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The so-called f (R)-gravity has recently attracted a lot of interest since it could be, in principle, able to explain the accelerated
expansion of the Universe without adding unknown forms of dark energy/dark matter but, more simply, extending the General
Relativity by generic functions of the Ricci scalar. However, apart several phenomenological models, there is no final f (R)-
theory capable of fitting all the observations and addressing all the issues related to the presence of dark energy and dark matter.
An alternative approach could be to “reconstruct” the form of f (R) starting from data without imposing particular classes of
model. Besides, adopting the same philosophy, we take into account the possibility that galaxy cluster masses, estimated at X-ray
wavelengths, could be explained, without dark matter, reconstructing the weak-field limit of analytic f (R) models. The corrected
gravitational potential, obtained in this approximation, is used to estimate the total mass of a sample of 12 well-shaped clusters of
galaxies.
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1. Introduction

As soon as astrophysicists realized that Type Ia Supernovae
(SNeIa) were standard candles, it appeared evident that their
high luminosity should make it possible to build a Hubble
diagram, that is, a plot of the distance-redshift relation,
over cosmologically interesting distance ranges. Motivated by
this attractive consideration, two independent teams started
SNeIa surveys leading to the unexpected discovery that the
Universe expansion is speeding up rather than decelerating
as assumed by the Cosmological Standard Model [1–
5]. This surprising result has now been strengthened by
more recent data coming from SNeIa surveys [6–13], large
scale structure [14–18] and cosmic microwave background
(CMBR) anisotropy spectrum [19–25]. This large data set
coherently points toward the picture of a spatially flat
Universe undergoing an accelerated expansion driven by a
dominant negative pressure fluid, typically referred to as
dark energy [26].

While there is a wide consensus on the above scenario
depicted by such good quality data, there is a similarly

wide range of contrasting proposals to solve the dark energy
puzzle. Surprisingly, the simplest explanation, namely the
cosmological constant Λ [27, 28], is also the best one from
a statistical point of view [29–31]. Unfortunately, the well
known coincidence and 120 orders of magnitude problems
render Λ a rather unattractive solution from a theoretical
point of view. Inspired by the analogy with inflation, a
scalar field φ, dubbed quintessence [32, 33], has then been
proposed to give a dynamical Λ term in order to both
fit the data and avoid the above problems. However, such
models are still plagued by difficulties on their own, such
as the almost complete freedom in the choice of the scalar
field potential and the fine tuning of the initial conditions.
Needless to say, a plethora of alternative models are now
on the market all sharing the main property to be in agree-
ment with observations, but relying on completely different
physics.

Notwithstanding their differences, all dark energy models
assume that the observed apparent acceleration is the
outcome of some unknown ingredient, at fundamental
level, to be added to the cosmic pie. In terms of the
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Einstein equations, Gμν = χTμν, the right hand side should
include something more than the usual matter and radiation
components in the stress-energy tensor.

As a radically different approach, one can also try
to leave unchanged the source side (actually “observed”
since composed by radiation and baryonic matter), but
rather modifying the left hand side. In a sense, one is
therefore interpreting cosmic speed up as a first signal of
the breakdown of the laws of physics as described by the
standard General Relativity (GR). Since this theory has been
experimentally tested only up to the Solar System scale, there
is no a priori theoretical motivation to extend its validity
to extraordinarily larger scales such as the extragalactic
and cosmological ones (up to the last scattering surface!).
Extending GR, not giving up to its positive results at
local scales, opens the way to a large class of alternative
theories of gravity ranging from extra-dimensions [34–38]
to nonminimally coupled scalar fields [39–42]. In particular,
we are interested here in fourth order theories [43–54] based
on replacing the scalar curvature R in the Hilbert-Einstein
action with a generic analytic function f (R) which should
be reconstructed starting from data and physically motivated
issues. Also referred to as f (R)-gravity, some of these models
have been shown to be able to both fit the cosmological data
and evade the Solar System constraints in several physically
interesting cases [55–59].

In this review paper, we will face two of the main
problems directly related to the dark energy and dark matter
issues: cosmography and clusters of galaxies. These are
typical examples where the standard General Relativity and
Newtonian potential schemes fail to describe dynamics since
data present accelerated expansion and missing matter. Our
goal is to address them by f (R)-gravity.

1.1. Cosmography: Why? It is worth noting that both dark
energy models and modified gravity theories seem to be
in agreement with data. As a consequence, unless higher
precision probes of the expansion rate and the growth of
structure will be available, these two rival approaches could
not be discriminated. This confusion about the theoretical
background suggests that a more conservative approach to
the problem of cosmic acceleration, relying on as less model
dependent quantities as possible, is welcome. A possible
solution could be to come back to the cosmography [60]
rather than finding out solutions of the Friedmann equations
and testing them. Being only related to the derivatives of the
scale factor, the cosmographic parameters make it possible
to fit the data on the distance-redshift relation without
any a priori assumption on the underlying cosmological
model: in this case, the only assumption is that the metric
is the Robertson-Walker one (and hence not relying on the
solution of cosmological equations). Almost eighty years
after Hubble discovery of the expansion of the Universe,
we can now extend, in principle, cosmography well beyond
the search for the value of the only Hubble constant. The
SNeIa Hubble diagram extends up to z = 1.7 thus invoking
the need for, at least, a fifth order Taylor expansion of the
scale factor in order to give a reliable approximation of the

distance-redshift relation. As a consequence, it could be,
in principle, possible to estimate up to five cosmographic
parameters, although the still too small data set available does
not allow to get a precise and realistic determination of all of
them.

Once these quantities have been determined, one could
use them to put constraints on the models. In a sense, we
can revert the usual approach, consisting in deriving the cos-
mographic parameters as a sort of byproduct of an assumed
theory. Here, we follow the other way around expressing
the model characterizing quantities as a function of the
cosmographic parameters. Such a program is particularly
suited for the study of fourth order theories of gravity.
As it is well known, the mathematical difficulties entering
the solution of fourth order field equations make it quite
problematic to find out analytical expressions for the scale
factor and hence predict the values of the cosmographic
parameters. A key role in f (R)-gravity is played by the
choice of the f (R) function. Under quite general hypotheses,
we will derive useful relations among the cosmographic
parameters and the present day value of f (n)(R) = dn f /dRn,
with n = 0, . . . , 3, whatever f (R) is. (As an important
remark, we stress that our derivation will rely on the metric
formulation of f (R) theories, while we refer the reader
to [61, 62] for a similar work in the Palatini approach.)
Once the cosmographic parameters will be determined, this
method will allow us to investigate the cosmography of f (R)
theories.

It is worth stressing that the definition of the cosmo-
graphic parameters only relies on the assumption of the
Robertson-Walker metric. As such, it is however difficult
to state a priori to what extent the fifth order expansion
provides an accurate enough description of the quantities of
interest. Actually, the number of cosmographic parameters
to be used depends on the problem one is interested in. As
we will see later, we are here concerned only with the SNeIa
Hubble diagram so that we have to check that the distance
modulus μcp(z) obtained using the fifth order expansion of
the scale factor is the same (within the errors) as the one
μDE(z) of the underlying physical model. Being such a model
of course unknown, one can adopt a phenomenological
parameterization for the dark energy equation of state (EoS)
and look at the percentage deviation Δμ/μDE as function
of the EoS parameters. (Note that one can always use
a phenomenological dark energy model to get a reliable
estimate of the scale factor evolution even if the correct
model is a fourth order one.) We have carried out such
exercise using the CPL model, introduced below, and verified
that Δμ/μDE is an increasing function of z (as expected),
but still remains smaller than 2% up to z ∼ 2 over a
wide range of the CPL parameter space. On the other
hand, halting the Taylor expansion to a lower order may
introduce significant deviation for z > 1 that can potentially
bias the analysis if the measurement errors are as small as
those predicted by future SNeIa surveys. We are therefore
confident that our fifth order expansion is both sufficient
to get an accurate distance modulus over the redshift
range probed by SNeIa and necessary to avoid dangerous
biases.
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1.2. Clusters of Galaxies: Why? In the second part of this
review we will apply the f (R)-gravity approach to cluster
of galaxies. In fact, changing the gravity sector has conse-
quences not only at cosmological scales, but also at galactic
and cluster scales so that it is mandatory to investigate the
low energy limit of such theories. A strong debate is open
with different results arguing in favor [63–68] or against
[69–71] such models at local scales. It is worth noting
that, as a general result, higher order theories of gravity
cause the gravitational potential to deviate from its New-
tonian 1/r scaling [72–77] even if such deviations may be
vanishing.

In [78], the Newtonian limit of power law f (R) = f0Rn

theories has been investigated, assuming that the metric
in the low energy limit (Φ/c2 � 1) may be taken as
Schwarzschild-like. It turns out that a power law term
(r/rc)

β has to be added to the Newtonian 1/r term in
order to get the correct gravitational potential. While the
parameter β may be expressed analytically as a function
of the slope n of the f (R) theory, rc sets the scale where
the correction term starts being significant. A particular
range of values of n has been investigated so that the
corrective term is an increasing function of the radius r thus
causing an increase of the rotation curve with respect to the
Newtonian one and offering the possibility to fit the galaxy
rotation curves without the need of further dark matter
components.

A set of low surface brightness (LSB) galaxies with
extended and well measured rotation curves has been
considered [79, 80]. These systems are supposed to be dark
matter dominated, and successfully fitting data without dark
matter is a strong evidence in favor of the approach (see
also [81] for an independent analysis using another sample
of galaxies). Combined with the hints coming from the
cosmological applications, one should have, in principle,
the possibility to address both the dark energy and dark
matter problems resorting to the same well motivated
fundamental theory [82–85]. Nevertheless, the simple power
law f (R) gravity is nothing else but a toy-model which fail
if one tries to achieve a comprehensive model for all the
cosmological dynamics, ranging from the early Universe,
to the large scale structure up to the late accelerated era
[83, 84].

A fundamental issue is related to clusters and super-
clusters of galaxies. Such structures, essentially, rule the
large scale structure, and are the intermediate step between
galaxies and cosmology. As the galaxies, they appear dark-
matter dominated but the distribution of dark matter
component seems clustered and organized in a very different
way with respect to galaxies. It seems that dark matter
is ruled by the scale and also its fundamental nature
could depend on the scale. For a comprehensive review see
[86].

In the philosophy of f (R)-gravity, the issue is to recon-
struct the mass profile of clusters without dark matter, that
is, to find out corrections to the Newton potential producing
the same dynamics as dark matter but starting from a well
motivated theory.

In conclusion, f (R)-gravity, as the simplest approach
to any extended or alternative gravity scheme, could be
the paradigm to interpret dark energy and dark matter
as curvature effects acting at scales larger than those
where General Relativity has been actually investigated and
probed.

Let us discuss now how cosmography and then galaxy
clusters could be two main examples to realize this pro-
gram.

2. The Cosmographic Apparatus

The key rule in cosmography is the Taylor series expansion of
the scale factor with respect to the cosmic time. To this aim,
it is convenient to introduce the following functions:

H(t) ≡ +
1
a

da

dt
,

q(t) ≡ −1
a

d2a

dt2
1
H2

,

j(t) ≡ +
1
a

d3a

dt3
1
H3

,

s(t) ≡ +
1
a

d4a

dt4
1
H4

,

l(t) ≡ +
1
a

d5a

dt5
1
H5

,

(1)

which are usually referred to as the Hubble, deceleration,
jerk, snap and lerk parameters, respectively. It is then a
matter of algebra to demonstrate the following useful rela-
tions:

Ḣ = −H2(1 + q
)
,

Ḧ = H3( j + 3q + 2
)
,

d3H

dt3
= H4[s− 4 j − 3q

(
q + 4

)− 6
]
,

d4H

dt4
= H5[l − 5s + 10

(
q + 2

)
j + 30

(
q + 2

)
q + 24

]
,

(2)

where a dot denotes derivative with respect to the cosmic
time t. Equation (2) make it possible to relate the derivative
of the Hubble parameter to the other cosmographic param-
eters. The distance-redshift relation may then be obtained
starting from the Taylor expansion of a(t) along the lines
described in [87–89].
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2.1. The Scale-Factor Series. With these definitions the series
expansion to the 5th order in time of the scale factor will be

a(t) = a(t0)
{
H0(t − t0)− q0

2
H2

0 (t − t0)2

+
j0
3!
H3

0 (t − t0)3 +
s0
4!
H4

0 (t − t0)4

+
l0
5!
H5

0 (t − t0)5 + O
[

(t − t0)6
]}

,

(3)

a(t)
a(t0)

= 1 +H0(t − t0)− q0

2
H2

0 (t − t0)2 +
j0
3!
H3

0 (t − t0)3

+
s0
4!
H4

0 (t − t0)4 +
l0
5!
H5

0 (t − t0)5 + O
[

(t − t0)6
]
.

(4)

It is easy to see that (4) is the inverse of redshift z, being the
redshift defined by

1 + z = a(t0)
a(t)

. (5)

The physical distance travelled by a photon that is emitted at
time t∗ and absorbed at the current epoch t0 is

D = c
∫

dt = c(t0 − t∗) (6)

Assuming t∗ = t0 − (D/c) and inserting in (4) we have:

1 + z = a(t0)
a(t0 −D/c)

= 1

1− (H0/c)D −
(
q0/2

)
(H0/c)

2D2 − (
j0/6

)
(H0/c)

3D3 + (s0/24)(H0/c)
4D4 − (l0/120)(H0/c)

5D5 + O
[

(H0D/c)
6
] .

(7)

The inverse of this expression will be

1 + z = 1 +
H0

c
D +

(
1 +

q0

2

)(
H0

c

)2

D2

+
(

1 + q0 +
j0
6

)(
H0

c

)3

D3

+

(

1 +
3
2
q0 +

q2
0

4
+
j0
3
− s0

24

)(
H0

c

)4

D4

+
(

1 + 2q0 +
3
4
q2

0 +
q0 j0

6
+
j0
2
− s

12
+ l0

)(
H0

c

)5

D5

+ O

[(
H0D

c

)6
]

.

(8)

Then we reverse the series z(D) → D(z) to have the physical
distance D expressed as function of redshift z:

z(D) = Z1
D

(
H0D

c

)
+ Z2

D

(
H0D

c

)2

+ Z3
D

(
H0D

c

)3

+ Z4
D

(
H0D

c

)4

+ Z5
D

(
H0D

c

)5

+ O

[(
H0D

c

)6
]

(9)

with

Z1
D = 1,

Z2
D = 1 +

q0

2
,

Z3
D = 1 + q0 +

j0
6

,

Z4
D = 1 +

3
2
q0 +

q2
0

4
+
j0
3
− s0

24
,

Z5
D = 1 + 2q0 +

3
4
q2

0 +
q0 j0

6
+
j0
2
− s

12
+ l0.

(10)

From this we have

D(z)

= cz

H0

{
D0

z + D1
z z + D2

z z
2 + D3

z z
3 + D4

z z
4 + O

(
z5)}

(11)
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with

D0
z = 1,

D1
z = −

(
1 +

q0

2

)
,

D2
z = 1 + q0 +

q2
0

2
− j0

6
,

D3
z = −

(
1 +

3
2
q0 +

3
2
q2

0 +
5
8
q3

0 −
1
2
j0 − 5

12
q0 j0 − s0

24

)
,

D4
z = 1 + 2q0 + 3q2

0 +
5
2
q3

0 +
7
2
q4

0 −
5
3
q0 j0 − 7

8
q2

0 j0,

− 1
8
q0s0 − j0 +

j20
12
− s0

6
− l0

120
.

(12)

In typical applications, one is not interested in the physical
distance D(z), but other definitions:

(i) the luminosity distance:

dL = a(t0)
a(t0 −D/c)

(a(t0)r0), (13)

(ii) the angular-diameter distance:

dA = a(t0 −D/c)
a(t0)

(a(t0)r0), (14)

where r0(D) is

r0(D) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin

(∫ t0

t0−D/c

cdt
a(t)

)

k = +1;

∫ t0

t0−D/c

cdt
a(t)

k = 0;

sinh

(∫ t0

t0−D/c

cdt
a(t)

)

k = −1.

(15)

If we make the expansion for short distances, namely if we
insert the series expansion of a(t) in r0(D), we have

r0(D) =
∫ t0

t0−D/c

cdt
a(t)

=
∫ t0

t0−D/c

cdt
a0

×
{

1 +H0(t0 − t) +
(

1 +
q0

2

)
H2

0 (t0 − t)2

+
(

1 + q0 +
j0
6

)
H3

0 (t0 − t)3

+

(

1 +
3
2
q0 +

q2
0

4
+
j0
3
− s0

24

)

H4
0 (t0 − t)4

+
(

1 + 2q0 +
3
4
q2

0 +
q0 j0

6
+
j0
2
− s

12
+ l0

)

×H5
0 (t0 − t)5 +O

[
(t0 − t)6

]}

= D

a0

{

1 +
1
2
H0D

c
+
[

2 + q0

6

](
H0D

c

)2

+
[

6 + 6q0 + j0
24

](
H0D

c

)3

+

[
24 + 36q0 + 6q2

0 + 8 j0 − s0
120

](
H0D

c

)4

+

[
12 + 24q0 + 9q2

0 + 2q0 j0 + 6 j0 − s0 + 12l0
72

]

×
(
H0D

c

)5

+O

[(
H0D

c

)6
]}

.

(16)

To convert from physical distance travelled to r coordinate
traversed we have to consider that the Taylor series expansion
of sin-sinh functions is

r0(D) =
[∫ t0

t0−D/c

cdt
a(t)

]

− k

3!

[∫ t0

t0−D/c

cdt
a(t)

]3

+O

⎛

⎝

[∫ t0

t0−D/c

cdt
a(t)

]5
⎞

⎠

(17)

so that (4) with curvature k term becomes

r0(D)

= D

a0

{

R0
D + R1

D
H0D

c
+ R2

D

(
H0D

c

)2

+ R3
D

(
H0D

c

)3

+R4
D

(
H0D

c

)4

+ R5
D

(
H0D

c

)5

+O

[(
H0D

c

)6
]}

(18)
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with

R0
D = 1,

R1
D =

1
2

,

R2
D =

1
6

[

2 + q0 − kc2

H2
0a

2
0

]

,

R3
D =

1
24

[

6 + 6q0 + j0 − 6
kc2

H2
0a

2
0

]

,

R4
D =

1
120

[

24 + 36q0 + 6q2
0 + 8 j0 − s0 −

5kc2
(
7 + 2q0

)

a2
0H

2
0

]

,

R5
D =

1
144

[

24 + 48q0 + 18q2
0 + 4q0 j0 + 12 j0

−2s0 + 24l0 −
3kc2

(
15 + 10q0 + j0

)

a2
0H

2
0

]

.

(19)

Using these one for luminosity distance we have

dL(z) = cz

H0

{
D0

L + D1
Lz + D2

Lz
2

+D3
Lz

3 + D4
Lz

4 + O
(
z5)

} (20)

with:

D0
L = 1,

D1
L = −

1
2

(−1 + q0
)
,

D2
L = −

1
6

(

1− q0 − 3q2
0 + j0 +

kc2

H2
0a

2
0

)

,

D3
L =

1
24

(

2− 2q0 − 15q2
0 − 15q3

0 + 5 j0

+10q0 j0 + s0 +
2kc2

(
1 + 3q0

)

H2
0a

2
0

)

,

D4
L =

1
120

[

− 6 + 6q0 + 81q2
0 + 165q3

0 + 105q4
0

− 110q0 j0 − 105q2
0 j0 − 15q0s0 − 27 j0

+ 10 j2 − 11s0 − l0

−5kc2
(
1 + 8q0 + 9q2

0 − 2 j0
)

a2
0H

2
0

]

.

(21)

While for the angular diameter distance it is

dA(z) = cz

H0

{
D0

A + D1
A z + D2

A z2

+D3
A z3 + D4

A z4 + O
(
z5)

} (22)

with

D0
A = 1,

D1
A = −

1
2

(
3 + q0

)
,

D2
A =

1
6

[

11 + 7q0 + 3q2
0 − j0 − kc2

H2
0a

2
0

]

,

D3
A = −

1
24

[

50 + 46q0 + 39q2
0 + 15q3

0 − 13 j0

−10q0 j0 − s0 −
2kc2

(
5 + 3q0

)

H2
0a

2
0

]

,

D4
A =

1
120

[

274 + 326q0 + 411q2
0 + 315q3

0

+ 105q4
0 − 210q0 j0 − 105q2

0 j0 − 15q0s0

− 137 j0 + 10 j2 − 21s0 − l0

−5kc2
(
17 + 20q0 + 9q2

0 − 2 j0
)

a2
0H

2
0

]

.

(23)

If we want to use the same notation of [87], we define
Ω0 = 1 + kc2/H2

0a
2
0, which can be considered a purely

cosmographic parameter, or Ω0 = 1 − Ωk = Ωm,0 + Ωr,0 +
ΩX ,0 if we consider the dynamics of the Universe. With this
parameter (12)–(14) become

D0
L,y = 1,

D1
L,y = −

1
2

(−3 + q0
)
,

D2
L,y = −

1
6

(
12− 5q0 + 3q2

0 − j0 −Ω0
)
,

D3
L,y =

1
24

[
52− 20q0 + 21q2

0 − 15q3
0 − 7 j0

+10q0 j0 + s0 − 2Ω0
(
1 + 3q0

)]
,

D4
L,y =

1
120

[
359− 184q0 + 186q2

0 − 135q3
0

+ 105q4
0 + 90q0 j0 − 105q2

0 j0

− 15q0s0 − 57 j0 + 10 j2 + 9s0 − l0
−5Ω0

(
17− 6q0 + 9q2

0 − 2 j0
)]

,

D0
A,y = 1,

D1
A,y = −

1
2

(
1 + q0

)
,

D2
A,y = −

1
6

[−q0 − 3q2
0 + j0 +Ω0

]
,
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D3
A,y = −

1
24

[−2q0 + 3q2
0 + 15q3

0 − j0

−10q0 j0 − s0 + 2Ω0
]
,

D4
A,y = −

1
120

[
1− 6q0 + 9q2

0 − 15q3
0 − 105q4

0

+ 10q0 j0 + 105q2
0 j0 + 15q0s0

−3 j0 − 10 j2 + s0 + l0 + 5Ω0
]
.

(24)

Previous relations in this section have been derived for
any value of the curvature parameter; but since in the
following we will assume a flat Universe, we will used the
simplified versions for k = 0. Now, since we are going to use
supernovae data, it will be useful to give as well the Taylor
series of the expansion of the luminosity distance at it enters
the modulus distance, which is the quantity about which
those observational data inform. The final expression for
the modulus distance based on the Hubble free luminosity
distance, μ(z) = 5 log10dL(z), is

μ(z) = 5
log 10

· (log z + M1z + M2z2 + M3z3 + M4z4),

(25)

with

M1 = −1
2

[−1 + q0
]
,

M2 = − 1
24

[
7− 10q0 − 9q2

0 + 4 j0
]
,

M3 = 1
24

[
5− 9q0 − 16q2

0 − 10q3
0 + 7 j0 + 8q0 j0 + s0

]
,

M4 = 1
2880

[−469 + 1004q0 + 2654q2
0 + 3300q3

0

+ 1575q4
0 + 200 j20 − 1148 j0

− 2620q0 j0 − 1800q2
0 j0

−300q0s0 − 324s0 − 24l0
]
.

(26)

3. f (R)-Gravity versus Cosmography

3.1. f (R) Preliminaries. As discussed in the introduction,
much interest has been recently devoted to the possibility
that dark energy could be nothing else but a curvature
effect according to which the present Universe is filled by
pressureless dust matter only and the acceleration is the result
of modified Friedmann equations obtained by replacing the
Ricci curvature scalar R with a generic function f (R) in the
gravity action. Under the assumption of a flat Universe, the
Hubble parameter is therefore determined by (we use here
natural units such that 8πG = 1):

H2 = 1
3

[
ρm
f ′(R)

+ ρcurv

]

, (27)

where the prime denotes derivative with respect to R and
ρcurv is the energy density of an effective curvature fluid (note
that the name curvature fluid does not refer to the FRW
curvature parameter k, but only takes into account that such
a term is a geometrical one related to the scalar curvature R):

ρcurv = 1
f ′(R)

{
1
2

[
f (R)− R f ′(R)

]− 3HṘ f ′′(R)
}
. (28)

Assuming there is no interaction between the matter and
the curvature terms (we are in the so-called Jordan frame),
the matter continuity equation gives the usual scaling ρM =
ρM(t = t0)a−3 = 3H2

0ΩMa−3, withΩM the present day matter
density parameter. The continuity equation for ρcurv then
reads:

ρ̇curv + 3H(1 +wcurv)ρcurv =
3H2

0ΩMṘ f ′′(R)
[
f ′(R)

]2 a−3 (29)

with

wcurv = −1 +
R̈ f ′′(R) + Ṙ

[
Ṙ f ′′′(R)−H f ′′(R)

]

[
f (R)− R f ′(R)

]
/2− 3HṘ f ′′(R)

(30)

the barotropic factor of the curvature fluid. It is worth
noticing that the curvature fluid quantities ρcurv and wcurv

only depends on f (R) and its derivatives up to the third
order. As a consequence, considering only their present day
values (which may be naively obtained by replacing R with
R0 everywhere), two f (R) theories sharing the same values
of f (R0), f ′(R0), f ′′(R0), f ′′′(R0) will be degenerate from
this point of view. (One can argue that this is not strictly true
since different f (R) theories will lead to different expansion
rate H(t) and hence different present day values of R and
its derivatives. However, it is likely that two f (R) functions
that exactly match each other up to the third order derivative
today will give rise to the same H(t) at least for t � t0 so that
(R0, Ṙ0, R̈0) will be almost the same.)

Combining (29) with (27), one finally gets the following
master equation for the Hubble parameter:

Ḣ = − 1
2 f ′(R)

{
3H2

0ΩMa
−3 + R̈ f ′′(R)

+Ṙ
[
Ṙ f ′′′(R)−H f ′′(R)

]}
.

(31)

Expressing the scalar curvature R as function of the Hubble
parameter as:

R = −6
(
Ḣ + 2H2) (32)

and inserting the result into (31), one ends with a fourth
order nonlinear differential equation for the scale factor
a(t) that cannot be easily solved also for the simplest cases
(for instance, f (R) ∝ Rn). Moreover, although technically
feasible, a numerical solution of (31) is plagued by the large
uncertainties on the boundary conditions (i.e., the present
day values of the scale factor and its derivatives up to the third
order) that have to be set to find out the scale factor.
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3.2. f (R)-Derivatives and Cosmography. Motivated by these
difficulties, we approach now the problem from a different
viewpoint. Rather than choosing a parameterized expression
for f (R) and then numerically solving (31) for given
values of the boundary conditions, we try to relate the
present day values of its derivatives to the cosmographic
parameters (q0, j0, s0, l0) so that constraining them in a
model independent way gives us a hint for what kind of f (R)
theory could be able to fit the observed Hubble diagram.
(Note that a similar analysis, but in the context of the energy
conditions in f (R), has yet been presented in [90]. However,
in that work, the author give an expression for f (R) and then
compute the snap parameter to be compared to the observed
one. On the contrary, our analysis does not depend on any
assumed functional expression for f (R).)

As a preliminary step, it is worth considering again the
constraint equation (32). Differentiating with respect to t, we
easily get the following relations

Ṙ = −6
(
Ḧ + 4HḢ

)
,

R̈ = −6

(
d3H

dt3
+ 4HḦ + 4Ḣ2

)

,

d3R

dt3R
= −6

(
d4H

dt4
+

4Hd3H

dt3
+ 12ḢḦ

)

.

(33)

Evaluating these at the present time and using (2), one finally
gets

R0 = −6H2
0

(
1− q0

)
,

Ṙ0 = −6H3
0

(
j0 − q0 − 2

)
,

R̈0 = −6H4
0

(
s0 + q2

0 + 8q0 + 6
)
,

d3R0

dt3
= −6H5

0

[
l0 − s0 + 2

(
q0 + 4

)
j0 − 6

(
3q0 + 8

)
q0 − 24

]
,

(34)

which will turn out to be useful in the following.
Let us now come back to the expansion rate and master

equations (27) and (31). Since they have to hold along the
full evolutionary history of the Universe, they naively hold
also at the present day. As a consequence, we may evaluate
them in t = t0 thus easily obtaining

H2
0 =

H2
0ΩM

f ′(R0)
+
f (R0)− R0 f ′(R0)− 6H0Ṙ0 f ′′(R0)

6 f ′(R0)

−Ḣ0 = 3H2
0ΩM

2 f ′(R0)
+
Ṙ2

0 f
′′′(R0) +

(
R̈0 −H0Ṙ0

)
f ′′(R0)

2 f ′(R0)
.

(35)

Using (2) and (34), we can rearrange (35) as two relations
among the Hubble constant H0 and the cosmographic
parameters (q0, j0, s0), on one hand, and the present day
values of f (R) and its derivatives up to third order. However,
two further relations are needed in order to close the system
and determine the four unknown quantities f (R0), f ′(R0),
f ′′(R0), f ′′′(R0). A first one may be easily obtained by noting

that, inserting back the physical units, the rate expansion
equation reads

H2 = 8πG
3 f ′(R)

[
ρm + ρcurv f

′(R)
]

(36)

which clearly shows that, in f (R) gravity, the Newtonian
gravitational constant G is replaced by an effective (time
dependent) Geff = G/ f ′(R). On the other hand, it is
reasonable to assume that the present day value of Geff is
the same as the Newtonian one so that we get the simple
constraint:

Geff(z = 0) = G −→ f ′(R0) = 1. (37)

In order to get the fourth relation we need to close the system,
we first differentiate both sides of (31) with respect to t. We
thus get

Ḧ = Ṙ2 f ′′′(R) +
(
R̈−HṘ) f ′′(R) + 3H2

0ΩMa−3

2
[
Ṙ f ′′′(R)

]−1[
f ′(R)

]2

× Ṙ3 f (iv)(R) +
(
3ṘR̈−HṘ2

)
f ′′′(R)

2 f ′(R)

×
(
d3R/dt3 −HṘ + ḢṘ

)
f ′′(R)− 9H2

0ΩMHa−3

2 f ′(R)
,

(38)

with f (iv)(R) = d4 f /dR4. Let us now suppose that f (R) may
be well approximated by its third order Taylor expansion in
R− R0, that is, we set

f (R) = f (R0) + f ′(R0)(R− R0) +
1
2
f ′′(R0)(R− R0)2

+
1
6
f ′′′(R0)(R− R0)3.

(39)

In such an approximation, it is f (n)(R) = dn f /Rn = 0 for
n ≥ 4 so that naively f (iv)(R0) = 0. Evaluating then (38) at
the present day, we get

Ḧ0 =
Ṙ2 f ′′′(R0) +

(
R̈0 −H0Ṙ0

)
f ′′(R0) + 3H2

0ΩM

2
[
Ṙ0 f ′′(R0)

]−1[
f ′(R0)

]2

−
(
3Ṙ0R̈0 −HṘ2

0

)
f ′′′(R0)

2 f ′(R0)

−
(
d3R0/dt

3 −H0R̈0 + Ḣ0Ṙ0

)
f ′′(R0)− 9H3

0ΩM

2 f ′(R0)
.

(40)

We can now schematically proceed as follows. Evaluate (2)
at z = 0 and plug these relations into the left hand sides
of (35), (40). Insert (34) into the right hand sides of these
same equations so that only the cosmographic parameters
(q0, j0, s0, l0) and the f (R) related quantities enter both sides
of these relations. Finally, solve them under the constraint
(37) with respect to the present day values of f (R) and its
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derivatives up to the third order. After some algebra, one ends
up with the desired result:

f (R0)

6H2
0
= −P0

(
q0, j0, s0, l0

)
ΩM + Q0

(
q0, j0, s0, l0

)

R
(
q0, j0, s0, l0

) , (41)

f ′(R0) = 1, (42)

f ′′(R0)
(
6H2

0

)−1 = −
P2

(
q0, j0, s0

)
ΩM + Q2

(
q0, j0, s0

)

R
(
q0, j0, s0, l0

) , (43)

f ′′′(R0)
(
6H2

0

)−2 = −
P3

(
q0, j0, s0, l0

)
ΩM + Q3

(
q0, j0, s0, l0

)

(
j0 − q0 − 2

)
R
(
q0, j0, s0, l0

) ,

(44)

where we have defined

P0 =
(
j0 − q0 − 2

)
l0 −

(
3s0 + 7 j0 + 6q2

0 + 41q0 + 22
)
s0

− [(
3q0 + 16

)
j0 + 20q2

0 + 64q0 + 12
]
j0

− (
3q4

0 + 25q3
0 + 96q2

0 + 72q0 + 20
)
,

(45)

Q0 =
(
q2

0 − j0q0 + 2q0
)
l0

+
[
3q0s0 +

(
4q0 + 6

)
j0 + 6q3

0 + 44q2
0 + 22q0 − 12

]
s0

+
[
2 j20 +

(
3q2

0 + 10q0 − 6
)
j0 + 17q3

0

+52q2
0 + 54q0 + 36

]
j0

+ 3q5
0 + 28q4

0 + 118q3
0

+ 72q2
0 − 76q0 − 64,

(46)

P2 = 9s0 + 6 j0 + 9q2
0 + 66q0 + 42, (47)

Q2 = −
{

6
(
q0 + 1

)
s0 +

[
2 j0 − 2

(
1− q0

)]
j0

+6q3
0 + 50q2

0 + 74q0 + 32
}

,
(48)

P3 = 3l0 + 3s0 − 9
(
q0 + 4

)
j0 −

(
45q2

0 + 78q0 + 12
)
, (49)

Q3 = −
{

2
(
1 + q0

)
l0 + 2

(
j0 + q0

)
s0

− (
2 j0 + 4q2

0 + 12q0 + 6
)
j0

−(30q3
0 + 84q2

0 + 78q0 + 24
)}

,

(50)

R = (
j0 − q0 − 2

)
l0 −

(
3s0 − 2 j0 + 6q2

0 + 50q0 + 40
)
s0

+
[(

3q0 + 10
)
j0 + 11q2

0 + 4q0 − 18
]
j0

− (
3q4

0 + 34q3
0 + 246q0 + 104

)
.

(51)

Equations (41)–(51) make it possible to estimate the present
day values of f (R) and its first three derivatives as function

of the Hubble constant H0 and the cosmographic param-
eters (q0, j0, s0, l0) provided a value for the matter density
parameter ΩM is given. This is a somewhat problematic
point. Indeed, while the cosmographic parameters may be
estimated in a model independent way, the fiducial value for
ΩM is usually the outcome of fitting a given dataset in the
framework of an assumed dark energy scenario. However, it
is worth noting that different models all converge towards
the concordance value ΩM � 0.25 which is also in agreement
with astrophysical (model independent) estimates from the
gas mass fraction in galaxy clusters. On the other hand, it
has been proposed that f (R) theories may avoid the need for
dark matter in galaxies and galaxy clusters [74, 76, 78, 81–
83, 91]. In such a case, the total matter content of the
Universe is essentially equal to the baryonic one. According
to the primordial elements abundance and the standard
BBN scenario, we therefore get ΩM � ωb/h2 with ωb =
Ωbh2 � 0.0214 [92] and h the Hubble constant in units
of 100 km/s/Mpc. Setting h = 0.72 in agreement with the
results of the HST Key project [93], we thus get ΩM = 0.041
for a baryons only Universe. We will therefore consider in the
following both cases when numerical estimates are needed.

It is worth noticing that H0 only plays the role of a
scaling parameter giving the correct physical dimensions to
f (R) and its derivatives. As such, it is not surprising that we
need four cosmographic parameters, namely (q0, j0, s0, l0), to
fix the four f (R) related quantities f (R0), f ′(R0), f ′′(R0),
f ′′′(R0). It is also worth stressing that (41)–(44) are linear in
the f (R) quantities so that (q0, j0, s0, l0) uniquely determine
the former ones. On the contrary, inverting them to get the
cosmographic parameters as function of the f (R) ones, we
do not get linear relations. Indeed, the field equations in f (R)
theories are nonlinear fourth order differential equations in
the scale factor a(t) so that fixing the derivatives of f (R)
up to third order makes it possible to find out a class of
solutions, not a single one. Each one of these solutions will be
characterized by a different set of cosmographic parameters
thus explaining why the inversion of (41)–(51) does not give
a unique result for (q0, j0, s0, l0).

As a final comment, we reconsider the underlying
assumptions leading to the above derived relations. While
(35) are exact relations deriving from a rigorous application
of the field equations, (40) heavily relies on having approx-
imated f (R) with its third order Taylor expansion (39). If
this assumption fails, the system should not be closed since a
fifth unknown parameter enters the game, namely f (iv)(R0).
Actually, replacing f (R) with its Taylor expansion is not
possible for all class of f (R) theories. As such, the above
results only hold in those cases where such an expansion is
possible. Moreover, by truncating the expansion to the third
order, we are implicitly assuming that higher order terms are
negligible over the redshift range probed by the data. That is
to say, we are assuming that

f (n)(R0)(R− R0)n �
3∑

m=0

f (m)(R0)
m!

(R− R0)m for n ≥ 4

(52)



10 Advances in Astronomy

over the redshift range probed by the data. Checking the
validity of this assumption is not possible without explicitly
solving the field equations, but we can guess an order of
magnitude estimate considering that, for all viable models,
the background dynamics should not differ too much from
theΛCDM one at least up to z � 2. Using then the expression
of H(z) for the ΛCDM model, it is easily to see that R/R0 is
a quickly increasing function of the redshift so that, in order
(52) holds, we have to assume that f (n)(R0) � f ′′′(R0) for
n ≥ 4. This condition is easier to check for many analytical
f (R) models.

Once such a relation is verified, we have still to worry
about (37) relying on the assumption that the cosmological
gravitational constant is exactly the same as the local one.
Although reasonable, this requirement is not absolutely
demonstrated. Actually, the numerical value usually adopted
for the Newton constant GN is obtained from laboratory
experiments in settings that can hardly be considered
homogenous and isotropic. As such, the spacetime metric
in such conditions has nothing to do with the cosmological
one so that matching the two values of G is strictly speaking
an extrapolation. Although commonly accepted and quite
reasonable, the condition Glocal = Gcosmo could (at least, in
principle) be violated so that (37) could be reconsidered.
Indeed, as we will see, the condition f ′(R0) = 1 may not be
verified for some popular f (R) models recently proposed in
literature. However, it is reasonable to assume that Geff(z =
0) = G(1 + ε) with ε � 1. When this be the case, we should
repeat the derivation of (41)–(44) now using the condition
f ′(R0) = (1 + ε)−1. Taylor expanding the results in ε to the
first order and comparing with the above derived equations,
we can estimate the error induced by our assumption ε =
0. The resulting expressions are too lengthy to be reported
and depend in a complicated way on the values of the
matter density parameter ΩM , the cosmographic parameters
(q0, j0, s0, l0) and ε. However, we have numerically checked
that the error induced on f (R0), f ′′(R0), f ′′′(R0) are much
lower than 10% for value of ε as high as an unrealistic ε ∼ 0.1.
We are confident that our results are reliable also for these
cases.

4. f (R)-Gravity and the CPL Model

A determination of f (R) and its derivatives in terms of the
cosmographic parameters need for an estimate of these latter
from the data in a model independent way. Unfortunately,
even in the nowadays era of precision cosmology, such a
program is still too ambitious to give useful constraints
on the f (R) derivatives, as we will see later. On the other
hand, the cosmographic parameters may also be expressed
in terms of the dark energy density and EoS parameters so
that we can work out what are the present day values of
f (R) and its derivatives giving the same (q0, j0, s0, l0) of the
given dark energy model. To this aim, it is convenient to
adopt a parameterized expression for the dark energy EoS in
order to reduce the dependence of the results on any under-
lying theoretical scenario. Following the prescription of the

Dark Energy Task Force [94], we will use the Chevallier-
Polarski-Linder (CPL) parameterization for the EoS setting
[95, 96]:

w = w0 +wa(1− a) = w0 +waz(1 + z)−1 (53)

so that, in a flat Universe filled by dust matter and dark
energy, the dimensionless Hubble parameter E(z) = H/H0

reads

E2(z) = ΩM(1 + z)3 +ΩX(1 + z)3(1+w0+wa)e−3waz/(1+z) (54)

with ΩX = 1 − ΩM because of the flatness assumption. In
order to determine the cosmographic parameters for such
a model, we avoid integrating H(z) to get a(t) by noting
that d/dt = −(1 + z)H(z)d/dz. We can use such a relation
to evaluate (Ḣ , Ḧ ,d3H/dt3,d4H/dt4) and then solve (2),
evaluated in z = 0, with respect to the parameters of interest.
Some algebra finally gives

q0 = 1
2

+
3
2

(1−ΩM)w0, (55)

j0 = 1 +
3
2

(1−ΩM)[3w0(1 +w0) +wa], (56)

s0 = −7
2
− 33

4
(1−ΩM)wa − 9

4
(1−ΩM)

× [9 + (7−ΩM)wa]w0 − 9
4

(1−ΩM)

× (16− 3ΩM)w2
0 −

27
4

(1−ΩM)(3−ΩM)w3
0

(57)

l0 = 35
2

+
1−ΩM

4
[213 + (7−ΩM)wa]wa

+
1−ΩM

4
[489 + 9(82− 21ΩM)wa]w0

+
9
2

(1−ΩM)
[

67− 21ΩM +
3
2

(23− 11ΩM)wa

]
w2

0

+
27
4

(1−ΩM)(47− 24ΩM)w3
0

+
81
2

(1−ΩM)(3− 2ΩM)w4
0 .

(58)

Inserting (55)–(58) into (41)–(51), we get lengthy expres-
sions (which we do not report here) giving the present day
values of f (R) and its first three derivatives as function of
(ΩM ,w0,wa). It is worth noting that the f (R) model thus
obtained is not dynamically equivalent to the starting CPL
one. Indeed, the two models have the same cosmographic
parameters only today. As such, for instance, the scale factor
is the same between the two theories only over the time
period during which the fifth order Taylor expansion is
a good approximation of the actual a(t). It is also worth
stressing that such a procedure does not select a unique f (R)
model, but rather a class of fourth order theories all sharing
the same third order Taylor expansion of f (R).
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4.1. TheΛCDM Case. With these caveats in mind, it is worth
considering first the ΛCDM model which is obtained by
setting (w0,wa) = (−1, 0) in the above expressions thus
giving

q0 = 1
2
− 3

2
(1−ΩM),

j0 = 1,

s0 = 1− 9
2
ΩM ,

l0 = 1 + 3ΩM +
27
2
Ω2
M.

(59)

When inserted into the expressions for the f (R) quantities,
these relations give the remarkable result:

f (R0) = R0 + 2Λ, f ′′(R0) = f ′′′(R0) = 0 (60)

so that we obviously conclude that the only f (R) theory
having exactly the same cosmographic parameters as the
ΛCDM model is just f (R) ∝ R, that is, GR. It is worth
noticing that such a result comes out as a consequence of
the values of (q0, j0) in the ΛCDM model. Indeed, should
we have left (s0, l0) undetermined and only fixed (q0, j0) to
the values in (59), we should have got the same result in (60).
Since the ΛCDM model fits well a large set of different data,
we do expect that the actual values of (q0, j0, s0, l0) do not
differ too much from the ΛCDM ones. Therefore, we plug
into (41)–(51) the following expressions:

q0 = qΛ0 ×
(

1 + εq
)

, j0 = jΛ0 ×
(

1 + εj
)

,

s0 = sΛ0 × (1 + εs), l0 = lΛ0 × (1 + εl),
(61)

with (qΛ0 , jΛ0 , sΛ0 , lΛ0 ) given by (59) and (εq, εj , εs, εl) quan-
tifying the deviations from the ΛCDM values allowed by
the data. A numerical estimate of these quantities may be
obtained, for example, from a Marko chain analysis, but this
is outside our aims. Since we are here interested in a theoret-
ical examination, we prefer to consider an idealized situation
where the four quantities above all share the same value
ε� 1. In such a case, we can easily investigate how much the
corresponding f (R) deviates from the GR one considering
the two ratios f ′′(R0)/ f (R0) and f ′′′(R0)/ f (R0). Inserting
the above expressions for the cosmographic parameters into
the exact (not reported) formulae for f (R0), f ′′(R0) and
f ′′′(R0), taking their ratios and then expanding to first order
in ε, we finally get

η20 = 64− 6ΩM(9ΩM + 8)
[3(9ΩM + 74)ΩM − 556]Ω2

M + 16
× ε

27
,

η30 = 6[(81ΩM − 110)ΩM + 40]ΩM + 16
[3(9ΩM + 74)ΩM − 556]Ω2

M + 16
× ε

243Ω2
M

,

(62)

having defined η20 = f ′′(R0)/ f (R0) × H4
0 and η30 =

f ′′′(R0)/ f (R0) × H6
0 which, being dimensionless quantities,

are more suited to estimate the order of magnitudes of the
different terms. Inserting our fiducial values for ΩM , we get:

η20 � 0.15× ε for ΩM = 0.041,

η20 � −0.12× ε for ΩM = 0.250,

η30 � 4× ε for ΩM = 0.041,

η30 � −0.18× ε for ΩM = 0.250.

(63)

For values of ε up to 0.1, the above relations show that
the second and third derivatives are at most two orders
of magnitude smaller than the zeroth order term f (R0).
Actually, the values of η30 for a baryon only model (first row)
seems to argue in favor of a larger importance of the third
order term. However, we have numerically checked that the
above relations approximates very well the exact expressions
up to ε � 0.1 with an accuracy depending on the value ofΩM ,
being smaller for smaller matter density parameters. Using
the exact expressions for η20 and η30, our conclusion on the
negligible effect of the second and third order derivatives are
significantly strengthened.

Such a result holds under the hypotheses that the
narrower are the constraints on the validity of the ΛCDM
model, the smaller are the deviations of the cosmographic
parameters from the ΛCDM ones. It is possible to show
that this indeed the case for the CPL parametrization we are
considering. On the other hand, we have also assumed that
the deviations (εq, εj , εs, εl) take the same values. Although
such hypothesis is somewhat ad hoc, we argue that the main
results are not affected by giving it away. Indeed, although
different from each other, we can still assume that all of
them are very small so that Taylor expanding to the first
order should lead to additional terms into (62) which are
likely of the same order of magnitude. We may therefore
conclude that, if the observations confirm that the values of
the cosmographic parameters agree within∼ 10% with those
predicted for the ΛCDM model, we must conclude that the
deviations of f (R) from the GR case, f (R) ∝ R, should be
vanishingly small.

It is worth stressing, however, that such a conclusion only
holds for those f (R) models satisfying the constraint (52). It
is indeed possible to work out a model having f (R0) ∝ R0,
f ′′(R0) = f ′′′(R0) = 0, but f (n)(R0) /= 0 for some n. For such
a (somewhat ad hoc) model, (52) is clearly not satisfied so
that the cosmographic parameters have to be evaluated from
the solution of the field equations. For such a model, the
conclusion above does not hold so that one cannot exclude
that the resulting (q0, j0, s0, l0) are within 10% of the ΛCDM
ones.

4.2. The Constant EoS Model. Let us now take into account
the condition w = −1, but still retains wa = 0 thus
obtaining the so called quiessence models. In such a case,
some problems arise because both the terms ( j0 − q0 − 2)
and R may vanish for some combinations of the two model
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Figure 1: The dimensionless ratio between the present day values
of f ′′(R) and f (R) as function of the constant EoS w0 of the
corresponding quiessence model. Short dashed and solid lines refer
to models with ΩM = 0.041 and 0.250, respectively.
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Figure 2: The dimensionless ratio between the present day values
of f ′′′(R) and f (R) as function of the constant EoS w0 of the
corresponding quiessence model. Short dashed and solid lines refer
to models with ΩM = 0.041 and 0.250, respectively.

parameters (ΩM ,w0). For instance, we find that j0−q0−2 = 0
for w0 = (w1,w2) with:

w1 = 1
1−ΩM +

√
(1−ΩM)(4−ΩM)

,

w2 = −1
3

[

1 +
4−ΩM√

(1−ΩM)(4−ΩM)

]

.

(64)

On the other hand, the equation R(ΩM ,w0) = 0 may have
different real roots for w depending on the adopted value of
ΩM . Denoting collectively with wnull the values of w0 that,
for a given ΩM, make ( j0 − q0 − 2)R(ΩM ,w0) taking the
null value, we individuate a set of quiessence models whose
cosmographic parameters give rise to divergent values of
f (R0, f ′′(R0) and f ′′′(R0). For such models, f (R) is clearly
not defined so that we have to exclude these cases from
further consideration. We only note that it is still possible
to work out a f (R) theory reproducing the same background
dynamics of such models, but a different route has to be used.
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Figure 3: The dimensionless ratio between the present day values
of f ′′(R) and f (R) as function of the wa parameter for models with
w0 = −1. Short dashed and solid lines refer to models with ΩM =
0.041 and 0.250, respectively.
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Figure 4: The dimensionless ratio between the present day values
of f ′′′(R) and f (R) as function of the wa parameter for models with
w0 = −1. Short dashed and solid lines refer to models with ΩM =
0.041 and 0.250, respectively.

Since both q0 and j0 now deviate from theΛCDM values,
it is not surprising that both f ′′(R0) and f ′′′(R0) take finite
non null values. However, it is more interesting to study the
two quantities η20 and η30 defined above to investigate the
deviations of f (R) from the GR case. These are plotted in
Figures 1 and 2 for the two fiducial ΩM values. Note that the
range of w0 in these plots have been chosen in order to avoid
divergences, but the lessons we will draw also hold for the
other w0 values.

As a general comment, it is clear that, even in this
case, f ′′(R0) and f ′′′(R0) are from two to three orders of
magnitude smaller that the zeroth order term f (R0). Such a
result could be yet guessed from the previous discussion for
the ΛCDM case. Actually, relaxing the hypothesis w0 = −1 is
the same as allowing the cosmographic parameters to deviate
from the ΛCDM values. Although a direct mapping between
the two cases cannot be established, it is nonetheless evident
that such a relation can be argued thus making the outcome
of the above plots not fully surprising. It is nevertheless worth
noting that, while in theΛCDM case, η20 and η30 always have
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opposite signs, this is not the case for quiessence models with
w > −1. Indeed, depending on the value of ΩM , we can
have f (R) theories with both η20 and η30 positive. Moreover,
the lower is ΩM , the higher are the ratios η20 and η30 for a
given value ofw0. This can be explained qualitatively noticing
that, for a lower ΩM , the density parameter of the curvature
fluid (playing the role of an effective dark energy) must be
larger thus claiming for higher values of the second and
third derivatives (see also [97] for a different approach to the
problem).

4.3. The General Case. Finally, we consider evolving dark
energy models with wa /= 0. Needless to say, varying three
parameters allows to get a wide range of models that cannot
be discussed in detail. Therefore, we only concentrate on
evolving dark energy models with w0 = −1 in agreement
with some most recent analysis. The results on η20 and η30 are
plotted in Figures 3 and 4 where these quantities as functions
of wa. Note that we are considering models with positive wa

so that w(z) tends to w0 + wa > w0 for z → ∞ so that
the EoS dark energy can eventually approach the dust value
w = 0. Actually, this is also the range favored by the data.
We have, however, excluded values where η20 or η30 diverge.
Considering how they are defined, it is clear that these two
quantities diverge when f (R0) = 0 so that the values of
(w0,wa) making (η20,η30) to diverge may be found solving

P0(w0,wa)ΩM + Q0(w0,wa) = 0, (65)

where P0(w0,wa) and Q0(w0,wa) are obtained by inserting
(55)–(58) into the definitions (45)-(46). For such CPL
models, there is no any f (R) model having the same
cosmographic parameters and, at the same time, satisfying all
the criteria needed for the validity of our procedure. Actually,
if f (R0) = 0, the condition (52) is likely to be violated so
that higher than third order must be included in the Taylor
expansion of f (R) thus invalidating the derivation of (41)–
(44).

Under these caveats, Figures 3 and 4 demonstrate that
allowing the dark energy EoS to evolve does not change
significantly our conclusions. Indeed, the second and third
derivatives, although being not null, are nevertheless negli-
gible with respect to the zeroth order term thus arguing in
favour of a GR-like f (R) with only very small corrections.
Such a result is, however, not fully unexpected. From (55)
and (56), we see that, having set w0 = −1, the q0 parameter
is the same as for the ΛCDM model, while j0 reads jΛ0 +
(3/2)(1 − ΩM)wa. As we have stressed above, the Hilbert-
Einstein Lagrangian f (R) = R + 2Λ is recovered when
(q0, j0) = (qΛ0 , jΛ0 ) whatever the values of (s0, l0) are.
Introducing a wa /= 0 makes (s0, l0) to differ from the ΛCDM
values, but the first two cosmographic parameters are only
mildly affected. Such deviations are then partially washed out
by the complicated way they enter in the determination of the
present day values of f (R) and its first three derivatives.

5. Constraining f (R) Parameters

In the previous section, we have worked an alternative
method to estimate f (R0), f ′′(R0), f ′′′(R0) resorting to a
model independent parameterization of the dark energy EoS.
However, in the ideal case, the cosmographic parameters are
directly estimated from the data so that (41)–(51) can be
used to infer the values of the f (R) related quantities. These
latter can then be used to put constraints on the parameters
entering an assumed fourth order theory assigned by a
f (R) function characterized by a set of parameters p =
(p1, . . . , pn) provided that the hypotheses underlying the
derivation of (41)–(51) are indeed satisfied. We show below
two interesting cases which clearly highlight the potentiality
and the limitations of such an analysis.

5.1. Double Power Law Lagrangian. As a first interesting
example, we set

f (R) = R
(
1 + αRn + βR−m

)
(66)

with n and m two positive real numbers (see, e.g., [98] for
some physical motivations). The following expressions are
immediately obtained:

f (R0) = R0
(
1 + αRn0 + βR−m0

)
,

f ′(R0) = 1 + α(n + 1)Rn0 − β(m− 1)R−m0 ,

f ′′(R0) = αn(n + 1)Rn−1
0 + βm(m− 1)R−(1+m)

0 ,

f ′′′(R0) = αn(n + 1)(n− 1)Rn−2
0 ,

− βm(m + 1)(m− 1)R−(2+m)
0 .

(67)

Denoting by φi (with i = 0, . . . , 3) the values of f (i)(R0)
determined through (41)–(51), we can solve

f (R0) = φ0,

f ′(R0) = φ1,

f ′′(R0) = φ2,

f ′′′(R0) = φ3,

(68)

which is a system of four equations in the four unknowns
(α,β,n,m) that can be analytically solved proceeding as
follows. First, we solve the first and second equation with
respect to (α,β) obtaining

α = 1−m
n +m

(
1− φ0

R0

)
R−n0 ,

β = − 1 + n

n +m

(
1− φ0

R0

)
Rm0 ,

(69)

while, solving the third and fourth equations, we get

α = φ2R
1−n
0

[
1 +m +

(
φ3/φ2

)
R0
]

n(n + 1)(n +m)
,

β = φ2R
1+n
0

[
1− n +

(
φ3/φ2

)
R0
]

m(1−m)(n +m)
.

(70)
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Equating the two solutions, we get a systems of two equations
in the two unknowns (n,m), namely,

n(n + 1)(1−m)
(
1− φ0/R0

)

φ2R0
[
1 +m +

(
φ3/φ2

)
R0
] = 1,

m(n + 1)(m− 1)
(
1− φ0/R0

)

φ2R0
[
1− n +

(
φ3/φ2

)
R0
] = 1.

(71)

Solving with respect to m, we get two solutions, the first one
being m = −n which has to be discarded since makes (α,β)
goes to infinity. The only acceptable solution is

m = −
[

1− n +

(
φ3

φ2

)

R0

]

(72)

which, inserted back into the above system, leads to a second
order polynomial equation for n with solutions

n = 1
2

⎡

⎣1 +
φ3

φ2
R0 ±

√
N
(
φ0,φ2,φ3

)

φ2R0
(
1 + φ0/R0

)

⎤

⎦, (73)

where we have defined

N
(
φ0,φ2,φ3

) = (
R2

0φ
2
0 − 2R3

0φ0 + R4
0

)
φ2

3

+ 6
(
R0φ

2
0 − 2R2

0φ0 + R3
0

)
φ2φ3

+ 9
(
φ2

0 − 2R0φ0 + R2
0

)
φ2

2

+ 4
(
R2

0φ0 − R3
0

)
φ3

2.

(74)

Depending on the values of (q0, j0, s0, l0), (73) may lead to
one, two or any acceptable solution, that is, real positive
values of n. This solution has then to be inserted back into
(72) to determine m and then into (69) or (70) to estimate
(α,β). If the final values of (α,β,n,m) are physically viable,
we can conclude that the model in (66) is in agreement with
the data giving the same cosmographic parameters inferred
from the data themselves. Exploring analytically what is the
region of the (q0, j0, s0, l0) parameter space which leads to
acceptable (α,β,n,m) solutions is a daunting task far outside
the aim of the present work.

5.2. The Hu and Sawicki Model. One of the most pressing
problems of f (R) theories is the need to escape the severe
constraints imposed by the Solar System tests. A successful
model has been recently proposed by Hu and Sawicki [56]
(HS) setting (note that such a model does not pass the matter
instability test so that some viable generalizations [99–101]
have been proposed):

f (R) = R− Rc α(R/Rc)
n

1 + β(R/Rc)
n . (75)

As for the double power law model discussed above, there
are four parameters which we can be expressed in terms of
the cosmographic parameters (q0, j0, s0, l0).

As a first step, it is trivial to get:

f (R0) = R0 − Rc αRn0c
1 + βRn0c

,

f ′(R0) = 1− αnRcR
n
0c

R0
(
1 + βRn0c

)2 ,

f ′′(R0) = αnRcR
n
0c

[
(1− n) + β(1 + n)Rn0c

]

R2
0

(
1 + βRn0c

)3 ,

f ′′′(R0) = αnRcR
n
0c

(
An2 + Bn + C

)

R3
0

(
1 + βRn0c

)4 .

(76)

with R0c = R0/Rc and:

A = −β2R2n
0c + 4βRn0c − 1,

B = 3
(
1− β2R2n

0c

)
,

C = −2
(
1− βRn0c

)2
.

(77)

Equating (76) to the four quantities (φ0,φ1,φ2,φ3) defined
as above, we could, in principle, solve this system of four
equations in four unknowns to get (α,β,Rc,n) in terms
of (φ0,φ1,φ2,φ3) and then, using (41)–(51) as functions
of the cosmographic parameters. However, setting φ1 = 1
as required by (42) gives the only trivial solution αnRc =
0 so that the HS model reduces to the Einstein-Hilbert
Lagrangian f (R) = R. In order to escape this problem, we
can relax the condition f ′(R0) = 1 to f ′(R0) = (1 + ε)−1. As
we have discussed in Section 4, this is the same as assuming
that the present day effective gravitational constant Geff,0 =
GN/ f ′(R0) only slightly differs from the usual Newtonian
one which seems to be a quite reasonable assumption. Under
this hypothesis, we can analytically solve for (α,β,Rc,n) in
terms of (φ0, ε,φ2,φ3). The actual values of (φ0,φ2,φ3) will
be no more given by (41)–(44), but we have checked that
they deviate from those expressions (note that the correct
expressions for (φ0,φ2,φ3) may still formally be written
as (41)–(44), but the polynomials entering them are now
different and also depend on powers of ε) much less than
10% for ε up to 10% well below any realistic expectation.

With this caveat in mind, we first solve

f (R0) = φ0, f ′′(R0) = (1 + ε)−1 (78)

to get

α = n(1 + ε)
ε

(
R0

Rc

)1−n(
1− φ0

R0

)2

,

β = n(1 + ε)
ε

(
R0

Rc

)−n[
1− φ0

R0
− ε

n(1 + ε)

]
.

(79)

Inserting these expressions in (76), it is easy to check that Rc
cancels out so that we can no more determine its value. Such
a result is, however, not unexpected. Indeed, (75) can trivially
be rewritten as

f (R) = R− α̃Rn

1 + β̃Rn
(80)
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with α̃ = αR1−n
c and β̃ = βR−nc which are indeed the

quantities that are determined by the above expressions for
(α,β). Reversing the discussion, the present day values of
f (i)(R) depend on (α,β,Rc) only through the two parameters

(α̃, β̃). As such, the use of cosmographic parameters is unable
to break this degeneracy. However, since Rc only plays the
role of a scaling parameter, we can arbitrarily set its value
without loss of generality.

On the other hand, this degeneracy allows us to get
a consistency relation to immediately check whether the
HS model is viable or not. Indeed, solving the equation
f ′′(R0) = φ2, we get

n =
(
φ0/R0

)
+ [(1 + ε)/ε]

(
1− φ2R0

)− (1− ε)/(1 + ε)
1− φ0/R0

,

(81)

which can then be inserted into the equations f ′′′(R0) = φ3

to obtain a complicated relation among (φ0,φ2,φ3) which we
do not report for sake of shortness. Solving such a relation
with respect to φ3/φ0 and Taylor expanding to first order in
ε, the constraint we get reads

φ3

φ0
� −1 + ε

ε

φ2

R0

[

R0

(
φ2

φ0

)

+
εφ−1

0

1 + ε

(

1− 2ε
1− φ0/R0

)]

.

(82)

If the cosmographic parameters (q0, j0, s0, l0) are known
with sufficient accuracy, one could compute the values of
(R0,φ0,φ2,φ3) for a given ε (eventually using the expressions
obtained for ε = 0) and then check if they satisfied this
relation. If this is not the case, one can immediately give
off the HS model also without the need of solving the field
equations and fitting the data. Actually, given the still large
errors on the cosmographic parameters, such a test only
remains in the realm of (quite distant) future applications.
However, the HS model works for other tests as shown in
[56] and so a consistent cosmography analysis has to be
combined with them.

6. Constraints on f (R)-Derivatives from
the Data

Equations (41)–(51) relate the present day values of f (R)
and its first three derivatives to the cosmographic parameters
(q0, j0, s0, l0) and the matter density ΩM . In principle,
therefore, a measurement of these latter quantities makes it
possible to put constraints on f (i)(R0), with i = {0, . . . , 3},
and hence on the parameters of a given fourth order theory
through the method shown in the previous section. Actually,
the cosmographic parameters are affected by errors which
obviously propagate onto the f (R) quantities. Actually, the
covariance matrix for the cosmographic parameters is not
diagonal so that one has also take care of this to estimate the
final errors on f (i)(R0). A similar discussion also holds for
the errors on the dimensionless ratios η20 and η30 introduced
above. As a general rule, indicating with g(ΩM , p) a generic

f (R) related quantity depending on ΩM and the set of
cosmographic parameters p, its uncertainty reads:

σ2
g =

∣
∣∣
∣
∣
∂g

∂ΩM

∣
∣∣
∣
∣

2

σ2
M +

i=4∑

i=1

∣
∣∣
∣
∣
∂g

∂pi

∣
∣∣
∣
∣

2

σ2
pi +

∑

i /= j

2
∂g

∂pi

∂g

∂pj
Ci j , (83)

where Cij are the elements of the covariance matrix (being
Cii = σ2

pi), we have set (p1, p2, p3, p4) = (q0, j0, s0, l0). and
assumed that the error σM on ΩM is uncorrelated with those
on p. Note that this latter assumption strictly holds if the
matter density parameter is estimated from an astrophysical
method (such as estimating the total matter in the Universe
from the estimated halo mass function). Alternatively, we
will assume that ΩM is constrained by the CMBR related
experiments. Since these latter mainly probes the very high
redshift Universe (z � zlss � 1089), while the cosmographic
parameters are concerned with the present day cosmo, one
can argue that the determination of ΩM is not affected by the
details of the model adopted for describing the late Universe.
Indeed, we can reasonably assume that, whatever is the dark
energy candidate or f (R) theory, the CMBR era is well
approximated by the standard GR with a model comprising
only dust matter. As such, we will make the simplifying
(but well motivated) assumption that σM may be reduced to
very small values and is uncorrelated with the cosmographic
parameters.

Under this assumption, the problem of estimating the
errors on g(ΩM , p) reduces to estimating the covariance
matrix for the cosmographic parameters given the details of
the data set used as observational constraints. We address this
issue by computing the Fisher information matrix (see, e.g.,
[102] and references therein) defined as

Fi j =
〈

∂2L

∂θi∂θj

〉

(84)

with L = −2 ln L(θ1, . . . , θn), L(θ1, . . . , θn) the likelihood
of the experiment, (θ1, . . . , θn) the set of parameters to
be constrained, and 〈. . .〉 denotes the expectation value.
Actually, the expectation value is computed by evaluating
the Fisher matrix elements for fiducial values of the model
parameters (θ1, . . . , θn), while the covariance matrix C is
finally obtained as the inverse of F.

A key ingredient in the computation of F is the
definition of the likelihood which depends, of course, of
what experimental constraint one is using. To this aim, it
is worth remembering that our analysis is based on fifth
order Taylor expansion of the scale factor a(t) so that
we can only rely on observational tests probing quantities
that are well described by this truncated series. Moreover,
since we do not assume any particular model, we can
only characterize the background evolution of the Universe,
but not its dynamics which, being related to the evolution
of perturbations, unavoidably need the specification of a
physical model. As a result, the SNeIa Hubble diagram is
the ideal test (see the conclusions for further discussion on
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this issue) to constrain the cosmographic parameters. We
therefore defined the likelihood as

L
(
H0, p

)∝ exp−χ
2
(
H0, p

)

2
,

χ2
(
H0, p

) =
NSNeIa∑

n=1

[
μobs(zi)− μth

(
zn,H0, p

)

σi(zi)

]2

,
(85)

where the distance modulus to redshift z reads:

μth
(
z,H0, p

) = 25 + 5 log
(
c

H0

)
+ 5 logdL

(
z, p

)
, (86)

and dL(z) is the Hubble free luminosity distance:

dL(z) = (1 + z)
∫ z

0

dz

H(z)/H0
. (87)

Using the fifth order Taylor expansion of the scale factor,
we get for dL(z, p) an analytical expression (reported in
Appendix A) so that the computation of Fi j does not need
any numerical integration (which makes the estimate faster).
As a last ingredient, we need to specify the details of the
SNeIa survey giving the redshift distribution of the sample
and the error on each measurement. Following [103], we
adopt (note that, in [103], the authors assume the data are
separated in redshift bins so that the error becomes σ2 =
σ2

sys/Nbin + Nbin(z/zmax)2σ2
m with Nbin the number of SNeIa

in a bin. However, we prefer to not bin the data so that
Nbin = 1):

σ(z) =
√

σ2
sys +

(
z

zmax

)2

σ2
m (88)

with zmax the maximum redshift of the survey, σsys an
irreducible scatter in the SNeIa distance modulus and σm to
be assigned depending on the photometric accuracy.

In order to run the Fisher matrix calculation, we have to
set a fiducial model which we set according to the ΛCDM
predictions for the cosmographic parameters. For ΩM = 0.3
and h = 0.72 (with h the Hubble constant in units of
100 km/s/Mpc), we get

(
q0, j0, s0, l0

) = (−0.55, 1.0,−0.35, 3.11). (89)

As a first consistency check, we compute the Fisher matrix
for a survey mimicking the recent database in [8] thus
setting (NSNeIa, σm) = (192, 0.33). After marginalizing over
h (which, as well known, is fully degenerate with the SNeIa
absolute magnitude M), we get for the uncertainties:

(σ1, σ2, σ3, σ4) = (0.38, 5.4, 28.1, 74.0), (90)

where we are still using the indexing introduced above for the
cosmographic parameters. These values compare reasonably
well with those obtained from a cosmographic fitting of
the Gold SNeIa dataset (actually, such estimates have been
obtained computing the mean and the standard deviation
from the marginalized likelihoods of the cosmographic
parameters. As such, the central values do not represent
exactly the best fit model, while the standard deviations

do not give a rigorous description of the error because
the marginalized likelihoods are manifestly non Gaussian.
Nevertheless, we are mainly interested in an order of
magnitude estimate so that we do not care about such
statistical details) [104, 105]:

q0 = −0.90± 0.65, j0 = 2.7± 6.7,

s0 = 36.5± 52.9, l0 = 142.7± 320.
(91)

Because of the Gaussian assumptions it relies on, the Fisher
matrix forecasts are known to be lower limits to the accuracy
a given experiment can attain on the determination of a set
of parameters. This is indeed the case with the comparison
suggesting that our predictions are quite optimistic. It is
worth stressing, however, that the analysis in [104, 105] used
the Gold SNeIa dataset which is poorer in high redshift SNeIa
than the [8] one we are mimicking so that larger errors on the
higher order parameters (s0, l0) are expected.

Rather than computing the errors on f (R0) and its
first three derivatives, it is more interesting to look at the
precision attainable on the dimensionless ratios (η20,η30

introduced above since they quantify how much deviations
from the linear order are present. For the fiducial model
we are considering, both η20 and η30 vanish, while, using
the covariance matrix for a present day survey and setting
σM/ΩM � 10%, their uncertainties read:

(σ20, σ30) = (0.04, 0.04). (92)

As an application, we can look at Figures 1 and 2 showing
how (η20,η30) depend on the present day EoS w0 for f (R)
models sharing the same cosmographic parameters of a
dark energy model with constant EoS. As it is clear, also
considering only the 1σ range, the full region plotted is
allowed by such large constraints on (η20,η30) thus meaning
that the full class of corresponding f (R) theories is viable. As
a consequence, we may conclude that the present day SNeIa
data are unable to discriminate between a Λ dominated
Universe and this class of fourth order gravity theories.

As a next step, we consider an SNAP-like survey [106]
thus setting (NSNeIa, σm) = (2000, 0.02). We use the same
redshift distribution in [103, Table 1] and add 300 nearby

SNeIa in the redshift range (0.03, 0.08). The Fisher matrix
calculation gives for the uncertainties on the cosmographic
parameters:

(σ1, σ2, σ3, σ4) = (0.08, 1.0, 4.8, 13.7). (93)

The significant improvement of the accuracy in the determi-
nation of (q0, j0, s0, l0) translates in a reduction of the errors
on (η20,η30) which now read

(σ20, σ30) = (0.007, 0.008) (94)

having assumed that, when SNAP data will be available, the
matter density parameter ΩM has been determined with a
precision σM/ΩM ∼ 1%. Looking again at Figures 1 and
2, it is clear that the situation is improved. Indeed, the
constraints on η20 makes it possible to narrow the range of
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allowed models with low matter content (the dashed line),
while models with typical values of ΩM are still viable for w0

covering almost the full horizontal axis. On the other hand,
the constraint on η30 is still too weak so that almost the full
region plotted is allowed.

Finally, we consider an hypothetical future SNeIa survey
working at the same photometric accuracy as SNAP and with
the same redshift distribution, but increasing the number of
SNeIa up to NSNeIa = 6× 104 as expected from, for example,
DES [107], PanSTARRS [108], SKYMAPPER [109], while
still larger numbers may potentially be achieved by ALPACA
[110] and LSST [111]. Such a survey can achieve

(σ1, σ2, σ3, σ4) = (0.02, 0.2, 0.9, 2.7) (95)

so that, with σM/ΩM ∼ 0.1%, we get

(σ20, σ30) = (0.0015, 0.0016). (96)

Figure 1 shows that, with such a precision on η20, the region
of w0 values allowed essentially reduces to the ΛCDM value,
while, from Figure 2, it is clear that the constraint on η30

definitively excludes models with low matter content further
reducing the range of w0 values to quite small deviations
from the w0 = −1. We can therefore conclude that such a
survey will be able to discriminate between the concordance
ΛCDM model and all the f (R) theories giving the same
cosmographic parameters as quiessence models other than
the ΛCDM itself.

A similar discussion may be repeated for f (R) models
sharing the same (q0, j0, s0, l0) values as the CPL model even
if it is less intuitive to grasp the efficacy of the survey being the
parameter space multivalued. For the same reason, we have
not explored what is the accuracy on the double power-law or
HS models, even if this is technically possible. Actually, one
should first estimate the errors on the present day value of
f (R) and its three time derivatives and then propagate them
on the model parameters using the expressions obtained in
Section 6. The multiparameter space to be explored makes
this exercise quite cumbersome so that we leave it for a
furthcoming work where we will explore in detail how these
models compare to the present and future data.

7. What We Have Learnt from Cosmography

The recent amount of good quality data have given a new
input to the observational cosmology. As often in science,
new and better data lead to unexpected discoveries as in
the case of the nowadays accepted evidence for cosmic
acceleration. However, a fierce and strong debate is still
open on what this cosmic speed up implies for theoretical
cosmology. The equally impressive amount of different
(more or less) viable candidates have also generated a
great confusion so that model independent analyses are
welcome. A possible solution could come from cosmography
rather than assuming ad hoc solutions of the cosmological
Friedmann equations. Present day and future SNeIa surveys
have renewed the interest in the determination of the
cosmographic parameters so that it is worth investigating
how these quantities can constrain cosmological models.

Motivated by this consideration, in the framework of
metric formulation of f (R) gravity, we have here derived the
expressions of the present day values of f (R) and its first
three derivatives as function of the matter density parameter
ΩM , the Hubble constant H0 and the cosmographic param-
eters (q0, j0, s0, l0). Although based on a third order Taylor
expansion of f (R), we have shown that such relations hold
for a quite large class of models so that they are valid tools to
look for viable f (R) models without the need of solving the
mathematically difficult nonlinear fourth order differential
field equations.

Notwithstanding the common claim that we live in the
era of precision cosmology, the constraints on (q0, j0, s0, l0)
are still too weak to efficiently apply the program we have
outlined above. As such, we have shown how it is possible to
establish a link between the popular CPL parameterization
of the dark energy equation of state and the derivatives
of f (R), imposing that they share the same values of the
cosmographic parameters. This analysis has lead to the quite
interesting conclusion that the only f (R) function able to
give the same values of (q0, j0, s0, l0) as the ΛCDM model is
indeed f (R) = R + 2Λ. If future observations will tell us that
the cosmographic parameters are those of theΛCDM model,
we can therefore rule out all f (R) theories satisfying the
hypotheses underlying our derivation of (41)-(44). Actually,
such a result should not be considered as a no way out for
higher order gravity. Indeed, one could still work out a model
with null values of f ′′(R0) and f ′′′(R0) as required by the
above constraints, but nonvanishing higher order derivatives.
One could well argue that such a contrived model could
be rejected on the basis of the Occam razor, but nothing
prevents from still taking it into account if it turns out to
be both in agreement with the data and theoretically well
founded.

If new SNeIa surveys will determine the cosmographic
parameters with good accuracy, acceptable constraints on
the two dimensionless ratios η20 ∝ f ′′(R0)/ f (R0) and
η30 ∝ f ′′′(R0)/ f (R0) could be obtained thus allowing
to discriminate among rival f (R) theories. To investigate
whether such a program is feasible, we have pursued a
Fisher matrix based forecasts of the accuracy future SNeIa
surveys can achieve on the cosmographic parameters and
hence on (η20,η30). It turns out that a SNAP-like survey can
start giving interesting (yet still weak) constraints allowing
to reject f (R) models with low matter content, while a
definitive improvement is achievable with future SNeIa
survey observing ∼104 objects thus making it possible to
discriminate between ΛCDM and a large class of fourth
order theories. It is worth stressing, however, that the
measurement of ΩM should come out as the result of a
model independent probe such as the gas mass fraction in
galaxy clusters which, at present, is still far from the 1%
requested precision. On the other hand, one can also rely on
theΩM estimate from the CMBR anisotropy and polarization
spectra even if this comes to the price of assuming that
the physics at recombination is strictly described by GR
so that one has to limit its attention to f (R) models
reducing to f (R) ∝ R during that epoch. However, such
an assumption is quite common in many f (R) models
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available in literature so that it is not a too restrictive
limitation.

A further remark is in order concerning what kind of data
can be used to constrain the cosmographic parameters. The
use of the fifth order Taylor expansion of the scale factor
makes it possible to not specify any underlying physical
model thus relying on the minimalist assumption that the
Universe is described by the flat Robertson-Walker metric.
While useful from a theoretical perspective, such a generality
puts severe limitations to the dataset one can use. Actually,
we can only resort to observational tests depending only on
the background evolution so that the range of astrophysical
probes reduces to standard candles (such as SNeIa and
possibly Gamma Ray Bursts [112]) and standard rods (such
as the angular size-redshift relation for compact radio
sources). Moreover, pushing the Hubble diagram to z ∼ 2
may rise the question of the impact of gravitational lensing
amplification on the apparent magnitude of the adopted
standard candle. The magnification probability distribution
function depends on the growth of perturbations [113–117]
so that one should worry about the underlying physical
model in order to estimate whether this effect biases the
estimate of the cosmographic parameters. However, it has
been shown [11, 118–121] that the gravitational lensing
amplification does not alter significantly the measured
distance modulus for z ∼ 1 SNeIa. Although such an analysis
has been done for GR based models, we can argue that,
whatever is the f (R) model, the growth of perturbations
finally leads to a distribution of structures along the line
of sight that is as similar as possible to the observed one
so that the lensing amplification is approximately the same.
We can therefore argue that the systematic error made by
neglecting lensing magnification is lower than the statistical
ones expected by the future SNeIa surveys. On the other
hand, one can also try further reducing this possible bias
using the method of flux averaging [122] even if, in such
a case, our Fisher matrix calculation should be repeated
accordingly. It is also worth noting that the constraints on
the cosmographic parameters may be tightened by imposing
some physically motivated priors in the parameter space.
For instance, we can impose that the Hubble parameter
H(z) stays always positive over the full range probed by
the data or that the transition from past deceleration to
present acceleration takes place over the range probed by
the data (so that we can detect it). Such priors should
be included in the likelihood definition so that the Fisher
matrix should be recomputed which is left for a forthcoming
work.

Although the present day data are still too limited
to efficiently discriminate among rival f (R) models, we
are confident that an aggressive strategy aiming at a very
precise determination of the cosmographic parameters could
offer stringent constraints on higher order gravity without
the need of solving the field equations or addressing the
complicated problems related to the growth of perturbations.
Almost 80 years after the pioneering distance-redshift dia-
gram by Hubble, the old cosmographic approach appears
nowadays as a precious observational tool to investigate the
new developments of cosmology.

8. The Weak-Field Limit of f (R)-Gravity

Before facing the problem of galaxy clusters by f (R)-gravity,
a discussion is due on the weak-field limit of such a theory
which, being of fourth order in metric formalism, could lead
to results radically different with respect to the case f (R) =
R, the standard second order General Relativity.

Let us consider the general action:

A =
∫

d4x
√−g[ f (R) + XLm

]
, (97)

where f (R) is an analytic function of the Ricci scalar R,
g is the determinant of the metric gμν, X = 16πG/c4 is
the coupling constant and Lm is the standard perfect-fluid
matter Lagrangian. Such an action is the straightforward
generalization of the Hilbert-Einstein action of GR obtained
for f (R) = R. Since we are considering the metric approach,
field equations are obtained by varying (97) with respect to
the metric

f ′Rμν − 1
2
f gμν − f ′;μν + gμν� f ′ = X

2
Tμν. (98)

where Tμν = (−2/
√−g)(δ(

√−gLm)/δgμν) is the energy
momentum tensor of matter, the prime indicates the deriva-
tive with respect to R and �=;σ

;σ . We adopt the signature
(+,−,−,−).

As discussed in details in [123], we deal with the
Newtonian and the post-Newtonian limit of f (R)-gravity
on a spherically symmetric background. Solutions for the
field equations can be obtained by imposing the spherical
symmetry [124]:

ds2 = g00
(
x0, r

)
dx02

+ grr
(
x0, r

)
dr2 − r2dΩ, (99)

where x0 = ct and dΩ is the angular element.
To develop the post-Newtonian limit of the theory, one

can consider a perturbed metric with respect to a Minkowski
background gμν = ημν + hμν. The metric coefficients can be
developed as

gtt(t, r) � 1 + g(2)
tt (t, r) + g(4)

tt (t, r),

grr(t, r) � −1 + g(2)
rr (t, r),

gθθ(t, r) = −r2,

gφφ(t, r) = −r2sin2θ,

(100)

where we put, for the sake of simplicity, c = 1, x0 = ct → t.
We want to obtain the most general result without imposing
particular forms for the f (R)-Lagrangian. We only consider
analytic Taylor expandable functions

f (R) � f0 + f1R + f2R
2 + f3R

3 + · · · . (101)

To obtain the post-Newtonian approximation of f (R)-
gravity, one has to plug the expansions (100) and (101) into
the field equations (98) and then expand the system up to the
orders O(0),O(2) and O(4). This approach provides general
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results and specific (analytic) Lagrangians are selected by the
coefficients fi in (101) [123].

If we now consider the O(2)-order of approximation, the
field equations (98), in the vacuum case, results to be

f1rR
(2) − 2 f1g

(2)
tt,r + 8 f2R(2)

,r − f1rg
(2)
tt,rr + 4 f2rR(2) = 0,

f1rR
(2) − 2 f1g(2)

rr,r + 8 f2R(2)
,r − f1rg

(2)
tt,rr = 0,

2 f1g(2)
rr − r

[
f1rR

(2) − f1g
(2)
tt,r − f1g

(2)
rr,r + 4 f2R(2)

,r

+4 f2rR(2)
,rr

]
= 0,

f1rR
(2) + 6 f2

[
2R(2)

,r + rR(2)
,rr

]
= 0,

2g(2)
rr + r

[
2g(2)

tt,r − rR(2) + 2g(2)
rr,r + rg(2)

tt,rr

]
= 0.

(102)

It is evident that the trace equation (the fourth in the system
(102)), provides a differential equation with respect to the
Ricci scalar which allows to solve the system at O(2)-order.
One obtains the general solution:

g(2)
tt = δ0 − 2GM

f1r
− δ1(t)e−r

√
−ξ

3ξr
+
δ2(t)er

√
−ξ

6(−ξ)3/2r
,

g(2)
rr = −

2GM
f1r

+
δ1(t)

[
r
√
−ξ + 1

]
e−r
√
−ξ

3ξr
,

−
δ2(t)

[
ξr +

√
−ξ

]
er
√
−ξ

6ξ2r
,

R(2) = δ1(t)e−r
√
−ξ

r
−
δ2(t)

√
−ξer

√
−ξ

2ξr
,

(103)

where ξ
.= f1/6 f2, f1 and f2 are the expansion coefficients

obtained by the f (R)-Taylor series. In the limit f → R,
for a point-like source of mass M we recover the standard
Schwarzschild solution. Let us notice that the integration
constant δ0 is dimensionless, while the two arbitrary time-
functions δ1(t) and δ2(t) have, respectively, the dimensions
of lenght−1 and lenght−2; ξ has the dimension lenght−2.
As extensively discussed in [123], the functions δi(t) (i =
1, 2) are completely arbitrary since the differential equation
system (102) depends only on spatial derivatives. Besides, the
integration constant δ0 can be set to zero, as in the standard
theory of potential, since it represents an unessential additive
quantity. In order to obtain the physical prescription of the
asymptotic flatness at infinity, we can discard the Yukawa
growing mode in (103) and then the metric is:

ds2 =
⎡

⎣1− 2GM
f1r

− δ1(t)e−r
√
−ξ

3ξr

⎤

⎦dt2

−

⎡

⎢
⎣1 +

2GM
f1r

−
δ1(t)

(
r
√
−ξ + 1

)
e−r
√
−ξ

3ξr

⎤

⎥
⎦dr2

− r2dΩ.
(104)

The Ricci scalar curvature is

R = δ1(t)e−r
√
−ξ

r
. (105)

The solution can be given also in terms of gravitational
potential. In particular, we have an explicit Newtonian-like
term into the definition. The first of (103) provides the
second order solution in term of the metric expansion (see
the definition (100)). In particular, it is gtt = 1 + 2φgrav =
1 + g(2)

tt and then the gravitational potential of an analytic
f (R)-theory is

φgrav = −GM
f1r

− δ1(t)e−r
√
−ξ

6ξr
. (106)

Among the possible analytic f (R)-models, let us consider the
Taylor expansion where the cosmological term (the above f0)
and terms higher than second have been discarded. For the
sake of simplicity, we rewrite the Lagrangian (101) as

f (R) ∼ a1R + a2R
2 + · · · (107)

and specify the above gravitational potential (106), generated
by a point-like matter distribution, as:

φ(r) = −3GM
4a1r

(
1 +

1
3
e−r/L

)
, (108)

where

L ≡ L(a1, a2) =
(
−6a2

a1

)1/2

. (109)

L can be defined as the interaction length of the problem due
to the correction to the Newtonian potential. (Such a length
is function of the series coefficients, a1 and a2, and it is not a
free independent parameter in the following fit procedure.)
We have changed the notation to remark that we are doing
only a specific choice in the wide class of potentials (106),
but the following considerations are completely general.

9. Extended Systems

The gravitational potential (108) is a point-like one. Now
we have to generalize this solution for extended systems. Let
us describe galaxy clusters as spherically symmetric systems
and then we have to extend the above considerations to this
geometrical configuration. We simply consider the system
composed by many infinitesimal mass elements dm each
one contributing with a point-like gravitational potential.
Then, summing up all terms, namely integrating them on a
spherical volume, we obtain a suitable potential. Specifically,
we have to solve the integral:

Φ(r) =
∫∞

0
r′2dr′

∫ π

0
sin θ′dθ′

∫ 2π

0
dω′φ(r′). (110)

The point-like potential (108) can be split in two terms. The
Newtonian component is

φN (r) = −3GM
4a1r

. (111)
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The extended integral of such a part is the well-known (apart
from the numerical constant 3/4a1) expression. It is

ΦN (r) = − 3
4a1

GM(< r)
r

,
(112)

where M(< r) is the mass enclosed in a sphere with radius r.
The correction term

φC(r) = −GM
4a1

e−r/L

r
(113)

considering some analytical steps in the integration of the
angular part gives the expression

ΦC(r) = −2πG
4

· L
∫∞

0
dr′r′ρ(r′) · e

−|r−r′|/L − e−|r+r′|/L
r

.

(114)

The radial integral is numerically estimated once the mass
density is given. We underline a fundamental difference
between such a term and the Newtonian one: while in the
latter, the matter outside the spherical shell of radius r does
not contribute to the potential, in the former external matter
takes part to the integration procedure. For this reason we
split the corrective potential in two terms:

(i) if r′ < r:

ΦC,int(r)

= −2πG
4

· L
∫ r

0
dr′r′ρ(r′) · e

−|r−r′|/L − e−|r+r′|/L
r

= −2πG
4

· L
∫ r

0
dr′r′ρ(r′) · e−(r+r′)/L

(
−1 + e2r′/L

r

)

(115)

(ii) if r′ > r:

ΦC,ext(r)

= −2πG
4

· L
∫∞

r
dr′r′ρ(r′) · e

−|r−r′|/L − e−|r+r′|/L
r

= −2πG
4

· L
∫∞

r
dr′r′ρ(r′) · e−(r+r′)/L

(
−1 + e2r/L

r

)

.

(116)

The total potential of the spherical mass distribution will be

Φ(r) = ΦN (r) +ΦC,int(r) +ΦC,ext(r). (117)

As we will show below, for our purpose, we need the
gravitational potential derivative with respect to the variable
r; the two derivatives may not be evaluated analytically so we
estimate them numerically, once we have given an expression

for the total mass density ρ(r). While the Newtonian term
gives the simple expression:

−dΦN

dr
(r) = − 3

4a1

GM(< r)
r2

. (118)

The internal and external derivatives of the corrective
potential terms are much longer. We do not give them
explicitly for sake of brevity, but they are integral functions
of the form

F (r, r′) =
∫ β(r)

α(r)
dr′ f (r, r′) (119)

from which one has:

dF (r, r′)
dr

=
∫ β(r)

α(r)
dr′

d f (r, r′)
dr

− f (r,α(r))
dα
dr

(r) + f
(
r,β(r)

)dβ
dr

(r).

(120)

Such an expression is numerically derived once the inte-
gration extremes are given. A general consideration is in
order at this point. Clearly, the Gauss theorem holds only
for the Newtonian part since, for this term, the force law
scales as 1/r2. For the total potential (108), it does not hold
anymore due to the correction. From a physical point of
view, this is not a problem because the full conservation laws
are determined, for f (R)-gravity, by the contracted Bianchi
identities which assure the self-consistency. For a detailed
discussion, see [48, 78, 125].

10. The Cluster Mass Profiles

Clusters of galaxies are generally considered self-bound grav-
itational systems with spherical symmetry and in hydrostatic
equilibrium if virialized. The last two hypothesis are still
widely used, despite of the fact that it has been widely proved
that most clusters show more complex morphologies and/or
signs of strong interactions or dynamical activity, especially
in their innermost regions [126, 127].

Under the hypothesis of spherical symmetry in hydro-
static equilibrium, the structure equation can be derived
from the collisionless Boltzmann equation:

d

dr

(
ρgas(r)σ2

r

)
+

2ρgas(r)

r

(
σ2
r − σ2

θ,ω

)
= −ρgas(r) · dΦ(r)

dr
,

(121)

where Φ is the gravitational potential of the cluster, σr and
σθ,ω are the mass-weighted velocity dispersions in the radial
and tangential directions, respectively, and ρ is gas mass-
density. For an isotropic system, it is

σr = σθ,ω. (122)

The pressure profile can be related to these quantities by

P(r) = σ2
r ρgas(r). (123)
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Substituting (122) and (123) into (121), we have, for an
isotropic sphere,

dP(r)
dr

= −ρgas(r)
dΦ(r)
dr

. (124)

For a gas sphere with temperature profile T(r), the velocity
dispersion becomes

σ2
r =

kT(r)
μmp

, (125)

where k is the Boltzmann constant, μ ≈ 0.609 is the mean
mass particle and mp is the proton mass. Substituting (123)
and (125) into (124), we obtain

d

dr

(
kT(r)
μmp

ρgas(r)

)

= −ρgas(r)
dΦ

dr
(126)

or, equivalently,

−dΦ
dr

= kT(r)
μmpr

[
d ln ρgas(r)

d ln r
+
d lnT(r)
d ln r

]

. (127)

Now the total gravitational potential of the cluster is

Φ(r) = ΦN (r) +ΦC(r) (128)

with

ΦC(r) = ΦC,int(r) +ΦC,ext(r). (129)

It is worth underlining that if we consider only the standard
Newtonian potential, the total cluster mass Mcl,N (r) is
composed by gas mass + mass of galaxies + cD-galaxy mass
+ dark matter and it is given by the expression:

Mcl,N (r) =Mgas(r) +Mgal(r) +MCDgal(r) +MDM(r)

= − kT(r)
μmpG

r

[
d ln ρgas(r)

d ln r
+
d lnT(r)
d ln r

]

.
(130)

Mcl,N means the standard estimated Newtonian mass. Gener-
ally the galaxy part contribution is considered negligible with
respect to the other two components so we have

Mcl,N (r) ≈Mgas(r) +MDM(r)

≈ −kT(r)
μmp

r

[
d ln ρgas(r)

d ln r
+
d lnT(r)
d ln r

]

.
(131)

Since the gas-mass estimates are provided by X-ray obser-
vations, the equilibrium equation can be used to derive the
amount of dark matter present in a cluster of galaxies and its
spatial distribution.

Inserting the previously defined extended-corrected
potential of (128) into (127), we obtain

−dΦN

dr
− dΦC

dr
= kT(r)
μmpr

[
d ln ρgas(r)

d ln r
+

d ln T(r)
d ln r

]

(132)

from which the extended-corrected mass estimate follows:

Mcl,EC(r) +
4a1

3G
r2 dΦC

dr
(r)

= 4a1

3

[

− kT(r)
μmpG

r

(
d ln ρgas(r)

d ln r
+
d lnT(r)
d ln r

)]

.

(133)

Since the use of a corrected potential avoids, in principle, the
additional requirement of dark matter, the total cluster mass,
in this case, is given by

Mcl,EC(r) =Mgas(r) +Mgal(r) +MCDgal(r) (134)

and the mass density in the ΦC term is

ρcl,EC(r) = ρgas(r) + ρgal(r) + ρCDgal(r) (135)

with the density components derived from observations.
In this work, we will use (133) to compare the baryonic

mass profile Mcl,EC(r), estimated from observations, with
the theoretical deviation from the Newtonian gravitational
potential, given by the expression −(4a1/3G)r2(dΦC/dr)(r).
Our goal is to reproduce the observed mass profiles for a
sample of galaxy clusters.

11. The Galaxy Cluster Sample

The formalism described in Section 10 can be applied to a
sample of 12 galaxy clusters. We will use the cluster sample
studied in [128, 129] which consists of 13 low-redshift
clusters spanning a temperature range 0.7 ÷ 9.0 keV derived
from high quality Chandra archival data. In all these clusters,
the surface brightness and the gas temperature profiles are
measured out to large radii, so that mass estimates can be
extended up to r500 or beyond.

11.1. The Gas Density Model. The gas density distribution
of the clusters in the sample is described by the analytic
model proposed in [129]. Such a model modifies the classical
β-model to represent the characteristic properties of the
observed X-ray surface brightness profiles, that is, the power-
law-type cusps of gas density in the cluster center, instead of a
flat core and the steepening of the brightness profiles at large
radii. Eventually, a second β-model, with a small core radius,
is added to improve the model close to the cluster cores. The
analytical form for the particle emission is given by

npne = n2
0 ·

(r/rc)
−α

(
1 + r2/r2

c

)3β−α/2 ·
1

(
1 + rγ/r

γ
s

)ε/γ

+
n2

02
(
1 + r2/r2

c2

)3β2

(136)

which can be easily converted to a mass density using the
relation

ρgas = nT · μmp = 1.4
1.2

nemp, (137)

where nT is the total number density of particles in the gas.
The resulting model has a large number of parameters, some



22 Advances in Astronomy

of which do not have a direct physical interpretation. While
this can often be inappropriate and computationally incon-
venient, it suits well our case, where the main requirement is
a detailed qualitative description of the cluster profiles.

In [129], (136) is applied to a restricted range of distances
from the cluster center, that is, between an inner cutoff rmin,
chosen to exclude the central temperature bin (≈10÷ 20 kpc)
where the ICM is likely to be multi-phase, and rdet, where
the X-ray surface brightness is at least 3σ significant. We
have extrapolated the above function to values outside this
restricted range using the following criteria:

(i) for r < rmin, we have performed a linear extrapolation
of the first three terms out to r = 0 kpc;

(ii) for r > rdet, we have performed a linear extrapolation
of the last three terms out to a distance r for which
ρgas(r) = ρc, ρc being the critical density of the
Universe at the cluster redshift: ρc = ρc,0 · (1 + z)3.
For radii larger than r, the gas density is assumed
constant at ρgas(r).

We point out that, in Table 1, the radius limit rmin is almost
the same as given in the previous definition. When the value
given by [129] is less than the cD-galaxy radius, which is
defined in the next section, we choose this last one as the
lower limit. On the contrary, rmax is quite different from rdet:
it is fixed by considering the higher value of temperature
profile and not by imaging methods.

We then compute the gas mass Mgas(r) and the total
mass Mcl,N (r), respectively, for all clusters in our sample,
substituting (136) into (137) and (130), respectively; the gas
temperature profile has been described in details in § XI B.
The resulting mass values, estimated at r = rmax, are listed in
Table 1.

11.2. The Temperature Profiles. As stressed in Section 11.1,
for the purpose of this work, we need an accurate qualitative
description of the radial behavior of the gas properties.
Standard isothermal or polytropic models, or even the more
complex one proposed in [129], do not provide a good
description of the data at all radii and for all clusters in
the present sample. We hence describe the gas temperature
profiles using the straightforward X-ray spectral analysis
results, without the introduction of any analytic model.

X-ray spectral values have been provided by Vikhlinin
(private communication). A detailed description of the
relative spectral analysis can be found in [128].

11.3. The Galaxy Distribution Model. The galaxy density
can be modelled as proposed by [86]. Even if the galaxy
distribution is a point-distribution instead of a continuous
function, assuming that galaxies are in equilibrium with gas,
we can use a β-model, ∝ r−3, for r < Rc from the cluster
center, and a steeper one, ∝ r−2.6, for r > Rc, where Rc is the

cluster core radius (its value is taken from Vikhlinin 2006).
Its final expression is:

ρgal(r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρgal,1 ·
[

1 +
(
r

Rc

)2
]−3/2

r < Rc,

ρgal,2 ·
[

1 +
(
r

Rc

)2
]−2.6/2

r > Rc,

(138)

where the constants ρgal,1 and ρgal,2 are chosen in the
following way:

(i) [86] provides the central number density of galaxies
in rich compact clusters for galaxies located within
a 1.5 h−1 Mpc radius from the cluster center and
brighter than m3 + 2m (where m3 is the magnitude
of the third brightest galaxy): ngal,0 ∼ 103h3 galaxies
Mpc−3. Then we fix ρgal,1 in the range ∼1034 ÷
1036 kg/kpc3. For any cluster obeying the condition
chosen for the mass ratio gal-to-gas, we assume a
typical elliptical and cD galaxy mass in the range
1012 ÷ 1013M�.

(ii) the constant ρgal,2 has been fixed with the only
requirement that the galaxy density function has to
be continuous at Rc.

We have tested the effect of varying galaxy density in the
above range ∼1034 ÷ 1036 kg/kpc3 on the cluster with the
lowest mass, namely A262. In this case, we would expect great
variations with respect to other clusters; the result is that the
contribution due to galaxies and cD-galaxy gives a variation
≤1% to the final estimate of fit parameters. The cD galaxy
density has been modelled as described in [130]; they use a
Jaffe model of the form

ρCDgal =
ρ0,J

(r/rc)
2(1 + r/rc)

2 , (139)

where rc is the core radius while the central density is
obtained from MJ = (4/3)πR3

c ρ0,J . The mass of the cD galaxy
has been fixed at 1.14 × 1012M�, with rc = Re/0.76, with
Re = 25 kpc being the effective radius of the galaxy. The
central galaxy for each cluster in the sample is assumed to
have approximately this stellar mass.

We have assumed that the total galaxy-component mass
(galaxies plus cD galaxy masses) is ≈20 ÷ 25% of the gas
mass: in [131], the mean fraction of gas versus the total mass
(with dark matter) for a cluster is estimated to be 15 ÷ 20%,
while the same quantity for galaxies is 3 ÷ 5%. This means
that the relative mean mass ratio gal-to-gas in a cluster is
≈ 20 ÷ 25%. We have varied the parameters ρgal,1, ρgal,2 and
MJ in their previous defined ranges to obtain a mass ratio
between total galaxy mass and total gas mass which lies in
this range. Resulting galaxy mass values and ratios gal/gas,
estimated at r = rmax, are listed in Table 1.

In Figure 1, we show how each component is spatially
distributed. The CD-galaxy is dominant with respect to the
other galaxies only in the inner region (below 100 kpc). As
already stated in Section 11.1, cluster innermost regions have
been excluded from our analysis and so the contribution
due to the cD-galaxy is practically negligible in our analysis.
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Table 1: Column 1: Cluster name. Column 2: Richness. Column 3: cluster total mass. Column 4: gas mass. Column 5: galaxy mass. Column
6: cD-galaxy mass. All mass values are estimated at r = rmax. Column 7: ratio of total galaxy mass to gas mass. Column 8: minimum radius.
Column 9: maximum radius.

Name R Mcl,N (M�) Mgas (M�) Mgal (M�) McDgal(M�)
gal
gas

rmin (kpc) rmax (kpc)

A133 0 4.35874 · 1014 2.73866 · 1013 5.20269 · 1012 1.10568 · 1012 0.23 86 1060

A262 0 4.45081 · 1013 2.76659 · 1012 1.71305 · 1011 5.16382 · 1012 0.25 61 316

A383 2 2.79785 · 1014 2.82467 · 1013 5.88048 · 1012 1.09217 · 1012 0.25 52 751

A478 2 8.51832 · 1014 1.05583 · 1014 2.15567 · 1013 1.67513 · 1012 0.22 59 1580

A907 1 4.87657 · 1014 6.38070 · 1013 1.34129 · 1013 1.66533 · 1012 0.24 563 1226

A1413 3 1.09598 · 1015 9.32466 · 1013 2.30728 · 1013 1.67345 · 1012 0.26 57 1506

A1795 2 5.44761 · 1014 5.56245 · 1013 4.23211 · 1012 1.93957 · 1012 0.11 79 1151

A1991 1 1.24313 · 1014 1.00530 · 1013 1.24608 · 1012 1.08241 · 1012 0.23 55 618

A2029 2 8.92392 · 1014 1.24129 · 1014 3.21543 · 1013 1.11921 · 1012 0.27 62 1771

A2390 1 2.09710 · 1015 2.15726 · 1014 4.91580 · 1013 1.12141 · 1012 0.23 83 1984

MKW4 — 4.69503 · 1013 2.83207 · 1012 1.71153 · 1011 5.29855 · 1011 0.25 60 434

RXJ1159 — 8.97997 · 1013 4.33256 · 1012 7.34414 · 1011 5.38799 · 1011 0.29 64 568

The gas is, as a consequence, clearly the dominant visible
component, starting from innermost regions out to large
radii, being galaxy mass only 20 ÷ 25% of gas mass. A
similar behavior is shown by all the clusters considered in
our sample.

11.4. Uncertainties on Mass Profiles. Uncertainties on the
cluster total mass profiles have been estimated performing
Monte-Carlo simulations [132]. We proceed to simulate
temperature profiles and choose random radius-temperature
values couples for each bin which we have in our temperature
data given by [128]. Random temperature values have been
extracted from a Gaussian distribution centered on the spec-
tral values, and with a dispersion fixed to its 68% confidence
level. For the radius, we choose a random value inside
each bin. We have performed 2000 simulations for each
cluster and perform two cuts on the simulated profile. First,
we exclude those profiles that give an unphysical negative
estimate of the mass: this is possible when our simulated
couples of quantities give rise to too high temperature-
gradient. After this cut, we have ≈1500 simulations for any
cluster. Then we have ordered the resulting mass values for
increasing radius values. Extreme mass estimates (outside
the 10 ÷ 90% range) are excluded from the obtained
distribution, in order to avoid other high mass gradients
which give rise to masses too different from real data.
The resulting limits provide the errors on the total mass.
Uncertainties on the electron-density profiles has not been
included in the simulations, being them negligible with
respect to those of the gas-temperature profiles.

11.5. Fitting the Mass Profiles. In the above sections, we have
shown that, with the aid of X-ray observations, modelling
theoretically the galaxy distribution and using (133), we
obtain an estimate of the baryonic content of clusters.

We have hence performed a best-fit analysis of the
theoretical (133)

Mbar,th(r) = 4a1

3

[

− kT(r)
μmpG

r

(
d ln ρgas(r)

d ln r
+
d lnT(r)
d ln r

)]

− 4a1

3G
r2 dΦC

dr
(r)

(140)

versus the observed mass contributions

Mbar,obs(r) =Mgas(r) +Mgal(r) +MCDgal(r) (141)

Since not all the data involved in the above estimate have
measurable errors, we cannot perform an exact χ-square
minimization: Actually, we can minimize the quantity:

χ2 = 1
N − np − 1

·
N∑

i=1

(
Mbar,obs −Mbar,theo

)2

Mbar,theo
, (142)

where N is the number of data and np = 2 the free
parameters of the model. We minimize the χ-square using
the Markov Chain Monte Carlo Method (MCMC). For each
cluster, we have run various chains to set the best parameters
of the used algorithm, the Metropolis-Hastings one: starting
from an initial parameter vector p (in our case p = (a1, a2)),
we generate a new trial point p′ from a tested proposal
density q(p′, p), which represents the conditional probability
to get p′, given p. This new point is accepted with probability

α
(

p, p′
) = min

{

1,
L
(

d | p′
)
P
(

p′
)
q
(

p′, p
)

L
(

d | p
)
P
(

p
)
q
(

p, p′
)

}

, (143)

where d are the data, L(d | p′) ∝ exp(−χ2/2) is the likelihood
function, and P(p) is the prior on the parameters. In our
case, the prior on the fit parameters is related to (109): being
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Table 2: Column 1: Cluster name. Column 2: first derivative coefficient, a1, of f (R) series. Column 3: 1σ confidence interval for a1. Column
4: second derivative coefficient, a2, of f (R) series. Column 5: 1σ confidence interval for a2. Column 6: characteristic length, L, of the modified
gravitational potential, derived from a1 and a2. Column 7: 1σ confidence interval for L.

Name a1 [a1 − 1σ , a1 + 1σ] a2 [a2 − 1σ , a2 + 1σ] L [L− 1σ , L + 1σ]

(kpc2) (kpc2) (kpc) (kpc)

A133 0.085 [0.078, 0.091] −4.98 · 103 [−2.38 · 104, −1.38 · 103] 591.78 [323.34, 1259.50]

A262 0.065 [0.061, 0.071] −10.63 [−57.65, −3.17] 31.40 [17.28, 71.10]

A383 0.099 [0.093, 0.108] −9.01 · 102 [−4.10 · 103, −3.14 · 102] 234.13 [142.10, 478.06]

A478 0.117 [0.114, 0.122] −4.61 · 103 [−1.01 · 104, −2.51 · 103] 484.83 [363.29, 707.73]

A907 0.129 [0.125, 0.136] −5.77 · 103 [−1.54 · 104, −2.83 · 103] 517.30 [368.84, 825.00]

A1413 0.115 [0.110, 0.119] −9.45 · 104 [−4.26 · 105, −3.46 · 104] 2224.57 [1365.40, 4681.21]

A1795 0.093 [0.084, 0.103] −1.54 · 103 [−1.01 · 104, −2.49 · 102] 315.44 [133.31, 769.17]

A1991 0.074 [0.072, 0.081] −50.69 [−3.42 · 102, −13] 64.00 [32.63, 159.40]

A2029 0.129 [0.123, 0.134] −2.10 · 104 [−7.95 · 104, −8.44 · 103] 988.85 [637.71, 1890.07]

A2390 0.149 [0.146, 0.152] −1.40 · 106 [−5.71 · 106, −4.46 · 105] 7490.80 [4245.74, 15715.60]

MKW4 0.054 [0.049, 0.060] −23.63 [−1.15 · 102, −8.13] 51.31 [30.44, 110.68]

RXJ1159 0.048 [0.047, 0.052] −18.33 [−1.35 · 102, −4.18] 47.72 [22.86, 125.96]

L a length, we need to force the ratio a1/a2 to be positive.
The proposal density is Gaussian symmetric with respect of
the two vectors p and p′, namely q(p, p′) ∝ exp(−Δp2/2σ2),
with Δp = p − p′; we decide to fix the dispersion σ of any
trial distribution of parameters equal to 20% of trial a1 and
a2 at any step. This means that the parameter α reduces to the
ratio between the likelihood functions.

We have run one chain of 105 points for every cluster;
the convergence of the chains has been tested using the
power spectrum analysis from [133]. The key idea of this
method is, at the same time, simple and powerful: if we
take the power spectra of the MCMC samples, we will have a
great correlation on small scales but, when the chain reaches
convergence, the spectrum becomes flat (like a white noise
spectrum); so that, by checking the spectrum of just one
chain (instead of many parallel chains as in Gelmann-Rubin
test) will be sufficient to assess the reached convergence.
Remanding to [133] for a detailed discussion of all the
mathematical steps. Here we calculate the discrete power
spectrum of the chains:

Pj =
∣
∣∣a

j
N

∣
∣∣

2
(144)

with

a
j
N =

1√
N

N−1∑

n=0

xn exp
[
i
2π j
N

n
]

, (145)

where N and xn are the length and the element of the sample
from the MCMC, respectively, j = 1, . . . ,N/2 − 1. The
wavenumber kj of the spectrum is related to the index j by
the relation kj = 2π j/N . Then we fit it with the analytical
template:

P(k) = P0
(k∗/k)α

1 + (k∗/k)α
(146)

or in the equivalent logarithmic form

lnPj = lnP0 + ln

⎡

⎢
⎣

(
k∗/kj

)α

1 +
(
k∗/kj

)α

⎤

⎥
⎦− γ + r j , (147)

where γ = 0.57216 is the Euler-Mascheroni number and r j
are random measurement errors with 〈r j〉 = 0 and 〈rir j〉 =
δi jπ2/6. From the fit, we estimate the two fundamental
parameters, P0 and j∗ (the index corresponding to k∗). The
first one is the value of the power spectrum extrapolated
for k → 0 and, from it, we can derive the convergence
ratio from r ≈ (P0/N); if r < 0.01, we can assume that
the convergence is reached. The second parameter is related
to the turning point from a power-law to a flat spectrum.
It has to be >20 in order to be sure that the number of
points in the sample, coming from the convergence region,
are more than the noise points. If these two conditions are
verified for all the parameters, then the chain has reached
the convergence and the statistics derived from MCMC well
describes the underlying probability distribution (typical
results are shown in Figures 2 and 3). Following [133]
prescriptions, we perform the fit over the range 1 ≤ j ≤ jmax,
with jmax ∼ 10 j∗, where a first estimation of j∗ can be
obtained from a fit with jmax = 1000, and then performing
a second iteration in order to have a better estimation of it.
Even if the convergence is achieved after few thousand steps
of the chain, we have decided to run longer chains of 105

points to reduce the noise from the histograms and avoid
under- or over estimations of errors on the parameters. The
i−σ confidence levels are easily estimated deriving them from
the final sample the 15.87-th and 84.13-th quantiles (which
define the 68% confidence interval) for i = 1, the 2.28-th
and 97.72-th quantiles (which define the 95% confidence
interval) for i = 2 and the 0.13-th and 99.87-th quantiles
(which define the 99% confidence interval) for i = 3.

After the description of the method, let us now comment
on the achieved results.
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Figure 5: (a) histogram of the sample points for parameter a1

in Abell 383 coming out the MCMC implementation used to
estimate best fit values and errors for our fitting procedure as
described in Section 11.5. Binning (horizontal axis) and relative
frequencies (vertical axis) are given by automatic procedure from
Mathematica6.0. (b) power spectrum test on sample chain for
parameter a1 using the method described in Section 11.5. Black
line is the logarithm of the analytical template (146) for power
spectrum; gray line is the discrete power spectrum obtained using
(144)–(145).

12. Results

The numerical results of our fitting analysis are summarized
in Table 2; we give the best fit values of the independent
fitting parameters a1 and a2, and of the gravitational length
L, considered as a function of the previous two quantities.
In Figures 3–5, we give the typical results of fitting, with
histograms and power spectrum of samples derived by the
MCMC, to assess the reached convergence (flat spectrum at
large scales).

The main property of our results is the presence of a
typical scale for each cluster above which our model works
really good (typical relative differences are less than 5%),
while for lower scale there is a great difference. It is possible to
see, by a rapid inspection, that this turning-point is located
at a radius ≈ 150 kpc. Except for very large clusters, it is
clear that this value is independent of the cluster, being

approximately the same for any member of the considered
sample.

There are two main independent explanations that could
justify this trend: limits due to a break in the state of
hydrostatic equilibrium or limits in the series expansion of
the f (R)-models.

If the hypothesis of hydrostatic equilibrium is not correct,
then we are in a regime where the fundamental relations
(121)–(127), are not working. As discussed in [128], the
central (70 kpc) region of every cluster is strongly affected
by radiative cooling and thus it cannot directly be related
to the depth of the cluster potential well. This means that,
in this region, the gas is not in hydrostatic equilibrium but
in a multi-phase, turbulent state, mainly driven by some
astrophysical, nongravitational interaction. In this case, the
gas cannot be used as a good standard tracer.

We have also to consider another limit of our modelling:
the requirement that the f (R)-function is Taylor expandable.
The corrected gravitational potential which we have consid-
ered is derived in the weak field limit, which means

R− R0 � a1

a2
, (148)

where R0 is the background value of the curvature. If this
condition is not satisfied, the approach does not work (see
[123] for a detailed discussion of this point). Considering
that a1/a2 has the dimension of length−2 this condition
defines the length scale where our series approximation can
work. In other words, this indicates the limit in which the
model can be compared with data.

For the considered sample, the fit of the parameters a1

and a2, spans the length range {19; 200} kpc (except for the
biggest cluster). It is evident that every galaxy cluster has a
proper gravitational length scale. It is worth noticing that a
similar situation, but at completely different scales, has been
found out for low surface brightness galaxies modelled by
f (R)-gravity [78].

Considering the data at our disposal and the analysis
which we have performed, it is not possible to quantify
exactly the quantitative amount of these two different
phenomena (i.e., the radiative cooling and the validity of the
weak field limit). However, they are not mutually exclusive
but should be considered in details in view of a more refined
modelling. (Other secondary phenomena as cooling flows,
merger and asymmetric shapes have to be considered in view
of a detailed modelling of clusters. However, in this work, we
are only interested to show that extended gravity could be a
valid alternative to dark matter in order to explain the cluster
dynamics.)

Similar issues are present also in [134]: they use the
the Metric-Skew-Tensor-Gravity (MSTG) as a generalization
of the Einstein General Relativity and derive the gas mass
profile of a sample of clusters with gas being the only
baryonic component of the clusters. They consider some
clusters included in our sample (in particular, A133, A262,
A478, A1413, A1795, A2029, MKW4) and they find the same
different trend for r ≤ 200 kpc, even if with a different
behavior with respect of us: our model gives lower values
than X-ray gas mass data while their model gives higher
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values with respect to X-ray gas mass data. This stresses
the need for a more accurate modelling of the gravitational
potential.

However, our goal is to show that potential (108) is
suitable to fit the mass profile of galaxy clusters and that it
comes from a self-consistent theory.

In general, it can be shown that the weak field limit of
extended theories of gravity has Yukawa-like corrections [77,
135]. Specifically, given theory of gravity of order (2n+2), the
Yukawa corrections to the Newtonian potential are n [136].
This means that if the effective Lagrangian of the theory is

L = f
(
R, �R, . . . , �kR, . . . , �nR

)√−g (149)

we have

φ(r) = −GM
r

⎡

⎣1 +
n∑

k=1

αke
−r/Lk

⎤

⎦. (150)

Standard General Relativity, where Yukawa corrections are
not present, is recovered for n = 0 (second order theory)
while the f (R)-gravity is obtained for n = 1 (fourth-order
theory). Any � operator introduces two further derivation
orders in the field equations. This kind of Lagrangian comes
out when quantum field theory is formulated on curved
spacetime [137]. In the series (150), G is the value of
the gravitational constant considered at infinity, Lk is the
interaction length of the k-th component of the nonNew-
tonian corrections. The amplitude αk of each component
is normalized to the standard Newtonian term; the sign of
αk tells us if the corrections are attractive or repulsive (see
[138] for details). Moreover, the variation of the gravitational
coupling is involved. In our case, we are taking into account
only the first term of the series. It is the the leading term. Let
us rewrite (108) as

φ(r) = −GM
r

[
1 + α1e

−r/L1

]
. (151)

The effect of nonNewtonian term can be parameterized by
{α1,L1} which could be a useful parameterisation which
respect to our previous {a1, a2} or {Geff,L} with Geff =
3G/(4a1). For large distances, where r � L1, the exponential
term vanishes and the gravitational coupling is G. If r �
L1, the exponential becomes 1 and, by differentiating (151)
and comparing with the gravitational force measured in
laboratory, we get

Glab = G
[

1 + α1

(
1 +

r

L1

)
e−r/L1

]
� G(1 + α1), (152)

whereGlab = 6.67×10−8 g−1cm3s−2 is the usual Newton con-
stant measured by Cavendish-like experiments. Of course,
G and Glab coincide in the standard Newtonian gravity. It
is worth noticing that, asymptotically, the inverse square
law holds but the measured coupling constant differs by
a factor (1 + α1). In general, any correction introduces a
characteristic length that acts at a certain scale for the self-
gravitating systems as in the case of galaxy cluster which we
are examining here. The range of Lk of the kth-component

of nonNewtonian force can be identified with the mass mk of
a pseudo-particle whose effective Compton’s length can be
defined as

Lk = �

mkc
. (153)

The interpretation of this fact is that, in the weak energy
limit, fundamental theories which attempt to unify gravity
with the other forces introduce, in addition to the massless
graviton, particles with mass which also carry the gravita-
tional interaction [139]. See, in particular, [140] for f (R)-
gravity. These masses are related to effective length scales
which can be parameterized as

Lk = 2× 10−5
(

1 eV
mk

)
cm. (154)

There have been several attempts to experimentally constrain
Lk and αk (and then mk) by experiments on scales in the
range 1 cm < r < 1000 km, using different techniques [141–
143]. In this case, the expected masses of particles which
should carry the additional gravitational force are in the
range 10−13 eV < mk < 10−5 eV. The general outcome of
these experiments, even retaining only the term k = 1,
is that geophysical window between the laboratory and the
astronomical scales has to be taken into account. In fact, the
range

|α1| ∼ 10−2, L1 ∼ 102 ÷ 103 m (155)

is not excluded at all in this window. An interesting
suggestion has been given by Fujii [144], which proposed
that the exponential deviation from the Newtonian standard
potential could arise from the microscopic interaction which
couples the nuclear isospin and the baryon number.

The astrophysical counterparts of these nonNewtonian
corrections seemed ruled out till some years ago due to
the fact that experimental tests of General Relativity seemed
to predict the Newtonian potential in the weak energy
limit, “inside” the Solar System. However, as it has been
shown, several alternative theories seem to evade the Solar
System constraints (see [140, 145] and the references therein
for recent results) and, furthermore, indications of an
anomalous, long-range acceleration revealed from the data
analysis of Pioneer 10/11, Galileo, and Ulysses spacecrafts
(which are now almost outside the Solar System) makes
these Yukawa-like corrections come again into play [146].
Besides, it is possible to reproduce phenomenologically the
flat rotation curves of spiral galaxies considering the values

α1 = −0.92, L1 ∼ 40 kpc. (156)

The main hypothesis of this approach is that the additional
gravitational interaction is carried by some ultra-soft boson
whose range of mass is m1 ∼ 10−27 ÷ 10−28 eV. The action
of this boson becomes efficient at galactic scales without the
request of enormous amounts of dark matter to stabilize the
systems [147].

Furthermore, it is possible to use a combination of two
exponential correction terms and give a detailed explanation
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Figure 6: Density versus a1: predictions on the behavior of a1. The
horizontal black bold line indicates the Newtonian-limit, a1 → 3/4
which we expect to be realized on scales comparable with Solar
System. Vertical lines indicate typical approximated values of matter
density (without dark matter) for different gravitational structures:
Universe (bold dashed) with critical density ρcrit ≈ 10−26 kg/m3;
galaxy clusters (dashed line) with ρcl ≈ 10−23 kg/m3; galaxies
(dot-dashed) with ρgal ≈ 10−11 kg/m3; sun (dotted) with ρsun ≈
103 kg/m3. Arrows and boxes show the predicted trend for a1.

of the kinematics of galaxies and galaxy clusters, again
without dark matter model [143].

It is worthwhile to note that both the spacecrafts
measurements and galactic rotation curves indications come
from “outside” the usual Solar System boundaries used up
to now to test General Relativity. However, the above results
do not come from any fundamental theory to explain the
outcome of Yukawa corrections. In their contexts, these
terms are phenomenological.

Another important remark in this direction deserves the
fact that some authors [148] interpret also the experiments
on cosmic microwave background like the experiment
BOOMERANG and WMAP [20, 23] in the framework of
modified Newtonian dynamics again without invoking any
dark matter model.

All these facts point towards the line of thinking that also
corrections to the standard gravity have to be seriously taken
into account beside dark matter searches.

In our case, the parameters a1,2, which determine the
gravitational correction and the gravitational coupling, come
out “directly” from a field theory with the only requirement
that the effective action of gravity could be more general than
the Hilbert-Einstein theory f (R) = R. This main hypothesis
comes from fundamental physics motivations due to the
fact that any unification scheme or quantum field theory
on curved space have to take into account higher order
terms in curvature invariants [137]. Besides, several recent
results point out that such corrections have a main role
also at astrophysical and cosmological scales. For a detailed
discussion, see [48, 125, 149].

With this philosophy in mind, we have plotted the
trend of a1 as a function of the density in Figure 6. As
one can see, its values are strongly constrained in a narrow
region of the parameter space, so that a1 can be considered

a “tracer” for the size of gravitational structures. The value
of a1 range between {0.8 ÷ 0.12} for larger clusters and
{0.4 ÷ 0.6} for poorer structures (i.e., galaxy groups like
MKW4 and RXJ1159). We expect a particular trend when
applying the model to different gravitational structures. In
Figure 6, we give characteristic values of density which range
from the biggest structure, the observed Universe (bold
dashed vertical line), to the smallest one, the Sun (vertical
dotted line), through intermediate steps like clusters (vertical
dashed line) and galaxies (vertical dot-dashed line). The bold
black horizontal line represents the Newtonian limit a1 = 3/4
and the boxes indicate the possible values of a1 that we obtain
by applying our theoretical model to different structures.

Similar considerations hold also for the characteristic
gravitational length L directly related to both a1 and a2. The
parameter a2 shows a very large range of variation {−106 ÷
−10} with respect to the density (and the mass) of the
clusters. The value of L changes with the sizes of gravitational
structure (see Figure 7), so it can be considered, beside
the Schwarzschild radius, a sort of additional gravitational
radius. Particular care must be taken when considering
Abell 2390, which shows large cavities in the X-ray surface
brightness distribution, and whose central region, highly
asymmetric, is not expected to be in hydrostatic equilibrium.
All results at small and medium radii for this cluster could
hence be strongly biased by these effects [129]; the same will
hold for the resulting exceptionally high value of L. Figure 7
shows how observational properties of the cluster, which well
characterize its gravitational potential (such as the average
temperature and the total cluster mass within r500, plotted
in the left and right panel, resp.), well correlate with the
characteristic gravitational length L.

For clusters, we can define a gas-density-weighted and
a gas-mass-weighted mean, both depending on the series
parameters a1,2. We have

〈L〉ρ = 318 kpc 〈a2〉ρ = −3.40 · 104,

〈L〉M = 2738 kpc 〈a2〉M = −4.15 · 105.
(157)

It is straightforward to note the correlation with the sizes
of the cluster cD-dominated-central region and the ”grav-
itational” interaction length of the whole cluster. In other
words, the parameters a1,2, directly related to the first and
second derivative of a given analytic f (R)-model determine
the characteristic sizes of the self gravitating structures. We
have plotted the baryonic mass versus radii for the clusters of
the sample in Figures 8, 9, 10, 11, and 12.

13. What We Have Learnt from Clusters

We have investigated the possibility that the high obser-
vational mass-to-light ratio of galaxy clusters could be
addressed by f (R)-gravity without assuming huge amounts
of dark matter. We point out that this proposal comes
out from the fact that, up to now, no definitive candidate
for dark-matter has been observed at fundamental level
and then alternative solutions to the problem should be
viable. Furthermore, several results in f (R)-gravity seem to
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Figure 7: Single temperature fit to the total cluster spectrum (a) and total cluster mass within r500 (given as a function of M�) (b) are plotted
as a function of the characteristic gravitational length L. Temperature and mass values are from [129].
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Figure 8: As an example of the above results, we have plotted
the baryonic mass vs radii for Abell A133. Dashed line is the
experimental-observed estimation (141) of baryonic matter com-
ponent (i.e., gas, galaxies and cD-galaxy); solid line is the theoretical
estimation (140) for baryonic matter component. Dotted lines are
the 1-σ confidence levels given by errors on fitting parameters plus
statistical errors on mass profiles as discussed in Section 11.4 in the
right panel.

confirm that valid alternatives to ΛCDM can be achieved
in cosmology. Besides, as discussed in the introduction, the
rotation curves of spiral galaxies can be explained in the weak
field limit of f (R)-gravity. Results of our analysis go in this
direction.

We have chosen a sample of relaxed galaxy clusters
for which accurate spectroscopic temperature measurements
and gas mass profiles are available. For the sake of simplicity,
and considered the sample at our disposal, every cluster
has been modelled as a self-bound gravitational system with
spherical symmetry and in hydrostatic equilibrium. The

M
(M

�
)

1

5

10

50

100

500
×1011

r (kpc)

100 150 200 300 500 700

Figure 9: As the above case, for cluster Abell 383.

mass distribution has been described by a corrected grav-
itational potential obtained from a generic analytic f (R)-
theory. In fact, as soon as f (R) /=R, Yukawa-like exponential
corrections emerge in the weak field limit while the standard
Newtonian potential is recovered only for f (R) = R, the
Hilbert-Einstein theory.

Our goal has been to analyze if the dark-matter content of
clusters can be addressed by these correction potential terms.
As discussed in detail in the previous sections and how it is
possible to see by a rapid inspection of figures, the clusters
of the sample are consistent with the proposed model at 1σ
confidence level. This shows, at least qualitatively, that the
high mass-to-light ratio of clusters can be explained by using
a modified gravitational potential. The good agreement is
achieved on distance scales starting from 150 kpc up to
1000 kpc. The differences observed at smaller scales can be
ascribed to nongravitational phenomena, such as cooling
flows, or to the fact that the gas mass is not a good tracer
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Figure 10: As the above cases, for cluster Abell 478.
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Figure 11: As the above cases, for cluster Abell 1413.

at this scales. The remarkable result is that we have obtained
a consistent agreement with data only using the corrected
gravitational potential in a large range of radii. In order to
put in evidence this trend, we have plotted the baryonic mass
versus radii considering, for each cluster, the scale where the
trend is clearly evident.

In our knowledge, the fact that f (R)-gravity could work
at these scales has been only supposed but never achieved by
a direct fitting with data (see [82, 85] for a review). Starting
from the series coefficients a1 and a2, it is possible to state
that, at cluster scales, two characteristic sizes emerge from
the weak field limit of the theory. However, at smaller scales,
for example, Solar System scales, standard Newtonian gravity
has to be dominant in agreement with observations and
experiments.

In summary, if our considerations are right, gravitational
interaction depends on the scale and the infrared limit
is led by the series coefficient of the considered effective
gravitational Lagrangian. Roughly speaking, we expect that
starting from cluster scale to galaxy scale, and then down to
smaller scales as Solar System or Earth, the terms of the series
lead the clustering of self-gravitating systems beside other
nongravitational phenomena. In our case, the Newtonian
limit is recovered for a1 → 3/4 and L(a1, a2) � r at small
scales and for L(a1, a2) � r at large scales. In the first case,
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Figure 12: As the above cases, for cluster Abell 2029.

the gravitational coupling has to be redefined, in the second
G∞ � G. In these limits, the linear Ricci term is dominant
in the gravitational Lagrangian and the Newtonian gravity
is restored [136]. Reversing the argument, this could be the
starting point to achieve a theory capable of explaining the
strong segregation in masses and sizes of gravitationally-
bound systems.

14. Conclusions

The present status of art of cosmology shows that the
Standard Cosmological Model, based on General Relativity,
nucleosynthesis, cosmic abundances and large scale struc-
ture, has some evident difficulties. These ones, first of all,
rely on some lack of a self-consistent formulation of missing
matter and cosmic acceleration issues; such shortcomings
give rise to further difficulties in interpreting observational
data. With an aphorism, one can say that we have a book, but
not the alphabet to read it.

Nowadays there two main philosophical approaches
aimed to solve this problem. From one side, there are
researchers which try to solve shortcomings of Standard
Cosmological Model assuming that General Relativity is
right but we need some exotic, invisible kinds of energy and
matter to explain cosmic dynamics and large scale structure.
On the other side, there are people which believe that General
Relativity is not the definitive and comprehensive theory of
gravity, and that it should be revised at ultraviolet scales
(quantum gravity) and infrared scales (extragalactic and
cosmic scales). In the latter case, dark energy and dark matter
could be nothing else but the signals that we need a more
general theory at large scales, also if General Relativity works
very well up to Solar System scales. To some extent, this could
be seen as a sort of philosophical debate without solution, but
there are possibilities to move the question toward a physical
viewpoint.

The f (R)-gravity is strictly related to the second point
of view. It is a fruitful approach to generalize General
Relativity towards the solution also if, most of the models
in literature are nothing else but phenomenological models.
It is interesting to note that as soon as Einstein formulated
his General Relativity, many authors (and Einstein himself)
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started to explore other possibilities (see [48] for a review).
At the beginning, these researches were mainly devoted to
check the mathematical consistency of General Relativity but
the issues to achieve the unification of gravity with the other
interactions (e.g., electromagnetism) pushed several authors
to develop alternative gravity theories. Today, one of the goals
of alternative gravity is to understand the effective content
and dynamics of the Universe. This question is recently
become dramatic since assuming that more than 95% of
cosmic matter-energy is unknown at fundamental level is
highly disturbing. Alternative gravity could be a way out to
this situation. The present status of observations, also if we
are living in the era of Precision Cosmology, does not allow
in discriminating between alternative gravity, from one side,
and the presence of dark energy and dark matter, from the
other side (the forthcoming LHC experiments should aid in
this sense if new fundamental particles will be detected).

However, as discussed in this review, cosmography may
be a useful tool to discriminate among different cosmological
models being, by definition, a model-independent approach:
any cosmographic parameter can be estimated without
assigning an a priori cosmological model. So cosmography
can be used in two ways

(i) One can use it to discriminate between General
Relativity and alternative theories. This issue strictly
depends on the possibility to have good quality data
at disposal. We need some minimum sensibility and
error requirements on data surveys to solve this
question. At the moment, we have not them and we
are not able to do this since standard candles are not
available at very high red shifts [112].

(ii) We can use the cosmographic parameters to con-
straint cosmological models as we have done in
this paper for f (R)-gravity. Being these parameters
model-independent, they results natural “priors” to
any theory. As above, the accuracy in estimating them
is a crucial issue.

We have used, essentially, SNeIa but other classes of objects
have to be considered in order to improve such an accuracy
(e.g., CMBR, bright galaxies, GRBs, BAOs, weak lensing and
so on). Forthcoming space missions will be extremely useful
in this sense.

Beside cosmography, we have discussed also if f (R)-
gravity could be useful to address the problem of mass profile
and dynamics of galaxy clusters. This issue is crucial in view
of achieving any correct model for large scale structure.

Taking into account the weak-field limit of a generic
analytic f (R)-function, it is possible to obtain a scale-
dependent gravity, where scales of self-gravitating systems
could naturally emerge. In this way, one could successfully
explain dark matter profiles ranging from galaxies to clusters
of galaxies. The results are preliminary but seems to indicate
a way in which the dark matter puzzle could be completely
solved.

In conclusion, the main lesson of this work is that
since it is very difficult to discriminate among the huge
amount of cosmological models which try to explain the

data (deductive approach), it could be greatly fruitful to
“reconstruct” the final cosmological model by an inductive
approach, that is without imposing it a priori but adopting
the philosophy to use the minimum number of parameters.
(Following the Occam razor prescriptions: “Entia non sunt
multiplicanda praeter necessitatem.”) This “inverse scattering
approach” could be not fully satisfactory but could lead to
self-consistent results.
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