Experimental and Theoretical Study of 2,6-Difluorophenylnitrene, its Radical Cation, and of their Rearrangement Products in Argon Matrices.

Claudio Carra ‡ and Thomas Bally †

[†]Institute for Physical Chemistry, Perolles, CH-1700 University of Fribourg, Switzerland [‡]Department of Chemistry, University of Ottawa, ON- K1N 6N5, Canada

Supporting Information, Part 1

Table S1:	Vertical excitation energies of difluoroazirine 3b calculated by the CASPT2 method
Figure S1:	Active space of molecular orbitals of 3b referred to in the last column of Table S1.
Table S2:	Vertical excitation energies of difluoroketeneinime 4b calculated by the CASPT2 method
Figure S2:	Active space of molecular orbitals of 4b referred to in the last column of Table S2
Table S3:	Vertical excitation energies of difluoroketeneinime radical cation 4b ^{•+} calculated by the CASPT2 method
Figure S3:	Active space of molecular orbitals of $4b^{++}$ referred to in the last column of Table S3

state	ΔE_{CASSCF} eV	$\begin{array}{c} \Delta \: E_{CASPT2} \\ eV \end{array}$	reference weight ^b	λ nm	F c	Major configurations ^d
1	0.00	0.00	0.76	_	_	87% ground config.
2	4.57	3.78	0.75	328	3.9×10 ⁻³	42% H-1→L 26% H→L+1
3	5.52	4.25	0.74	291	2.3×10 ⁻³	35% H-1→L+1 +17% H→L +12% H→L+1
4	6.74	4.70	0.71	264	4.0×10 ⁻²	18% H→L +1 +18% H-1→L
5	7.50	5.17	0.73	240	1.4×10 ⁻¹	50% H→L 20% H→L+1
6	6.43	5.58	0.74	222	1.2×10 ⁻⁴	28% H-2→L +15% 2×[H→L]
7	7.88	6.06	0.71	205	9.6×10 ⁻³	16% H-2→L+1

Table S1: Vertical excitation energies of difluoroazirine **3b** calculated by the CASPT2 method *a*.

a based on a CASSCF(14,12)/ANO-S wavefunction at the B3LYP/6-3G(d) geometry; to eliminate intruder states, a level shift of 0.2 h was applied in the CASPT2 calculations; *b* weight of the zero-order CASSCF in the CASPT2 wavefunction; *c* oscillator strength for electronic transition; *d* Electron excitations within the active space of orbitals depicted in Figure S1.

state	ΔE_{CASSCF} eV	$\begin{array}{c} \Delta \: E_{CASPT2} \\ eV \end{array}$	reference weight ^b	λ nm	F c	Major configurations d
1A ₁	0.00	0.00	0.76	_	_	87% ground config.
2A ₁	3.65	2.97	0.75	417	2.0×10 ⁻²	60% H→L
3A ₁	4.02	3.39	0.75	366	6.7×10 ⁻³	50% H \rightarrow L+1 11% [H \rightarrow L+ H \rightarrow L+1]
4A ₁	5.21	4.27	0.74	290	1.6×10 ⁻²	44% H-1→L
6A ₁	6.31	4.56	0.70	271	4.8×10 ⁻³	17% H \rightarrow L+1 16% [H \rightarrow L+ H \rightarrow L+1
5A ₁	5.61	4.93	0.74	251	3.8×10 ⁻³	20% 2×[H→L]
7A ₁	6.62	5.06	0.70	249	1.2×10 ⁻²	22% H-2→L 16% 2× [H→L]

Table S2: Vertical excitation energies of difluoroketeneinime 4b calculated by the CASPT2 method *a*.

a based on a CASSCF(14,12)/ANO-S wavefunction at the B3LYP/6-3G(d) geometry; to eliminate intruder states, a level shift of 0.2 h was applied in the CASPT2 calculations; *b* weight of the zero-order CASSCF in the CASPT2 wavefunction; *c* oscillator strength for electronic transition; *d* Electron excitations within the active space of orbitals depicted in Figure S2.

state	ΔE_{CASSCF} eV	$\Delta E_{CASPT2} eV$	reference weight b	λ nm	f^c	Major configurations <i>d</i>
1A'	0.00	0.00	0.76	_	_	86% ground config.
1A"	1.75	1.48	0.76	836	8.2×10 ⁻⁴	78% 27a'→6a"
2A"	2.12	1.83	0.76	677	1.6×10 ⁻⁴	77% 27a'→7a"
2A'	3.69	3.54	0.76	350	1.0×10 ⁻⁴	43% 5a"→6a" +20% 4a"→6a" +12% 5a"→7a"
3A'	4.43	3.83	0.75	324	2.0×10 ⁻³	51% 5a"→7a"
4A'	4.65	4.32	0.76	287	3.8×10 ⁻³	22% 4a"→6a" +30% 5a"→6a"
5A'	4.84	4.38	0.75	283	8.4×10 ⁻³	29% 5a"→6a" +15% 4a"→6a" +12% 4a"→7a"
3A"	5.19	4.68	0.76	265	3.8×10 ⁻⁴	78% 26a'→6a"
4A"	5.53	4.75	0.75	261	5.5×10 ⁻⁵	66% 26a'→7a"
5A"	6.07	5.07	0.75	245	2.9×10 ⁻⁴	64% 5a"→27a'

Table S3: Vertical excitation energies of difluoroketeneinime radical cation calculated by the CASPT2 method *a*.

a based on a CASSCF(13,12)/ANO-S wavefunction at the B3LYP/6-3G(d) geometry; to eliminate intruder states, a level shift of 0.2 h was applied in the CASPT2 calculations; *b* weight of the zero-order CASSCF in the CASPT2 wavefunction; *c* oscillator strength for electronic transition; *d* Electron excitations within the active space of orbitals depicted in Figure S3.

Figure S3

Experimental and Theoretical Study of 2,6-Difluorophenylnitrene, its Radical Cation, and of their Rearrangement Products in Argon Matrices. Claudio Carra Department of Chemistry, University of Ottawa, ON- K1N 6N5, Canada Thomas Bally Institute for Physical Chemistry, Perolles, CH-1700 University of Fribourg, Switzerland Supporting Information, Part 2 _____ Neutral systems -----#n b3lyp/6-311+g(3d,2p) - STRUCTURE 1b -0,3 0.000000 0.000000 -2.158529 7 0.000000 0.000000 -0.840209 0.000000 0.000000 1.993055 6 6 6 6 1.217875 0.000000 1.304655 6 6 -1.217875 0.000000 1.304655 9 -2.363307 0.000000 -0.742736 2.363307 0.000000 -0.742736 9 2.1632400.0000001.826566-2.1632400.0000001.826566 1 1 0.000000 0.000000 3.073049 1 E(UB+HF-LYP) = -484.927516183Zero-point correction= 0.074925 (Hartree/Particle) Thermal correction to Energy= 0.081800 Thermal correction to Enthalpy= 0.082744 Thermal correction to Gibbs Free Energy= 0.043166 ______ #N B3LYP/6-31G* - STRUCTURE 1b -0,3 7 0.000000 0.000000 -2.165935 6 0.000000 0.000000 -0.838326 6 0.000000 0.000000 2.001912 6 -1.211078 0.000000 -0.068636 6 1.211078 0.000000 -0.068636 1.220191 0.000000 1.310480 6 6 -1.220191 0.000000 1.310480 -2.364183 0.000000 -0.748518 9
 2.364183
 0.000000
 -0.748518

 2.171068
 0.000000
 1.832143

 -2.171068
 0.000000
 1.832143
 9 1 1 0.000000 0.000000 3.086941 1

```
E(UB+HF-LYP) = -484.766419476
                                                                 0.075208 (Hartree/Particle)
 Zero-point correction=
 Thermal correction to Energy=
Thermal correction to Enthalpy=
                                                                  0.082135
                                                                  0.083079
 Thermal correction to Gibbs Free Energy= 0.043419
------
#N B3LYP/6-31G*
- STRUCTURE 3b -
0,1
       \begin{array}{cccccccc} -1.511467 & -0.953073 & 0.373700 \\ -1.608513 & 0.493379 & 0.288891 \\ -0.509743 & 1.275286 & 0.102261 \\ -2.576022 & 0.969649 & 0.418648 \\ 0.701138 & 0.519196 & 0.112100 \\ -0.552620 & 2.602191 & -0.054047 \\ 1.574480 & -0.093520 & 0.826141 \\ 0.835547 & -0.901354 & -0.187966 \\ 1.568906 & -1.347383 & -1.253058 \\ -0.383193 & -2.745960 & 0.052056 \\ -0.370088 & -1.662698 & 0.129186 \\ -2.429969 & -1.486741 & 0.601213 \\ \end{array}
  6
  6
  6
  1
  6
  9
  7
  6
  9
  1
  6
             -2.429969 -1.486741 0.601213
  1
 E(RB+HF-LYP) = -484.737462732
                                                             0.076232 (Hartree/Particle)
0.082936
 Zero-point correction=
 Thermal correction to Energy=
 Thermal correction to Enthalpy=
                                                                 0.083880
 Thermal correction to Gibbs Free Energy= 0.045044
_____
#N B3LYP/6-31G*
- STRUCTURE 4b -
0,1
           -1.205441 0.755393 -0.586009
  7
            -1.342016 0.088045 0.615871
  6
            -0.330660 -0.144073 1.511624
  6
              1.067967 0.155740 1.338702
  6
              1.771816 0.234847 0.166555
  6
       1.093356-0.106789-1.001510-0.1401930.366641-1.166617-2.599279-0.1740140.972588-0.654227-0.4500662.5022571.6154640.3400992.2618712.8164190.5424640.1662041.703592-0.857843-2.000764
  6
  6
  9
  1
  1
  1
  9
  E(RB+HF-LYP) = -484.745623809
                                                            0.076325 (Hartree/Particle)
0.083174
 Zero-point correction=
 Thermal correction to Energy=
 Thermal correction to Enthalpy=
                                                                 0.084118
 Thermal correction to Gibbs Free Energy= 0.044927
_____
```

#N B3LYP/6-31G*

```
- STRUCTURE TS 1b <-> 3b -
0,1
      -1.6592460.191721-0.522478-1.6853250.2166490.854069-0.4999280.1917271.673306
6
6
6
       0.710978 -0.044018 1.105277
6
       0.756784 -0.266105 -0.344960
6
     6
9
7
9
1
1
      -2.642027 0.291672 1.363182
1
E(RB+HF-LYP) = -484.711176481
                                            0.075026 (Hartree/Particle)
Zero-point correction=
Thermal correction to Energy=
                                           0.081554
Thermal correction to Enthalpy=
                                           0.082498
Thermal correction to Gibbs Free Energy=
                                           0.043983
------
#N B3LYP/6-31G*
- STRUCTURE TS 3b <-> 4b -
0,1
        -1.557424 0.183686 -0.492767
 6
 6
        -1.566818 0.004446 0.895626
        -0.411440 -0.050572
                               1.691781
 6
      6
 6
 6
 9
         0.463393 -1.145811 -1.175298
 7
      0.463393-1.145811-1.175290-0.2423840.737758-2.384505-0.496593-0.0583482.775591
 9
 1
 1
        -2.423769 0.623450 -0.980434
         -2.525429 0.035589 1.405258
 1
E(RB+HF-LYP) = -484.726787630
                                            0.074635 (Hartree/Particle)
Zero-point correction=
Thermal correction to Energy=
                                            0.081114
Thermal correction to Enthalpy=
                                            0.082058
Thermal correction to Gibbs Free Energy=
                                           0.043663
_____
Radical Cations
_____
#n b3lyp/6-311++g**
- STRUCTURE 2b+ -
1,2
        0.000000 0.000000 -2.108289
0.000000 0.000000 -0.840896
 7
 6
 6
         0.000000 0.000000
                               1.954114
```

6	-1.264476	0.000000	-0.063778		
6	1.264476	0.000000	-0.063778		
6	1.248841	0.00000	1.299133		
6	-1.248841	0.00000	1.299133		
9	-2.366587	0.000000	-0.749909		
9	2.366587	0.000000	-0.749909		
1	2.177597	0.000000	1.856497		
1	-2.177597	0.000000	1.856497		
T	0.000000	0.000000	3.039819		
E(UB+HF	-LYP) = -484.	596116444			
Zero-po	int correction	=		0.075944	(Hartree/Particle)
Thermal	correction to	Energy=		0.083040	
Thermal	correction to	Enthalpy=	_	0.083984	
Thermal	correction to	Gibbs Free	Energy=	0.044132	
#n b3lyp	/6-31g*				
- STRUCT	URE 2b+ -				
1,2					
.7	0.00000	0.000000	-2.112962		
6	0.00000	0.000000	-0.839992		
6	0.00000	0.000000	1.960351		
6	-1.265862	0.000000	-0.063760		
6	1.265862	0.000000	-0.063760		
6	1.250628	0.000000	1.303626		
6	-1.250628	0.00000	1.303626		
9	-2.367856	0.00000	-0.754411		
9	2.367856	0.00000	-0.754411		
1	2.181395	0.00000	1.860975		
1	-2.181395	0.00000	1.860975		
1	0.000000	0.000000	3.047624		
E(UB+HF	-LYP) = -484.	466717281			
Zero-po	int correction	=		0.076605	(Hartree/Particle)
Thermal	correction to	Energy=		0.083689	
Thermal	correction to	Enthalpy=		0.084633	
Thermal	correction to	Gibbs Free	Energy=	0.044827	
#n b3lyp	/6-31g*				
- STRUCT	URE 4b+ -				
1,2					
7	1.136670	0.846180	0.000000		
6	1.486661	-0.433087	0.000000		
6	0.641861	-1.552913	0.000000		
6	-0.745554	-1.537082	0.000000		
6	-1.646774	-0.453360	0.000000		
6	-1.318804	0.890760	0.000000		
6	0.00000	1.385339	0.000000		
9	2.767284	-0.659767	0.000000		
1	1.142667	-2.515885	0.000000		
1	-1.215113	-2.516074	0.000000		
T O	-2./08898	-0.0054//			
9	-2.28/230	1.//0401	0.00000		

E(UB+HF-LYP) = -484.592568598Zero-point correction=0.076948 (Hartree/Particle)Thermal correction to Energy=0.083995Thermal correction to Enthalpy=0.084939Thermal correction to Gibbs Free Energy=0.043798
