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A sound card based multi-channel frequency measurement
system
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Abstract. For physical processes which express themselves as a frequency, for example magnetic field
measurements using optically-pumped alkali-vapor magnetometers, the precise extraction of the frequency
from the noisy signal is a classical problem. We describe herein a frequency measurement system based on
an inexpensive commercially available computer sound card coupled with a software single-tone estimator
which reaches Cramér–Rao limited performance, a feature which commercial frequency counters often lack.
Characterization of the system and examples of its successful application to magnetometry are presented.
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1 Introduction

The present work is motivated by the need for a high res-
olution frequency measurement system for analyzing sig-
nals generated by optically-pumped cesium magnetome-
ters [1]. A set of such magnetometers will be used for a
detailed investigation of magnetic field fluctuations and
gradients in an experiment searching for a neutron elec-
tric dipole moment (nEDM). The experiment calls for a
magnetic field of between 1 to 2 μT controlled at the 80 fT
level when measured over 100 s time intervals, control cor-
responding to a relative uncertainty between 40 to 80 ppb.
The magnetometers are based on the fact that for low
magnetic fields the Larmor precession frequency fL in a
vapor of Cs atoms is proportional to the modulus of the
magnetic field B

fL = γ |B| . (1)

The proportionality factor γ is a combination of funda-
mental and material constants and has a value of about
3.5 kHz/μT for 133Cs. The precession of the atoms mod-
ulates the resonant absorption coefficient of the cesium
vapor, which is measured by a photodiode monitoring the
power of a laser beam traversing the atomic vapor [2].
In the self-oscillating mode of operation [2,3] the magne-
tometer signal is of the form

s(t) = A sin (2πfLt + φ) + s0. (2)

The Larmor frequency, fL, has to be extracted from the
signal. Equation (1) connects the frequency determination
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precision directly to the resulting field measurement pre-
cision. The basic demand on the frequency measurement
system in order to achieve the required field precision is
a resolution of a few hundred μHz in an integration time
of 100 s. Moreover, the synchronous detection of signals
from an array of magnetometers requires a cost-effective
multi-channel solution.

In our recent study [3] of optically–pumped magne-
tometer performance, frequency measurements were made
with a commercial frequency counter (Stanford Research
Systems, model SR620), which has a limited frequency res-
olution, thereby limiting the magnetic field determination.
Frequency counters rely on the detection of zero crossings
of a periodic signal in a given dwell time. Their perfor-
mance is limited by their resolution of the zero crossing
times, an event which is affected by the amplitude, offset,
and phase noise of the signal. In demanding applications,
such as the one investigated here, that timing jitter limits
the ultimate frequency resolution of the magnetometer sig-
nal measurement. Put simple, the limitation of frequency
counters is due to the fact that they use only informa-
tion in the vicinity of the zero crossings, while valuable
wave form information from in between the zero crossings
is ignored.

As a more powerful alternative one can use numerical
frequency estimation algorithms to extract the frequency
from the complete waveform sampled at an appropriate
rate and with a sufficient resolution. The performance of
an ADC-based measurement system for measuring a sin-
gle frequency of about 8 Hz was discussed in [4]. Under
the assumption that a stable clock triggers the ADC, the
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authors in [4] show that the lower limit of the frequency
resolution of their system coincides with the Cramér–Rao
lower bound (CRLB) [5]. The CRLB is a well-known con-
cept from information theory and describes principle lim-
its for the estimation of parameters from sampled signals.

In our application, the Larmor frequency in a mag-
netic field of 2 μT lies in the audio frequency range
(fL = 7 kHz). We have investigated whether a com-
mercially available (and rather inexpensive) professional
multi-channel sound card would present a viable solution
for sampling the magnetometer signals. The estimation of
the frequency from the sampled data was done by a soft-
ware algorithm. In the following we will show that such a
simple system can indeed be used for CRLB limited real-
time frequency measurements and for a detailed study of
noise processes which limit the precision of atomic mag-
netometers.

2 The system

The frequency measurement system consists of a profes-
sional sound card (M–Audio Delta 1010) for digitizing the
analog input data, an atomic clock to provide a stable
time reference, and a standard personal computer (PC)
which reads the data and runs the frequency estimation
algorithm. The sound card provides 8 analog input chan-
nels in a breakout box that connects to a PCI interface
card in the PC. The analog input signals can be sampled
with a resolution of up to 24 bit at a sampling rate of up
to 96 kHz. In order to limit the amount of data we used
only 16-bit resolution, which was proven to yield suffi-
cient precision. Jitter or drifts of the sampling rate induce
additional phase noise on the sampled signal which can
seriously degrade the precision of the frequency estima-
tion. An essential feature of the Delta 1010 sound card
is its “world clock” input which can be used to phase-
lock the internal clock of the sound card to an external
96 kHz time base. The time base was realized by a fre-
quency generator synchronized to the 10 MHz signal of
a rubidium frequency standard (Stanford Research Sys-
tems, model PRS10). The Rb frequency standard provides
a relative stability of 10−12 in 100 s which minimizes pos-
sible sampling rate jitter and drifts far below the required
level. The requirements for the PC system are not very de-
manding as long as it allows for the continuous recording
of the 16 bit data sampled at a rate of 96 kHz (5.8 GB/h
for 8 channels). A 1.8 GHz Pentium-4 processor was fast
enough for real-time frequency determination for all eight
channels at a given integration time. However, for the de-
tailed analysis described below, in which the integration
time is varied, the time series were evaluated off-line from
the stored sampled data.

3 Performance

Considering the magnetometer signal given by equa-
tion (2), the frequency fL is to be determined from the

AC-coupled signal data which, after sampling, are of the
form

xn = A sin

[
2π

n∑
k=1

(fL + δfk)Δt + φ0+δφn

]
+ δxn, (3)

n = (0, . . . , N − 1) ,

where A is the signal amplitude, Δt the time resolution
(inverse of the sampling rate rs), and φ0 the initial phase.
The number of sample points is N = τ/Δt (= τrs), where
τ is the measurement integration time. Also shown is the
noise contribution at each point n arising from phase noise
δφn, frequency noise

∑n
k=1 δfk, and offset noise δxn. The

frequency is determined from the data xn by a maximum
likelihood estimator based on a numerical Fourier trans-
formation which provides a CRLB limited value [6]. The
algorithm iteratively searches for the frequency f that
maximizes the modulus of the Fourier sum

MF (f) =

∣∣∣∣∣
N−1∑
n=0

xnWn exp
(

i
2πf

rs
n

)∣∣∣∣∣ , (4)

where Wn is a windowing function.
Under ideal conditions (stable field and ideal electron-

ics), the frequency and phase noise (δfk and δφn) are not
present in the signal (Eq. (3)). The fundamental noise
contribution is the photocurrent shot noise, which is pro-
portional to the square root of the DC offset s0 in equa-
tion (2). The noise is converted, by a transimpedance
amplifier, to voltage Vpc and has a Gaussian amplitude
distribution with zero mean, corresponding to a white
frequency spectrum that is characterized by its power
spectral density ρ2

x (in V2/Hz). The signal-to-noise ratio
(SNR) is defined as A2/(ρ2

xfs), where fs = (2Δt)−1 =
rs/2 is the sampling rate limited bandwidth, i.e., the
Nyquist frequency or the highest frequency that can be
detected unaliased. The CRLB of the frequency estima-
tion from such an ideal magnetometer signal is given by
the variance [5]

σ2
CRLB =

3ρ2
x

π2A2τ3
. (5)

In frequency metrology it is customary to represent fre-
quency fluctuations in terms of the Allan standard devia-
tion σA – or its square σ2

A, the Allan variance [7,8]. One
can show that for white noise σA coincides with the clas-
sical standard deviation [9]. A double logarithmic plot of
the dependence of σA on the integration time τ is a valu-
able tool for assigning the origin of the noise processes
that limit the performance of an oscillator (see for ex-
ample [7,8]). As shown in Table 1, the variance σ2

A de-
pends both on integration time τ and measurement band-
width fc, which, for a measurement interval τ , is given by
fc = (2τ)−1. When that relation between bandwidth and
integration time is inserted into the formulas given in the
central column of Table 1 [8], one finds the typical τ de-
pendencies of the Allan standard deviation σA shown in
the right-hand column. In the presence of several uncor-
related noise processes, α, the variance of the estimated
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Fig. 1. Allan standard deviation of the frequency of a synthe-
sized sine wave affected by different noise processes. From top
to bottom: flicker frequency noise (black dots), white frequency
noise (open circles), flicker phase noise (black triangles), white
phase noise (open triangles), white offset noise (black squares).

Table 1. The central column shows the dependence of the Al-
lan variance σ2

A on the integration time τ and measurement
bandwidth fc for the noise sources listed at the left [8]. White
noise sources α are characterized by their power spectral den-
sity ρ2

α. The frequency dependent spectral density of flicker
noise process α is modeled by ρ2

α(f) = h2
α/f . By assuming the

relation fc = (2τ )−1 we find the power laws which typify each
noise type, shown in the right hand column.

noise source σ2
A(τ ) σA(τ )

white offset
3

π2A2
·ρ2

x · 1

τ 3
∝ τ−3/2

flicker frequency 2 ln 2·h2
f ·1 ∝ τ 0

white frequency
1

2
·ρ2

f · 1τ ∝ τ−1/2

flicker phase
3

4π2
·h2

φ· ln(2πfcτ )

τ 2
∝ τ−1

white phase
3

8π
·ρ2

φ · fc

τ 2
∝ τ−3/2

frequency is given by

σ2 =
∑
α

σ2
α(f) . (6)

Note that for a magnetometer signal, the contribution
from equation (5) will always be present in the sum.

We first investigated whether our data analysis algo-
rithm reproduces the theoretical τ -dependencies shown in
Table 1. For that purpose we generated time series (16 bit,
96 kHz) corresponding to equation (3) with only one of the
phase, frequency, or offset noise terms enabled, and se-
lected with well defined spectral characteristics (flicker or
white). Figure 1 shows the Allan standard deviation σA of
those synthetic data. The emphasis here lies on the slopes
rather than on the absolute values, which were chosen to
yield a readable graph.
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Fig. 2. Allan standard deviation of the frequency of a sine
wave affected by different noise processes, measured with the
sound card (a–c, e) and a frequency counter (d): (a) white offset
noise, (b) white offset noise and flicker phase noise, (c) white
offset noise and flicker frequency noise. The dashed lines rep-
resent the dependencies calculated on an absolute scale us-
ing the applied noise amplitudes. (d) The same signal as in
(a) measured with a commercial frequency counter (Stanford
Research model SR620) with a 300 Hz input bandpass filter.
(e) Sound card measurement of the cleanest signal available
from the function generator.

Next, we investigated the ability of the sound card to
reach CRLB limited detection of a 7 kHz sine wave. The
wave was generated by a digital function generator (Agi-
lent, model 33220A) stabilized to the same Rb frequency
standard as the sound card. In order to simulate a signal
comparable to that of the magnetometers, the SNR A/ρx

of the function generator output was artificially decreased
from its nominal value of better than 5×105

√
Hz to about

1.3×105
√

Hz (in 1 Hz bandwidth) by adding white offset
noise. We recorded a 1 h time series of that signal, sampled
with 16-bit resolution. The data were analyzed with the
same algorithm as above and yielded an Allan standard
deviation σA(τ), shown as black dots in Figure 2a. The
measurement agrees on an absolute scale with the CRLB
calculated using equation (5) and the applied SNR. In ad-
dition to the offset noise, a second noise source was used to
apply 1/f noise, in turn, to the frequency or to the phase
modulation input of the function generator. The result-
ing σA of the measured data is shown in Figures 2b, c.
Figure 2d shows σA derived from the same signal as Fig-
ure 2a but analyzed by the commercial frequency counter
(Stanford Research Systems, model SR620) that was used
in [3]. The three points shown correspond to the three
possible integration times of the SR620. It can be clearly
seen that the counter technique does not allow the correct
measurement of these faint noise processes. However, ex-
trapolation of the data points suggest that for integration
times less than 10 ms the CRLB could be reached.

Figure 2e shows σA derived from a measurement of the
cleanest signal the function generator could produce. For
integration times above a few seconds, the measured Allan
standard deviation no longer follows the calculated CRLB.
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Fig. 3. (a) ASD σA of magnetic field fluctuations inside a
multi-layer magnetic shield. (b) Residual fluctuations of the
stabilized magnetic field. The dashed lines indicate the CRLB
(left) and an assumed white frequency noise limitation (right).
(c) Stability required for the proposed nEDM experiment.

This measurement indicates some kind of lower limit of
the frequency resolution of the sound card for integration
times above a few seconds. We could not clarify if that
behavior arose from a limitation within the sound card,
or from elsewhere in the signal treatment chain.

Finally, after the frequency estimator algorithm and
the sound card had proven their CRLB performance limit,
we used the system to analyze the frequency generated by
an optically-pumped magnetometer (OPM). A magnetic
field of 2 μT was produced by a solenoid driven by an
ultra-stable current source. The OPM signal in that field
is a 7 kHz sine wave. The OPM and the solenoid were
located in a 6-layer magnetic shield in order to suppress
external field fluctuations. Figure 3a shows σA of a 2 h
time series recorded with the sound card. The data rep-
resent pure magnetic field fluctuations. In particular, the
approximately 2 mHz fluctuations in the range between
2 to 200 s could be traced back to irregular current fluc-
tuations in the solenoid. Nevertheless, the relative field
stability – and therefore the relative current stability –
is on the order of 3 × 10−7 for that range of integration
times. However, for a 100 s integration time the field insta-
bility exceeds the requirement for the nEDM experiment
mentioned in the introduction.

In order to determine the magnetometer performance
limit, we actively stabilized the magnetic field in the fol-
lowing way. The magnetometer frequency was compared
to a stable reference oscillator (i.e., the Rb frequency
standard) by means of a phase comparator, and the error

signal was used to control the solenoid current, thus real-
izing a phase-locked loop. Figure 3b shows the Allan stan-
dard deviation of the OPM in the stabilized field, which is
CRLB-limited up to an integration time of 1 s. The noise
excess between 1 and 300 s above the limits expected from
the CRLB and the assumed white noise limitation shows
the limitation of the current stabilization scheme, which
nonetheless allows the suppression of the fluctuations by
three orders of magnitude at the integration time of inter-
est.

We have realized a frequency measurement system
based on a digital sound card and have shown that it yields
a performance superior to commercial frequency counters.
We have proven that the system yields CRLB limited fre-
quency resolution in measurements of sine waves affected
by various sources of noise. We have used the system
to prove that, at least in a limited range of integration
times, an active field stabilization by an optically pumped
magnetometer is limited by the theoretical Cramér-Rao
bound. The performance and the multi-channel feature of
the sound card and its external frequency reference option
present a low-cost alternative for applications requiring si-
multaneous characterization of several frequency genera-
tion systems, especially for long integration times.

We thank Francis Bourqui for help in developing the read-
out software. We acknowledge financial support from Schweiz-
erischer Nationalfonds (grant No. 200020–103864), and Paul
Scherrer Institute (PSI).
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