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Magnetic Domain Formation in Itinerant Metamagnets
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We examine the effects of long-range dipolar forces on metamagnetic transitions and generalize the
theory of Condon domains to the case of an itinerant electron system undergoing a first-order meta-
magnetic transition. We demonstrate that, within a finite range of the applied field, dipolar interactions
induce a spatial modulation of the magnetization in the form of stripes or bubbles. Our findings are
consistent with recent observations in the bilayer ruthenate Sr3Ru2O7.

Itinerant electron systems exhibiting metamagnetism,
quantum criticality, and non-Fermi-liquid behavior con-
tinue to attract widespread experimental [1–3] and theo-
retical [4–6] interest, with the bilayer ruthenate Sr3Ru2O7

as the most prominent example. Particularly surprising was
the recent discovery of a new phase with increased resis-
tivity as the quantum critical point is approached [2,3].
Different theories have been proposed for the nature of this
new phase [6]. In this Letter, we show that dipolar magne-
tostatic forces in an itinerant metamagnet lead to domain
formation in a small yet finite region of the temperature
field phase diagram. These domains differ in the magnitude
rather than the direction of the magnetization. Magnetic
domain formation of this type was first proposed by
Condon to explain de Haas–van Alphen measurements
in Be [7]. Much later, Condon domains, which are formed
and destroyed in each de Haas–van Alphen cycle, were
observed directly using muon-spin-rotation (�SR) spec-
troscopy [8], and, recently, the domain pattern was ob-
served in Ag by microscopic Hall probes [9]. The theory
has been further refined in the context of the de Haas–
van Alphen effect [10], but, to our knowledge, magnetic
domain formation has not yet been considered in the con-
text of metamagnetism.

We first consider briefly the standard phenomenological
theory of itinerant metamagnetism starting from the free
energy per unit volume f�M;T� as a function of magneti-
zation (produced by spin polarization of a metallic electron
band) and temperature. The thermodynamic equation of
state is �0H

in � @Mf, where �0 is the vacuum permeabil-
ity and Hin is the magnetic field inside the sample. The
differential susceptibility is � � dM=dHin or, equiva-
lently, �0�

�1 � @2Mf. By definition, metamagnetism oc-
curs if the susceptibility has a maximum at a finite field,
i.e., if @2Mf has a minimum at M � M0. In cases where
@2Mf becomes negative, a thermodynamic instability is
produced where the magnetization jumps abruptly between
two values M1 and M2 at which Hin � Hm [Fig. 1(a)],
determined by a Maxwell construction: Hm � @MfjM1

�

@MfjM2
� �f�M2� � f�M1��=�M2 �M1�. The location of

the jump defines a line of first-order transitions in the H-T
plane, which ends at a critical end point [Fig. 1(b)]. A
quantum critical end point occurs if Tc is suppressed to
zero as a function of additional parameters.

This standard picture must be supplemented to include
magnetic dipolar interactions. We demonstrate this by
translating an old argument by Condon [7] into the context
of metamagnetism. The internal magnetic field is a combi-
nation of the external applied field Hex and the field created
by the magnetized sample Hin � Hex � nM, where n is the
demagnetization factor depending on sample shape and
field orientation (n � 0 for a needlelike sample oriented
parallel to the field and n � 1 for a thin film oriented
perpendicular to the field). Thermodynamic stability is
lost if Hin reaches Hm: From the low (high) field side,
this occurs when Hex � Hc1 � Hm 	 nM1 (Hex � Hc2 �
Hm 	 nM2). Instead of a single first-order transition, there
is a finite region Hc1 <Hex <Hc2 where the uniformly
magnetized state is unstable [Fig. 1(b)]. In this region, as
we will show, magnetization forms domains with M � M1

or M2.
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FIG. 1. (a) Magnetization as a function of the local internal
magnetic field Hin with a jump at field Hm. (b) Schematic phase
diagram in the H-T plane. For n � 0, there is a line of first-order
transitions terminating at a critical end point. We assume that Hm
is a decreasing function of temperature, reflecting the fact that
entropy increases with increasing magnetization in itinerant
metamagnets [5]. The gray area indicates the region of phase
separation for n > 0.
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A complete theory is based on the free energy functional

for a spatially varying magnetization M�r� parallel to the z
axis [11]

F �
Z

d3r�f�M� 	 K�rM�2� 	 Ed; (1)

where K is a parameter controlling the stiffness, and

Ed � �0

8�

Z
d3r

Z
d3r0M�r���r� r0�M�r0�; (2)

with ��r� � �r2 � 3z2�=r5 as the dipolar magnetostatic
energy. The equilibrium magnetization profile M�r�, which
minimizes F��0

R
d3rHexM, is determined by a compe-

tition between domain wall (DW) and dipolar energies.
Below, we discuss its properties in the different regions of
the phase diagram.

Close to the critical temperature, one may expand f in
powers of m�r� � M�r� �M0, where M0 is the local mini-
mum of @2Mf. Hence,

f�M� � f�M0� 	�0H0m	 tm2 	 um4 	O�m5�; (3)

where �0H0 � @MfjM0
. All the parameters M0, H0, and t

are temperature-dependent. Apart from the linear term
which shifts the critical point to finite fields, we obtain
the standard theory of an Ising ferromagnet with dipolar
interactions [12]. There is no third-order term by construc-
tion, but other odd terms such as m5 are permitted. For
simplicity, we now consider an infinite film of thickness D.
For this geometry with the field direction perpendicular to
the slab, the demagnetization factor is n � 1. If the mag-
netization is independent of the z coordinate, the quadratic
part of F in powers of m is D

R
d2q!qjmqj2=�2��2, where

mq � R
d2reiq
rm�r� and !q � t	 Kq2 	�0�1�

e�qD�=�2qD�. We assume that the sample is sufficiently
thick that e�qD may be neglected. No matter how small the
dipolar interaction may be in relation to the spin stiffness,
the instability always occurs at a finite wave vector q0 �
�2l2D��1=3, where l2 � 2K=�0, giving sinusoidal modu-
lations of the magnetization with wavelength d � 2�=q0.
On following the line Hex � H0 	M0 in the Hex-T phase
diagram from high temperatures, there is a second-order
transition from the uniform to the modulated phase as soon
as the instability condition t <� 3

2�0� l
2D�2=3 is met. For

values of the external field different from H0 	M0, both
bubble- and stripe-modulated phases may be stabilized
within mean-field theory, and the transitions are weakly
first-order [12]. In each case, the modulated phase consists
of a smooth, sinusoidal spin-density wave on top of the
uniform magnetization background.

When T � Tc, the double-well structure of g�M� �
f�M� ��0HmM becomes more pronounced, such that
sinusoidal magnetization oscillations are no longer fa-
vored. The sample splits into domains of constant magne-
tization M1 and M2, separated by relatively sharp DWs.
The determination of the domain structures then involves

two independent problems. The first is the internal struc-
ture of the DW, which depends on the potential g�M� and
the stiffness K, and the second is the global domain pattern,
which depends solely on the long-ranged dipolar interac-
tion and the characteristic length � � �=��0�M2�, where
�M � M2 �M1 is the difference of magnetization of the
two phases and � is the DW energy per unit surface. The
first problem is easily solved. The equilibrium magnetiza-
tion profile of a single, flat DW satisfies dM=dx ������������������������������������������g�M� � g�M1��=K
p

, which leads to the following char-
acteristic DW width and energy:

� � lim
�!0

1

ln�1=��
Z M2���M

M1	��M
dM

����
K

p
������������������������������
g�M� � g�M1�

p ; (4)

� � 2
����
K

p Z M2

M1

dM
������������������������������
g�M� � g�M1�

q
: (5)

The second problem has been studied in great detail in the
context of uniaxial (Ising) ferromagnets in the shape of thin
platelets far below Tc [13,14]. In an intermediate range of
the ratio D=�, the phase diagram as a function of magnetic
field in the sharp-wall limit is very similar to that in the
critical regime: a stripe phase in the center and a bubble
phase at the border of the coexistence region separated by
first-order transitions. The typical domain size is of order
d� ��D�1=2 and differs from the wavelength 2�=q0 in the
critical regime. The domain structure is more complicated
for thick samples (� � D), where an increasing number of
wedge-shaped domains are formed close to the sample
surface while the bulk domain size is typically d�
��D2�1=3 [14].

In order to interpolate between these two regimes, the
critical regime close to Tc and the sharp-wall regime at low
temperature, we propose the following ansatz, which de-
pends on three variational parameters: �, R, and d. For
periodic stripe domains,

M�;R;d�x� � M1 	 ���M
d

X
q	

sin�q	R� cos�q	x�
sinh�q	�2

; (6)

where q	 � 2�	=d. For a triangular lattice of cylindrical
bubble domains,

M�;R;d�r� � M1 	 2�2�R�M���
3

p
d2

X
Q	�

J1�Q	�R� cos�Q	� 
 r�
sinh

�Q	��
2

;

(7)

where J1 is a Bessel function of the first kind and Q	� �
2�
d �	; �2�		���

3
p �. In both cases, d is the period of the structure

and �; 	 are integers. The interpretation of the parameters
R and � depends on the regime. If � � R; d, the ansatz
consists of domains of radius R with magnetization M2 in a
sea of M1 and � corresponds to the DW thickness. For � *
d, the ansatz yields sinusoidal spin-density waves, because
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higher Fourier modes are suppressed exponentially. The
mean value around which the magnetization oscillates is
controlled by R and the amplitude by �. Examples of stripe
and bubble configurations in both regimes are illustrated in
Fig. 2.

After these general considerations, we now consider a
model for a specific itinerant metamagnet, namely, a 2D
electron system whose Fermi level is close to a logarithmic
van Hove singularity (VHS). For this situation, the free
energy f�M;T� was calculated within the Hartree-Fock
theory in Ref. [5]. Here we present an effective model
which captures the primary physical features. At the
Hartree-Fock level, �0��1 � @2Mf / 
�1

" 	 
�1
# � 2I,

where 
" and 
# are the thermally broadened densities of
states at the Fermi level of up- and down-spin electrons,
respectively, and I is the on-site Coulomb energy. At zero
temperature, a singularity @2Mf� 1= lnjM�M0j occurs,
where M0 is the magnetization at which one of the two
electron species has its Fermi level exactly at the VHS. The
main effect of a small, finite temperature is to provide a
cutoff to this logarithm. These observations motivate the
following effective free energy [Eq. (1)]:

�f�M;T� � f�� �= ln��m=m0�2 	 T=T0�gm2; (8)

where m0 and T0 are positive parameters, m � M�M0,
and �f � f� fjM�M0

��0H0m. Since �f is an even
function of m, it follows that Hm � H0 for this model.
The model of Eq. (8) is meaningful only for m � m0 and
T � T0. The parameter � is of the order vW=�2

B, where v
is the volume of a unit cell and W�1 is the weight of the
VHS. The parameter � is proportional to the doping away
from the quantum critical end point in the mean-field phase
diagram neglecting Ed [5]. Dipolar interactions shift the
quantum critical end point to �c � � 3

2�0�l=2D�2=3. For
� > �c, there is a metamagnetic crossover and for � < �c a
first-order metamagnetic transition with a coexistence re-
gion below Tc � T0 expf�=��� �c�g. At zero temperature

and assuming sharp DWs � � d, we find using the
Maxwell construction and Eqs. (4), (5), and (8):

�M � 2m0 expf��	
����������������������
���� 4��

q
�=�4��g; (9)

�=l � �0:98	O��=��� ����������
�0�

p
=����; (10)

�=l � �0:42	O��=�������= ����������
�0�

p
: (11)

The crossover between the critical and the sharp-wall
regimes occurs at 1� T=Tc � �2l=D�2=3�0�=�2.

The entire Hex-T phase diagram for the model of Eq. (8)
is shown in Fig. 2. It was obtained numerically by using the
ansatz of Eqs. (6) and (7) and minimizing F�
�0

R
d3rHexM. Figure 3 shows the mean magnetization

as a function of Hex at low temperature. The abrupt in-
crease of the magnetization both on entry and on exit from
the domain phase are clearly visible. Much smaller in-
creases appear also at the transitions between bubble and
stripe phases. The energy difference between the bubble
and stripe solutions is extremely small, so that the precise
domain structure will be susceptible to many details, e.g.,
lattice structure, impurities, and sample shape. The inset in
Fig. 3 shows the temperature dependence of the magneti-
zation for constant Hex. Note the increase of m with
decreasing temperature in the uniform phase due to the
diverging susceptibility at Hin � H0. Upon entering the
domain phase, the magnetization increase is cut off, since
the internal field Hin is locked to the nearly temperature-
independent value of Hm. A small magnetization jump
occurs at both first-order phase boundaries.

The existence of magnetic domains is known to increase
the electrical resistivity due to DW scattering. In uniaxial
ferromagnets, the DW resistivity shows a sharp increase
upon entering the domain phase by tuning the magnetic
field at a low temperature [15]. The resistivity in the
direction perpendicular to oriented DWs is higher than in
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FIG. 2 (color online). Mean-field phase diagram as a function of external magnetic field Hex and temperature T for the model of
Eq. (8) within the ansatz of Eqs. (6) and (7). The parameters chosen were � � 100�0, � � �8�0, and D � 20l, where l �
�2K=�0�1=2. The insets show the magnetization profile m�r� � M�r� �M0 at four different locations. The transitions are first-order at
low temperature, weakly first-order in the critical regime T & Tc, and second-order at T � Tc.
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the parallel direction [16] and even shows a nonmetallic
behavior [17]. In contrast to ferromagnetic domains,
Condon domains differ by the magnitude rather than the
direction of their magnetization. This implies that proper-
ties such as the Fermi velocity vary across Condon DWs,
leading to strong scattering of electrons, especially if the
Fermi level is near a VHS, where electronic properties
depend strongly on the band filling.

Our results are particularly relevant in view of the recent
observation of a new phase in Sr3Ru2O7 with a field
oriented along the c direction [2,3]. The qualitative sim-
ilarities between the phase diagram (Figs. 1 and 2) and the
phase diagram of Ref. [3] are striking. Also, if metamag-
netism is caused by a logarithmic VHS, then the domain
phase is very sensitive to sample purity, because the VHS
itself is very sensitive to impurities. The authors of Ref. [3]
give a list of five key experimental facts which place rather
tight constraints on any theory for the new phase. We note
that all five points are compatible with magnetic domain
formation. (i) DW scattering leads to an enhanced resis-
tivity; (ii) the electrons are itinerant throughout the phase
diagram; (iii) the mean magnetization increases both on
entry and on exit from the domain phase as a function of
field (cf. Fig. 3); (iv) a rise of the mean magnetization is cut
off as the domain phase is entered from high temperature
(cf. inset in Fig. 3); and (v) the domain phase exists only in
a narrow range of applied fields. From the observed field
range �0�Hc2 �Hc1� � 0:2 T [3] and the volume 78 �A3

per Ru, we estimate n�M � 1:3�B=Ru. While this num-
ber appears rather large, it is not in error by orders of
magnitude. Finally, we note that we have restricted our-
selves to the simplest case of a field along the c axis. Other
orientations require corrections beyond the scope of this
letter. �SR, NMR spectroscopy, and microscopic Hall
probe techniques could allow a direct detection of domain

formation. For (quasi)static domains, the difference in
local fields will lead to a characteristic splitting in the
resonance lines as long as the corresponding dynamics is
slow compared to the experimental time scales.

In conclusion, we predict that an itinerant electron sys-
tem, in general, cannot undergo a first-order phase transi-
tion without breaking up into magnetic domains within a
finite range of applied fields. While we cannot rule out
other mechanisms explaining the unusual feature of the
low temperature phase in Sr3Ru2O7, our results show that a
detailed experimental analysis is required to decide if
mechanisms other than Condon domains underlie the un-
usual behavior.
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