
0
∈ (0,𝑁), the solution of SDE (7) has the

following property:

𝑃( lim
𝑡→∞

𝐼 (𝑡) = 0) = 1; (15)

that is, the disease dies out with probability one.

Proof. Applying Lemma 2 with 𝑏(𝑥) = 𝛽(𝑁−𝑥)𝑥/(1+𝛼𝑥
2
)−

(𝜇 + 𝛾)𝑥, 𝜎(𝑥) = 𝜎(𝑁 − 𝑥)𝑥/(1 + 𝛼𝑥
2
) and 𝑐 ∈ 𝐽 = (0,𝑁), we

can compute

∫

𝑥

𝑐

2𝑏 (𝜏)

𝜎2 (𝜏)
𝑑𝜏

=
2

𝜎2
∫

𝑥

𝑐

𝛽 (𝑁 − 𝜏) (1 + 𝛼𝜏
2
) − (𝜇 + 𝛾) (1 + 𝛼𝜏

2
)
2

𝜏(𝑁 − 𝜏)
2

𝑑𝜏

=
2

𝜎2
{
𝛽𝑁 − (𝜇 + 𝛾)

𝑁2
ln𝑥

− [
𝛽𝑁 − (𝜇 + 𝛾)

𝑁2
+ 𝛼 (𝛽𝑁 + 2 (𝜇 + 𝛾)

+3𝛼 (𝜇 + 𝛾)𝑁
2
) ] ln (𝑁 − 𝑥)

−

((𝜇 + 𝛾) /𝑁) (𝑁
2
𝛼 + 1)

2

𝑁 − 𝑥
−
(𝜇 + 𝛾) 𝛼

2

2
𝑥
2

− (2 (𝜇 + 𝛾) 𝛼
2
𝑁 + 𝛼𝛽) 𝑥} + 𝐶

0
.

(16)

Clearly, conditions (1) and (2) are satisfied. By calculation, we
have

𝑝 (𝑥)

= ∫

𝑥

𝑐

exp{−∫
𝑠

𝑐

2𝑏 (𝜏)

𝜎2 (𝜏)
𝑑𝜏} 𝑑𝑠

= 𝑒
−𝑐
0 ∫

𝑥

𝑐

𝑠
−2(𝛽𝑁−(𝜇+𝛾))/𝜎

2

𝑁
2

× (𝑁 − 𝑠)
2[(𝛽𝑁−(𝜇+𝛾))/𝑁

2

+𝛼(𝛽𝑁+2(𝜇+𝛾)+3𝛼(𝜇+𝛾)𝑁
2

)]/𝜎
2

× 𝑒
2(𝜇+𝛾)(𝑁

2

𝛼+1)
2

/𝑁𝜎
2

(𝑁−𝑠)

× 𝑒
((𝜇+𝛾)𝛼

2

𝑠
2

+(4(𝜇+𝛾)𝛼
2

𝑁+2𝛼𝛽)𝑠)/𝜎
2

𝑑𝑠.

(17)

We see that

𝑝 (𝑁−)

= 𝑒
−𝑐
0 ∫

𝑁

𝑐

𝑠
−2(𝛽𝑁−(𝜇+𝛾))/𝜎

2

𝑁
2

× (𝑁 − 𝑠)
2[(𝛽𝑁−(𝜇+𝛾))/𝑁

2

+𝛼(𝛽𝑁+2(𝜇+𝛾)+3𝛼(𝜇+𝛾)𝑁
2

)]/𝜎
2

× 𝑒
2(𝜇+𝛾)(𝑁

2

𝛼+1)
2

/𝑁𝜎
2

(𝑁−𝑠)

× 𝑒
((𝜇+𝛾)𝛼

2

𝑠
2

+(4(𝜇+𝛾)𝛼
2

𝑁+2𝛼𝛽)𝑠)/𝜎
2

𝑑𝑠.

(18)



4 Abstract and Applied Analysis

Let 1/(𝑁 − 𝑠) = 𝑡; we obtain that

𝑝 (𝑁−)

= 𝑒
−𝑐
0 ∫

∞

1/(𝑁−𝑐)

(𝑁𝑡 − 1)
−2(𝛽𝑁−(𝜇+𝛾))/𝜎

2

𝑁
2

𝑡
2(𝛽𝑁−(𝜇+𝛾))/𝜎

2

𝑁
2

× 𝑡
−2[(𝛽𝑁−(𝜇+𝛾))/𝑁

2

+𝛼(𝛽𝑁+2(𝜇+𝛾)+3𝛼(𝜇+𝛾)𝑁
2

)]/𝜎
2

× 𝑒
2(𝜇+𝛾)(𝑁

2

𝛼+1)
2

𝑡/𝑁𝜎
2

× 𝑒
((𝜇+𝛾)𝛼

2

(𝑁−1/𝑡)
2

+(4(𝜇+𝛾)𝛼
2

𝑁+2𝛼𝛽)(𝑁−1/𝑡))/𝜎
2

𝑡
−2
𝑑𝑡

= 𝑒
−𝑐
0 ∫

∞

1/(𝑁−𝑐)

(𝑁𝑡 − 1)
−2(𝛽𝑁−(𝜇+𝛾))/𝜎

2

𝑁
2

× 𝑡
−(2𝛼(𝛽𝑁+2(𝜇+𝛾)+3𝛼(𝜇+𝛾)𝑁

2

)/𝜎
2

)−2

× 𝑒
2(𝜇+𝛾)(𝑁

2

𝛼+1)
2

𝑡/𝑁𝜎
2

× 𝑒
((𝜇+𝛾)𝛼

2

(𝑁−1/𝑡)
2

+(4(𝜇+𝛾)𝛼
2

𝑁+2𝛼𝛽)(𝑁−1/𝑡))/𝜎
2

𝑑𝑡.

(19)

Clearly,

𝑝 (𝑁−) = ∞. (20)

When 𝑅𝑠
0
< 1, we have

− 𝑝 (0+)

= 𝑒
−𝑐
0 ∫

𝑐

0

𝑠
−2(𝛽𝑁−(𝜇+𝛾))/𝜎

2

𝑁
2

× (𝑁 − 𝑠)
2[(𝛽𝑁−(𝜇+𝛾))/𝑁

2

+𝛼(𝛽𝑁+2(𝜇+𝛾)+3𝛼(𝜇+𝛾)𝑁
2

)]/𝜎
2

× 𝑒
2(𝜇+𝛾)(𝑁

2

𝛼+1)
2

/𝑁𝜎
2

(𝑁−𝑠)

× 𝑒
((𝜇+𝛾)𝛼

2

𝑠
2

+(4(𝜇+𝛾)𝛼
2

𝑁+2𝛼𝛽)𝑠)/𝜎
2

𝑑𝑠 < ∞;

(21)

that is,

𝑝 (0+) > −∞. (22)

It can be straightly shown by Lemma 2 that

𝑃( lim
𝑡→∞

𝐼 (𝑡) = 0) = 1. (23)

The proof is therefore completed.

4. Ergodic Property

In this section, we show that the small perturbation forces the
infective individuals to be ergodic.

Theorem 4. If 𝑅𝑠
0
:= 2(𝛽𝑁 − 𝜇 − 𝛾)/𝜎

2
𝑁
2
> 1, then, for

any initial data 𝐼(0) = 𝐼
0
∈ (0,𝑁), the solution of SDE (7)

is ergodic.

Proof. If 𝑅𝑠
0
> 1, we get

∫

𝑐

0

exp{−∫
𝑠

𝑐

2𝑏 (𝜏)

𝜎2 (𝜏)
𝑑𝜏} 𝑑𝑠

= 𝑒
−𝑐
0 ∫

𝑐

0

𝑠
−2(𝛽𝑁−(𝜇+𝛾))/𝜎

2

𝑁
2

× (𝑁 − 𝑠)
2[(𝛽𝑁−(𝜇+𝛾))/𝑁

2

+𝛼(𝛽𝑁+2(𝜇+𝛾)+3𝛼(𝜇+𝛾)𝑁
2

)]/𝜎
2

× 𝑒
2(𝜇+𝛾)(𝑁

2

𝛼+1)
2

/𝑁𝜎
2

(𝑁−𝑠)

× 𝑒
((𝜇+𝛾)𝛼

2

𝑠
2

+(4(𝜇+𝛾)𝛼
2

𝑁+2𝛼𝛽)𝑠)/𝜎
2

𝑑𝑠 = ∞.

(24)

It follows from (20) that

∫

𝑁

𝑐

exp{−∫
𝑠

𝑐

2𝑏 (𝜏)

𝜎2 (𝜏)
𝑑𝜏} 𝑑𝑠 = 𝑝 (𝑁−) = ∞. (25)

Besides,

𝑚 = ∫

𝑁

0

1

𝜎2 (𝑠)
exp{∫

𝑠

𝑐

2𝑏 (𝜏)

𝜎2 (𝜏)
𝑑𝜏} 𝑑𝑠

=
𝑒
𝑐
0

𝜎2
∫

𝑁

0

(1 + 𝛼𝑠
2
)
2

× 𝑠
(2(𝛽𝑁−(𝜇+𝛾))/𝜎

2

𝑁
2

)−2

× (𝑁 − 𝑠)
−(2[(𝛽𝑁−(𝜇+𝛾))/𝑁

2

+𝛼(𝛽𝑁+2(𝜇+𝛾)+3𝛼𝜇𝑁
2

)]/𝜎
2

)−2

× 𝑒
−2(𝜇+𝛾)(𝑁

2

𝛼+1)
2

/𝑁𝜎
2

(𝑁−𝑠)

× 𝑒
−((𝜇+𝛾)𝛼

2

𝑠
2

+(4(𝜇+𝛾)𝛼
2

𝑁+2𝛼𝛽)𝑠)/𝜎
2

𝑑𝑠.

(26)

Let 𝑡 = 𝑁/(𝑁 − 𝑥) − 1; then

𝑚 =
𝑒
𝑐
0

𝜎2
∫

∞

0

[1 + 𝛼(
𝑁𝑡

𝑡 + 1
)

2

]

2

× (
𝑁𝑡

𝑡 + 1
)

(2(𝛽𝑁−(𝜇+𝛾))/𝜎
2

𝑁
2

)−2

× (𝑡 + 1)
(2[(𝛽𝑁−(𝜇+𝛾))/𝑁

2

+𝛼(𝛽𝑁+2(𝜇+𝛾)+3𝛼(𝜇+𝛾)𝑁
2

)]/𝜎
2

)+2

× 𝑒
−2(𝜇+𝛾)(𝑁

2

𝛼+1)
2

(𝑡+1)/𝑁
2

𝜎
2

× 𝑒
−((𝜇+𝛾)𝛼

2

(𝑁𝑡/(𝑡+1))
2

+(4(𝜇+𝛾)𝛼
2

+2𝛼𝛽)(𝑁𝑡/(𝑡+1)))/𝜎
2

× (𝑡 + 1)
−2
𝑑𝑡
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=
𝑒
𝑐
0

𝜎2
𝑁
(2(𝛽𝑁−(𝜇+𝛾))/𝜎

2

𝑁
2

)−2

× 𝑒
−2(𝜇+𝛾)(𝑁

2

𝛼+1)
2

/𝑁
2

𝜎
2

× ∫

∞

0

[𝛼𝑁
2
𝑡
2
+ (𝑡 + 1)

2
]
2

𝑡
(2(𝛽𝑁−(𝜇+𝛾))/𝜎

2

𝑁
2

)−2

× (𝑡 + 1)
(2𝛼(𝛽𝑁+2(𝜇+𝛾)+3𝛼(𝜇+𝛾)𝑁

2

)/𝜎
2

)−2

× 𝑒
−2(𝜇+𝛾)(𝑁

2

𝛼+1)
2

𝑡/𝑁
2

𝜎
2

× 𝑒
−(((𝜇+𝛾)𝛼

2

(𝑁𝑡/(𝑡+1))
2

+(4(𝜇+𝛾)𝛼
2

+2𝛼𝛽)(𝑁𝑡/(𝑡+1)))/𝜎
2

)
𝑑𝑡.

(27)

When 𝑅
𝑠

0
> 1, that is, 2 − (2(𝛽𝑁 − (𝜇 + 𝛾))/𝜎

2
𝑁
2
) < 1, we

have

𝑚 = ∫

𝑁

0

1

𝜎2 (𝑠)
exp{∫

𝑠

𝑐

2𝑏 (𝜏)

𝜎2 (𝜏)
𝑑𝜏} 𝑑𝑠 < ∞. (28)

The conditions of Theorem 1.16 in Kutoyants [19] follow
from (24), (25), and (28). Therefore 𝐼(𝑡) is ergodic, and the
invariant density is given by

𝜋 (𝑥)

= 𝐶(1 + 𝛼𝑥
2
)
2

× 𝑥
(2(𝛽𝑁−(𝜇+𝛾))/𝜎

2

𝑁
2

)−2

× (𝑁 − 𝑥)
−(2[(𝛽𝑁−(𝜇+𝛾))/𝑁

2

+𝛼(𝛽𝑁+2(𝜇+𝛾)+3𝛼(𝜇+𝛾)𝑁
2

)]/𝜎
2

)−2

× 𝑒
−2(𝜇+𝛾)(𝑁

2

𝛼+1)
2

/𝑁𝜎
2

(𝑁−𝑥)

× 𝑒
−((𝜇+𝛾)𝛼

2

𝑥
2

+(4(𝜇+𝛾)𝛼
2

𝑁+2𝛼𝛽)𝑥)/𝜎
2

,

𝑥 ∈ (0,𝑁) ,

(29)

where 𝐶 is a constant.

Remark 5. If 𝛼 = 0, then

𝜋 (𝑥) = 𝐶𝑥
(2[𝛽𝑁−(𝜇+𝛾)]/𝜎

2

𝑁
2

)−2

× (𝑁 − 𝑥)
(−2[𝛽𝑁−(𝜇+𝛾)]/𝜎

2

𝑁
2

)−2

× 𝑒
−2(𝜇+𝛾)/𝑁𝜎

2

(𝑁−𝑥)
, 𝑥 ∈ (0,𝑁) .

(30)

By the property of density function, we have

1 = ∫

𝑁

0

𝐶𝑥
(2[𝛽𝑁−(𝜇+𝛾)]/𝜎

2

𝑁
2

)−2

× (𝑁 − 𝑥)
(−2[𝛽𝑁−(𝜇+𝛾)]/𝜎

2

𝑁
2

)−2

× 𝑒
−2(𝜇+𝛾)/𝑁𝜎

2

(𝑁−𝑥)
𝑑𝑥.

(31)

Let 𝑥 = 𝑁𝑡/(𝑡 + 1); then

∫

𝑁

0

𝐶𝑥
(2[𝛽𝑁−(𝜇+𝛾)]/(𝜎

2

𝑁
2

))−2

× (𝑁 − 𝑥)
(−2[𝛽𝑁−(𝜇+𝛾)]/𝜎

2

𝑁
2

)−2
𝑒
−2(𝜇+𝛾)/𝑁𝜎

2

(𝑁−𝑥)
𝑑𝑥

= 𝐶𝑁
−3
𝑒
−2(𝜇+𝛾)/𝜎

2

𝑁
2

× ∫

∞

0

𝑡
2[𝛽𝑁−(𝜇+𝛾)]/𝜎

2

𝑁
2

(𝑡 + 1)
2
𝑒
−2(𝜇+𝛾)𝑡/𝜎

2

𝑁
2

𝑑𝑡

= 𝐶𝑁
−3
𝑒
−2(𝜇+𝛾)/𝜎

2

𝑁
2

(
𝑁
2
𝜎
2

2 (𝜇 + 𝛾)
)

2[𝛽𝑁−(𝜇+𝛾)]/𝜎
2

𝑁
2

× [

(𝛽𝑁 − 𝜇 − 𝛾) (2 (𝛽𝑁 − 𝜇 − 𝛾) − 𝜎
2
𝑁
2
)

(𝜇 + 𝛾) 𝜎2𝑁2

+
4 [𝛽𝑁 − (𝜇 + 𝛾)] − 2𝜎

2
𝑁
2

𝜎2𝑁2
+
2 (𝜇 + 𝛾)

𝜎2𝑁2
]

× Γ(
2 (𝛽𝑁 − 𝜇 − 𝛾)

𝜎2𝑁2
− 1) ,

(32)

which implies

1

𝐶
= 𝑁
−3
𝑒
−2(𝜇+𝛾)/𝜎

2

𝑁
2

× (
𝑁
2
𝜎
2

2 (𝜇 + 𝛾)
)

2[𝛽𝑁−(𝜇+𝛾)]/𝜎
2

𝑁
2

× [

(𝛽𝑁 − 𝜇 − 𝛾) (2 (𝛽𝑁 − 𝜇 − 𝛾) − 𝜎
2
𝑁
2
)

(𝜇 + 𝛾) 𝜎2𝑁2

+
4 (𝛽𝑁 − 𝜇 − 𝛾) − 2𝜎

2
𝑁
2

𝜎2𝑁2
+
2 (𝜇 + 𝛾)

𝜎2𝑁2
]

× Γ(
2 (𝛽𝑁 − 𝜇 − 𝛾)

𝜎2𝑁2
− 1) .

(33)

Next, we compute 𝐸(𝑋):

𝐸 (𝑋) = ∫

𝑁

0

𝐶𝑥
(2[𝛽𝑁−(𝜇+𝛾)]/𝜎

2

𝑁
2

)−1

× (𝑁 − 𝑥)
(−2[𝛽𝑁−(𝜇+𝛾)]/𝜎

2

𝑁
2

)−2
𝑒
−2(𝜇+𝛾)/𝑁𝜎

2

(𝑁−𝑥)
𝑑𝑥

= 𝐶𝑁
−2
𝑒
−2(𝜇+𝛾)/𝜎

2

𝑁
2

(
𝑁
2
𝜎
2

2 (𝜇 + 𝛾)
)

2[𝛽𝑁−(𝜇+𝛾)]/𝜎
2

𝑁
2

×
2 (𝛽𝑁 − 𝜇 − 𝛾) − 𝜎

2
𝑁
2

𝜎2𝑁2

𝛽𝑁

(𝜇 + 𝛾)

× Γ(
2 (𝛽𝑁 − 𝜇 − 𝛾)

𝜎2𝑁2
− 1) .

(34)
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Figure 1: The solution 𝐼(𝑡) of SIS model (7) compared to the deterministic system with different initial value 𝐼(0) = 1.8 and 0.4, 𝜎 = 0.6. The
blue line represents the solution of stochastic system, and the black line represents the solution of the corresponding deterministic system.

This together with (33) shows that

𝐸 (𝑋) =

𝛽 [2 (𝛽𝑁 − 𝜇 − 𝛾) − 𝜎
2
𝑁
2
]

2𝛽2 − (𝜇 + 𝛾 + 𝛽𝑁) 𝜎2
. (35)

Similarly, we have

𝐸 (𝑋
2
) =

(𝛽𝑁 − 𝜇 − 𝛾) [2 (𝛽𝑁 − 𝜇 − 𝛾) − 𝜎
2
𝑁
2
]

2𝛽2 − (𝜇 + 𝛾 + 𝛽𝑁) 𝜎2

=
(𝛽𝑁 − 𝜇 − 𝛾) 𝐸 (𝑋)

𝛽
.

(36)

Consequently,

Var (𝑋) =
(𝛽𝑁 − 𝜇 − 𝛾) 𝐸 (𝑋)

𝛽
− [𝐸 (𝑋)]

2
. (37)

When 𝛼 = 0, model (7) becomes (4), and the mean and
variance of the stationary distribution of model (4) are the
same as the results in [10].

5. Simulations

We utilize the method developed in [20] to illustrate our
findings. We have the corresponding discretization equation:

𝐼
𝑘+1

= 𝐼
𝑘
+ 𝐼
𝑘
[
𝛽 (𝑁 − 𝐼

𝑘
)

1 + 𝛼𝐼
2

𝑘

− (𝜇 + 𝛾) 𝐼
𝑘
]Δ𝑡

+ 𝜎𝐼
𝑘

𝑁 − 𝐼
𝑘

1 + 𝛼𝐼
2

𝑘

𝜀
𝑘
√Δ𝑡,

(38)

where 𝜀
𝑘
are the Gaussian random variables𝑁(0, 1).

Using the discretized equation and with the help of
Matlab software, choosing the appropriate parameters𝑁 = 2,
𝛽 = 0.5, 𝜇 = 0.2, 𝛾 = 0.3, and 𝛼 = 0.5, we get simulations of
system (7) and the corresponding deterministic system.

In Figure 1, we choose initial values 𝐼(0) = 1.8 and 0.4,
respectively, 𝜎 = 0.6, noting that 2(𝛽𝑁 − 𝜇 − 𝛾)/𝜎

2
𝑁
2
=

0.694 < 1, as the case in Theorem 3 expected, for any initial
value 𝐼

0
∈ (0, 2), the large white noise leads to the extinction

of 𝐼(𝑡) and the solution of system (7) tends to zero; that is,
the disease dies out. While the solution of corresponding
deterministic system does not tend to zero.

In Figure 2, we choose 𝜎 = 0.2 and 0.05, respectively,
with initial values 𝐼(0) = 1.5, which satisfy the cases in
Theorem 4; that is, 2(𝛽𝑁 − 𝜇 − 𝛾)/𝜎

2
𝑁
2
> 1. From the left

picture in Figure 2,we can see that the solution of system (7) is
fluctuating in a small neighborhood, and there is a stationary
distribution (see the histogram in Figures 2(b) and 2(d)); the
disease becomes endemic.

6. Conclusion

In this paper, we analyze the dynamic behaviors of a
stochastic SIS model with nonlinear incidence rate, under
the assumption that the population lives in an environment
subjected to random fluctuations which mainly affect the
disease transmission term. First of all, we show that there
exists a unique positive solution in system (7). Moreover, we
obtain the threshold between prevalence and extinction of
the disease; that is, if 𝑅𝑠

0
= 2(𝛽𝑁 − 𝜇 − 𝛾)/𝜎

2
𝑁
2
< 1, the

disease will die out with probability one; if 𝑅𝑠
0
= 2(𝛽𝑁 −

𝜇 − 𝛾)/𝜎
2
𝑁
2
> 1, 𝐼(𝑡) is ergodic, which means the disease
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Figure 2: The solution 𝐼(𝑡) of SIS model (7) and its histogram with differing value of 𝜎 = 0.2, 0.05.

will become endemic. Finally, we illustrate our results with
computer simulations.

We see that if 𝛼 = 0, (7) becomes (4), which is studied in
[10]; they show that if 𝛽𝑁/(𝜇 + 𝛾) − 𝜎

2
𝑁
2
/2(𝜇 + 𝛾) < 1 and

𝜎
2
≤ 𝛽/𝑁, the disease 𝐼(𝑡) will die out with probability one.

Obviously, 𝛽𝑁/(𝜇+𝛾)−𝜎
2
𝑁
2
/2(𝜇+𝛾) < 1 and 𝑅𝑠

0
= 2(𝛽𝑁−

𝜇 − 𝛾)/𝜎
2
𝑁
2
< 1 are equivalent. The condition 𝜎

2
≤ 𝛽/𝑁,

however, is not necessary in our investigation. In addition,
if 𝑅𝑠
0
= 2(𝛽𝑁 − 𝜇 − 𝛾)/𝜎

2
𝑁
2
> 1, the invariant density is

obtained, which is not mentioned in [10].
An extension of our work is to consider a stochastic SIS

model with the general incidence rate 𝛽𝐼𝑝𝑆/(1 + 𝛼𝐼
𝑞
), and it

is currently a work in progress.
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