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The present paper analyzes the process of drug release from polymer matrix. This process has been considered as fractal polymer
process. Since complexity of physical processes is replaced by fractality, the paper studies the process through fractal approach. In
drug dynamics, fractal “diffusion” equation can be obtained through fractal approximation of motion. All experimental release
curves have been best demonstrated by Weibull relation (which was, in its turn, also demonstrated). Weibull parameters are related
to the fractal dimension of drug release kinetics from a polymer matrix. Such a dimension can characterize and measure the
complexity of the system. In the above-mentioned context, some experimental results of our researchers are presented and analyzed
by comparing them with Peppas relation, a basic law in the description of drug release kinetics. Consequently, experimental data for
Weibull relation are better correlated with certain resulting factors. At the same time, some conclusions regarding the phenomena
involved in the process are considered as being based on the approach.

1. Introduction

The adequate description of real, natural, and artificial
objects is restricted by the mere use of Euclidean geometry,
that is, the description of integer-dimensioned objects. In
such perspective, this happens because numerous objects
with noninteger dimensions, such as plants, galaxies, popu-
lation patterns, and crystal growth, are left beyond analytical
purpose. The characteristics of such objects can be described
by means of fractal geometry [1, 2]. Natural and synthetic
polymers considered as fractal objects are also included
in the above category. Their main structural unit, the
macromolecular coil, is known to be a fractal with typical
fractal behavior [3–8].

The main idea of the paper focuses on this type of
processes in which polymer fractality is responsible for drug
release from various polymer matrixes. In what follows, we
shall produce arguments to sustain the above statement.

The experimental drug release kinetics indicate that drug
loaded polymer matrix structures are thermodynamically
unstable and evolve towards equilibrium. Specific parame-
ters for each structure (drug type, incorporated drug dose(s),
types and amounts of excipients, preparation technique,
environmental conditions during drug release, and geometry
and dimensions of drug delivery system) will lead to different
evolutive trajectories, considered as consequences of internal
collective processes. Thermodynamically nonbalanced pro-
cesses generate the formation of fractal structures [5, 9]. That
is why fractal structures appear in drug release environment,
too.

Drug release phenomena (water penetration into the
device, drug and excipient dissolution, phase transitions,
drug and/or polymer degradation, polymer swelling, phys-
ical drug-excipient interactions, and chemical reactions
of drug, excipients, and/or water) are complex processes.
Nevertheless, mathematical expressions pharmaceutics uses
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for the description of drug release kinetics are rather simple,
namely Higuchi, Ritger-Peppas, Peppas-Sahlin, and Alfrey
power laws [10].The structure whose dynamics is ruled by
power laws tends to critically organize itself [11], as fractals
do.

Thus, the question of whether or not fractal analysis
should be used in the description of the structure and
evolution of such a structure, that is, drug-loaded polymer
matrix, is not a matter of scientific choice, but a consequence
of a correct approach.

This is the reason why we will analyze this process
considering that fractality can replace the complexity of
physical processes. Moreover, it will be no longer necessary
to use the entire classical “arsenal” of quantities of standard
physics (differentiable physics). Physical systems will behave
as special “fluids” that lack interaction. Thereby, we intro-
duced fractal approximation of motion in the study of the
complex dynamics of physical systems, taking into account
that drug trajectories are continuous, but non-differentiable
curves, called fractal curves. Interactions are dealt with in
the above-mentioned manner by a physical model, which
is the scale relativity theory (SRT) [12, 13]. Accordingly, we
will obtain a fractal “diffusion” equation and deduce Weibull
law that, in comparison with power laws, better describes
all experimental release curves [14], thus eliminating all
possible critical opinions regarding the absence of kinetics
in the use of Weibull’s law or the nonphysical nature of its
parameters [15].

This paper is structured as follows: Section 2 presents
general notions on the fractal approximation of motion
through scale relativity theory. Fractal “diffusion” equations,
both for Fick type “diffusion” and for anomalous type
“diffusion,” as well as Weibull relation are exhibited in
Section 3. Experimental results of our theoretical model are
presented in Section 4. Section 5 comprises the conclusions.

2. Fractal Approximation of Motion Applied in
Drug Release Process

Drug-loaded polymer matrix can be included in the cate-
gory of complex dynamic systems which display nonlinear
behavior, self-similarity, and self-structure. At the same time,
these systems intensely fluctuate at all possible scales [9–21].
Since fractality appears to be the universal feature of such
systems, it is essential to construct fractal physics [13, 18]
when describing such evolution.

2.1. Non-differentiability Consequences in Drug Release Pro-
cess. Drug release process is a very complex phenomenon,
with many significant variables in the evolution of the
system. That is why we assume that this type of process takes
place on continuous, but non-differentiable curves (fractal
curves). Non-differentiability implies the following [13, 18].

(i) A continuous and non-differentiable curve (or al-
most nowhere differentiable) is explicitly scale depen-
dent, and its length tends to infinity, when the scale
interval tends to zero. In other words, a continuous

and non-differentiable space is a fractal one, in that
general meaning Mandelbrot gave to the concept
[11].

(ii) There is an infinity of fractal curves (geodesics) that
connects its points (or starting from any point) and
this is applicable for all scales.

(iii) Local differential time reflection invariance breaking:
the time derivative of relative variation for the
released drug Q can be written twice:

dQ

dt
= lim

Δt→ 0+

Q(t + Δt)−Q(t)
Δt

,

dQ

dt
= lim

Δt→ 0−

Q(t)−Q(t − Δt)
Δt

.
(1)

Both definitions are equivalent for the differentiable case.
As regards non-differentiable situations, these definitions are
no longer valid, since limits cannot anymore be defined.
Within fractal theory, physics is related to the behavior
of the function during the “zoom” operation on the time
resolution δt, here identified with the differential element
dt (substitution principle), which is considered as an inde-
pendent variable. The standard concentration field Q(t)
is therefore replaced by fractal concentration field Q(t,dt),
explicitly dependent on the time resolution interval. The
characteristic derivative of this interval is undefined only at
that unnoticed limit dt → 0 which is described by a fractal
function. Consequently, this will lead to the definition of the
two derivatives of the fractal concentration field Q as explicit
functions of t and dt variables:

d+Q

dt
= lim

Δt→ 0+

Q(t + Δt,Δt)−Q(t,Δt)
Δt

,

d−Q
dt

= lim
Δt→ 0−

Q(t,Δt)−Q(t − Δt,Δt)
Δt

.
(2)

“+” corresponds to the forward process and “−” to the
backward one.

(iv) The differential of the coordinates, d±X(t,dt), can be
decomposed as follows:

d±X(t,dt) = d±x(t) + d±ξ(t,dt), (3)

where d±x(t) is the “classical part,” and d±ξ(t,dt) is the
“fractal part,” depending on resolution. The differential of
the “fractal part” components ξi(t,dt), i = 1, 3, satisfies the
relation (the fractal equation) [22–24]

d±ξi = λi±(dt)1/DF , (4)

where λi± are constant coefficients, and DF is the fractal
dimension. For fractal dimension, we can use any definition
(Kolmogorov, Hausdorff [1, 13, 25–27], etc.), but once a
certain definition is admitted, it should be kept up to the end
of analysis.
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(v) The local differential time reflection invariance is
recovered by combining the two derivatives, d+/dt
and d−/dt, in the complex operator

∧
∂
∂t
= 1

2

(
d+ + d−

dt

)
− i

2

(
d+ − d−

dt

)
. (5)

When this operator is applied to the “position vector,” a
complex speed yields

V̂ = d̂X
dt
= V− iU, (6)

with

V = V+ + V−
2

, U = V+ −V−
2

. (7)

The real part V of the complex speed V̂ represents the
standard classical speed, which is independent of resolution,
while the imaginary part U is a new quantity arising from
fractality, which is resolution dependent.

(vi) The average values of the quantities must be con-
sidered in the sense of a generalized statistical fluid.
Particularly, the average of d±X is

〈d±X〉 = d±x, (8)

with

〈
d±ξ

〉 = 0. (9)

2.2. Covariant Total Derivative in Drug Release Process.
Let us now admit that the curve (continuous, but non-
differentiable), describing the drug release, is immersed
in a three-dimensional space, and that X of components
Xi(i = 1, 3) is the position vector of a point on the curve. Let
us also consider the fractal concentration field Q(X , t) and
expand its total differential up to second order

d±Q = ∂Q

∂t
dt +∇Q · d ± X +

1
2

∂2Q

∂Xi∂X j d±X
id±X j. (10)

The relations (10) are manifold valid in any point of the
space and, implicitly, for the points X on the fractal curve
which we have selected in relations (10). Hence, the forward
and backward average values of this relation take the form

〈d±Q〉 =
〈
∂Q

∂t
dt
�

+ 〈∇Q · d±X〉

+
1
2

〈
∂2Q

∂Xi∂X j d±X
id±X j

〉
.

(11)

We formulate the following stipulation [22–24]: the
mean value of the fractal concentration field Q and its
derivatives coincide with themselves and the differentials
d±Xi and dt are independent. Therefore, the average of their

products coincides with the product of the averages. Thus,
using (3) with the property (9), (11) becomes

d±Q = ∂Q

∂t
dt +∇Q · d±x

+
1
2

∂2Q

∂Xi∂X j

(
d±xid±x j +

〈
d±ξid±ξ j

〉)
.

(12)

Even the average value of the fractal coordinate d±ξi

is null (see (9)), whilst for the higher order of the fractal
coordinate average, the situation can be different. Firstly, let
us focus on the mean 〈d±ξid±ξ j〉. If i /= j, this average is zero
due the independence of d±ξi and d±ξ j . So, using (4), we can
write

〈
d±ξid±ξ j

〉
= λi±λ

j
±(dt)(2/DF )−1dt. (13)

Then, if we divide by dt and neglect the terms which
contain differential factors (for details on the method, see
[16, 17]), (12) may be written under the form

d±Q
dt

= ∂Q

∂t
+ V± · ∇Q +

1
2

∂2Q

∂Xi∂X j λ
i
±λ

j
±(dt)(2/DF )−1.

(14)

These relations also allow us to define the operator

d±
dt
= ∂

∂t
+ V± · ∇ +

1
2

∂2

∂Xi∂X j λ
i
±λ

j
±(dt)(2/DF )−1. (15)

Under these circumstances, let us calculate (
∧
∂ Q/∂t).

Taking into account (15), (5), and (6), we obtain

∧
∂Q

∂t
= ∂Q

∂t
+
∧
V ·∇Q +

(dt)(2/DF )−1

4

×
[(
λi+λ

j
+ + λi−λ

j
−
)
− i
(
λi+λ

j
+ − λi−λ

j
−
)] ∂2Q

∂Xi∂X j .

(16)

This relation also allows the definition of the fractal ope-
rator

∧
∂
∂t
= ∂

∂t
+
∧
V ·∇ +

(dt)(2/DF )−1

4

×
[(
λi+λ

j
+ + λi−λ

j
−
)
− i
(
λi+λ

j
+ − λi−λ

j
−
)] ∂2

∂Xi∂X j .

(17)

Particularly, by choosing

λi+λ
j
+ = −λi−λj

− = 2Dδij, (18)

we obtain the following results:

(i) the relation (13) becomes

〈
d±ξid±ξ j

〉
= 2D(dt)(2/DF )−1dt, (19)
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(ii) the fractal operator (17) takes the form [22–24]

∧
∂
∂t
= ∂

∂t
+
∧
V ·∇ − iD(dt)(2/DF )−1Δ, (20)

(iii) Nottale’s model is formulated in the fractal dimen-
sion DF = 2, that is, for movements on Peano curves
and for Wiener’s stochastic processes [1, 13, 25–27].

3. Generalized Principle of Scale Covariance:
Fractal “Diffusion” Type Equation

We now apply the principle of scale covariance and postulate
that the transition from classical (differentiable) to “fractal”
physics can be implemented by means of replacing the
standard time derivative operator d/dt with the complex

one ∂̂/∂t (this result is a generalization of Notalle’s scale
covariance principle as in [13]). As a consequence, we
can now write the fractal “diffusion” type equation in its
covariant form

∧
∂ Q

dt
= ∂Q

∂t
+
(

V̂ · ∇
)
Q − iD(dt)(2/DF )−1ΔQ = 0. (21)

This means that at any point of a fractal curve, the
local temporal term ∂tQ, the nonlinearly “convective” term

(
∧
V ·∇)Q, and the dissipative one ΔQ equilibrate.

3.1. Standard “Diffusion” Type Equation. Separating the real
part from the imaginary one in (21), that is,

∂Q

∂t
+ V · ∇Q = 0,

−U · ∇Q = D(dt)(2/DF )−1ΔQ,
(22)

we can add these two equations and obtain a generalized “dif-
fusion” type law in the form

∂Q

∂t
+ (V−U) · ∇Q =D(dt)(2/DF )−1ΔQ. (23)

The standard “diffusion” law, that is,

∂Q

∂t
= DΔQ, (24)

results from (23) the following assertions:

(i) diffusion paths are Peano type fractal curves. In other
words, the fractal dimension of the fractal curves is
DF = 2. Moreover, the average values (19) are defined
through Wiener’s stochastic processes [1, 13, 25–27],
that is,

〈
d±ξid±ξ j

〉
= 2Ddt, (25)

(ii) the movements at differentiable and non-differentia-
ble scales are synchronous, that is, V = U,

(iii) the structure coefficient D, that characterizes fractal-
nonfractal transition, identifies with diffusion coeffi-
cient, that is,

D ≡ D. (26)

This kind of “diffusion” is analyzed in [28, 29], a situa-
tion for which Papadopoulou et al. [30] calculated the value
of the constant b and obtained b ∼= 1, equivalent withDF = 2.

3.2. Anomalous “Diffusion” Type Equation: Weibull Relation.
The anomalous diffusion law results from (23) on the follow-
ing assumptions:

(i) diffusion paths are fractal curves with fractal dimen-
sion DF /= 2,

(ii) time resolution δt is identified with the differential
element dt, that is, in this case, the substitution
principle can be also applied,

(iii) movements at differentiable and non-differentiable
scales are synchronous, that is, V = U.

Then, (23) can be written as follows:

∂Q

∂t
= D(dt)(2/DF )−1ΔQ. (27)

For the one-dimensional case, applying the variable
separation method [31]

Q(t, x) = T(t) · X(x), (28)

with standard initial and boundary conditions

Q(t, 0) = 0, Q(t,L) = 0, Q(0, x) = F(x),

0 ≤ x ≤ L
(29)

implies

1

D(dt)(2/DF )−1

1
T(t)

dT(t)
dt

= 1
X(x)

d2X(x)
dx2

= −m2 = −
(
nπ

L

)2

, n = 1, 2,

(30)

where L is a system characteristic length, and m is a
separation constant, dependent on diffusion order n.

Accepting the viability of the substitution principle (see
Section 2.1), from (30), through integration, it follows that

lnT = −m2 D

∫
(dt)(2/DF ). (31)

According to certain results of the fractional integral-
differential calculations [32, 33], (31) becomes

lnT=− m2D

Γ((2/DF)+1)
t2/DF , Γ

(
2
DF

)
=
∫∞

0
x(2/DF )−1e−xdx.

(32)
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Moreover, (32) can be written under the form

T(t) = exp

[
− m2D

Γ((2/DF) + 1)
t2/DF

]
. (33)

The time-dependent relative variation of concentrations
is defined as

T(t) = Q∞ −Qt

Q∞
, (34)

where Qt and Q∞ are cumulative amounts of drug released at
time t and infinite time.

From (33) and (34), it follows that

Qt

Q∞
= 1− exp

[
− m2D

Γ((2/DF) + 1)
t2/DF

]
, (35)

equation similar to Weibull relation Qt/Q∞ = 1− exp(−atb),
where a and b represent characteristic constants for each
system that can be defined by

a = m2D

Γ((2/DF) + 1)
=
(
nπ

L

)2 D

Γ((2/DF) + 1)
, (36a)

b = 2
DF

. (36b)

We can notice that both a and b constants are functions
of fractal dimension of the curves on which drug release
mechanism takes place. This represents the complexity and
nonlinearity dynamics of the system. Moreover, constant a is
also dependent on the “diffusion” order n.

Let us note that the fractal processes [1, 13, 25–27] given
by (21) with DF /= 2 are considered as being “anomalous
diffusion” (subdiffusion for DF < 2 and superdiffusion for
DF > 2). The “Fokker-Planck equations” for anomalous
diffusion do not usually have the form of an ordinary
diffusion equation. Indeed, it is well known that the “Fokker-
Planck equations” for anomalous diffusion take the form
of fractional derivative equations, called fractional Fokker-
Planck equations [25–27].

This new approach will be presently applied in the
analysis of one polymer-drug type system that has been
obtained by our researchers.

4. Experimental Results and Discussion

This paragraph presents some experimental results obtained
by our researchers, for different kind of polymer matrices.

4.1. Chloramphenicol-Loaded GEL-PVA Microparticles. Gela-
tin and poly(vinyl alcohol) (GEL-PVA) microparticles cross-
linked with glutaraldehyde (GA), for samples with different
amount of cross-linking agent (2%, 6%, 8%, 10%, . . . , the
sample code indicates the cross-linking amount: for example,
GA2 represents a sample with 2% cross linking amount)
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Figure 1: Chloramphenicol release kinetics from GEL-PVA micro-
particles.
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Figure 2: Levofloxacin release kinetics from starch-based hydrogels.

loaded with chloramphenicol were tested (details regarding
materials and experimental protocol can be found in [34]).

The experimental points of release kinetics are shown in
Figure 1.

4.2. Levofloxacin-Loaded Starch-Based Hydrogels. Hydrogels
with controlled hydrophilicity were obtained from new
amphiphilic starch-polyester graft copolymer and unmod-
ified starch with fatty acid chains, cross-linked with citric
acid, at different cross-linking time (4 h, 5 h, 6 h, . . . , the
sample code indicates the cross-linking time: for example,
HS4 represents a sample with 4 h cross-linking time). The
samples were loaded with levofloxacin, and their release
kinetics was studied (details regarding materials and exper-
imental protocol can be found in [35]).

The experimental points of release kinetics are shown in
Figure 2.
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Figure 3: Adrenaline release kinetics from GEL-CHI microparti-
cles.

4.3. Adrenaline-Loaded GEL-CHI Microparticles. Gelatin and
chitosan (GEL-CHI) microparticles were prepared within
two-step cross-linking process in an emulsion-phase sepa-
ration system cross-linked with glutaraldehyde (GA). Sam-
ples were prepared with different gelatin: chitosan-gelatin
amount ratios of (10%–90%, 30%–70%, 50%-50%, . . . , the
sample code indicates the gelatin/chitosan ratio: for example,
GC 10–90 represents a 10% gelatin and 90% chitosan
sample).

The samples were loaded with adrenaline, and their
release kinetics was studied (details regarding materials and
experimental protocol can be found in [36]).

The experimental points of release kinetics are shown in
Figure 3.

4.4. Experimental Results Analysis and Discussions. As a
result of different experimental protocols, all the above drug
carriers represent differentiated polymer matrices. Despite
this, they have qualitatively similar time behavior. Therefore,
qualitative analysis should be performed according to the
loaded drug amount that is directly proportional to the
released drug amount.

These results have been analyzed matching experimental
data with Peppas and Weibull laws, as it has been demon-
strated in the previous paragraph. As a result, for each of
the samples (see Table 1), we obtained Peppas and Weibull
parameters, the correlation factors, and release kinetics
fractal dimension.

The first observation refers to the correlation coefficient
between the experimental curves and Weibull fitted curve,
which proved to be a very good one, even better than in
the case of Peppas curve. This means that the entire release
process can be better described by Weibull law as compared
to Peppas law, thus showing the wide applicability of the
former (the best values for correlation factors are italicized,
in Table 1). Experimental Weibull curves for HS and GA
samples are graphically illustrated in Figure 4.
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Figure 4: Experimental and Weibull curves for HS samples (a) and
GA samples (b).

At the same time, the values for n, namely no. 0,5 value,
show that in all these cases the diffusion mechanism is a
non-Fickian one, while diffusion does not prevail. There
are also some other phenomena with relevant contribution:
the physical interaction of drug-polymer matrix with release
environment, chemical reactions, and drug/polymer degra-
dation.

Consequently, the complexity of the phenomena man-
ifestly generates a complex trajectory for drug particles.
It is known that the complex trajectory can be measured
through fractal dimension, namely, in this particular case,
the fractal dimension of the release curve. This is confirmed
by fractal dimension values, according to (36b). The values
between 1 and 3 generally correspond to the usually accepted
values in the case of fractal processes [37]; higher values
denote either fractal dimension should be redefined as
a function of structure “classes,” or the drug release process
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Table 1: Values of Peppas and Weibull parameters.

Sample
Peppas Weibul

Fractal dimension
k n Correlation coefficient a b Correlation coefficient

HS4 0,6537 0,0669 0,9816 0,4441 0,3822 0,998 5,23

HS5 0,5602 0,107 0,9325 0,1715 0,6171 0,974 3,24

HS6 0,3623 0,1623 0,9197 0,0525 0,7693 0,9981 2,60

GA2 0,6482 0,0994 0,948 0,0782 1.4069 0,9994 1,42

GA6 0,4649 0,1704 0,9246 0,0577 1.2602 0,9902 1,59

GA8 0,2328 0,3079 0,9346 0,0348 1,121 0,9953 1,78

GA10 0,6791 0,085 0,9896 0,5711 0,4816 0,9966 4,15

GC10-90 <0 <0

GC30-70 0,29 0,1553 0,8564 0,2947 0,2499 0,827 8,00

GC50-50 <0 <0

is a complex one, with many freedom degrees in the phase
space [38]. Another observation refers to samples with DF <
2 (“subdiffusion”) or with DF > 2, (superdiffusion) (see
paragraph 3.). This classification is in compliance to the
experimental observation according to which these samples,
unlike others, exhibit “faster” diffusion, with higher diffusion
rate.

At the same time, the value for fractal dimension of the
adrenaline release curve for GC 30–70 sample is the highest,
reflecting the high degree of complexity. Consequently, the
behavior of such systems should be differently described.
Such an approach will be subject of future research. GC
samples exhibit strong variations on the first part of the
release curve. For two of them, the attempt to match
with Peppas and Weibull equations failed, the parameters
having negative values that led to negative fractal dimensions
(written in bold, in Table 1). These are values that can point
to some phase transitions in multiphase complex space [39].

5. Conclusions

In this paper, we have replaced the complexity of the physical
processes that generates drug release from polymer matrix
with fractality. That is why the whole classical “arsenal” of
standard physics quantities (differentiable physics) was no
longer used. Consequently, fractal approximation of motion
was introduced in the study of the complex physic-chemical
dynamics of the system. By means of fractional calculus, the
fractal “diffusion” equation gives rise to Weibull relation,
a statistical distribution function of wide applicability,
including drug release studies. Our approach has considered
all simultaneously involved phenomena that are equivalent
to complexity and fractality. Consequently, a physical basis
to this equation and for its parameters has been created.
The parameters are functions of fractal dimension of the
curves on which drug release mechanism takes place. This
dimension measures the complex and nonlinear dynamics of
the system that depends on diffusion order.

This type of approach is a viable one, since the analysis
of our experimental results shows that experimental curves

can match with some very good correlation factors, through
Weibull laws, better than in the case of power type laws.
At the same time, the fractal dimension of the drug release
curve depends on the complexity of the system and can be
considered as control parameter for the nonlinear behavior
of it.
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