
 1

Published: 

Chimia, Vol.59, p.504-510, 2005 

Theoretical Studies on the Electronic Properties and the Chemical Bonding 

of Transition Metal Complexes using DFT and Ligand Field Theory 

 

M.Atanasov*, C.Daul  

Abstract 

The research activity within our laboratory of computational chemistry at the university 

of Fribourg is presented. In this review, we give a brief outline of a recently proposed 

Ligand Field Density Functional Theory (LFDFT) model for single nuclear and its 

extension to dimer transition metal complexes. Applications of the model to dinuclear  

complexes are illustrated for the interpretation of exchange coupling in the bis-µ-

hydroxo-bridged dimer of Cu(II) and to the description of the quadruple metal-metal 

bond in Re2Cl8
2- . Our analysis of the chemical bonding are compared with results 

obtained using other approaches: i.e. the Extended Transition State model and the 

Electron Localization Function. It is shown that the DFT supported Ligand Field Theory 

provides consistent description of the ground and excited state properties of transition 

metal complexes. 
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1.Introduction 

An intrinsic feature of transition metal ions (TMI) is the rather localized character of their 

3d electrons and this property, say of free ions like Cr3+, Cu2+ is preserved in their 

complexes, being modified by covalency, however. This allows to formulate the metal-

ligand interaction as being mainly ionic and to interpret the metal-ligand bond as a donor-

acceptor bond. In simple terms, the ligand donates electrons into the empty valence shell 

of the TMI – the partly filled 3d and the empty 4s and 4p shells, which leads to metal 

centered antibonding and ligand centered bonding molecular orbitals (MOs), but these 

interactions are supposed to be weak enough to be treated by perturbation theory. Then, 

electronic transitions giving rise to absorption and emission spectra in the visible region 

are located within the many-electron states which originate from a well defined dn-

configuration of the TMI.  Ligand-to-Metal Charge Transfer (LMCT) transitions are not 

comprised in this manifold and need a different treatment (see below). All these features 

which are mostly born out by the interpretation of experiment define what we call a 

“Werner” type complex. This group of compounds is mainly restricted to TMI in their 

normal oxidation states and to ligand anions like F,Cl,Br or molecules e.g. H2O, NH3. 

Recently, a new model to treat their electronic structure has been proposed in our group – 

the Ligand-Field Density Functional Theory (LFDFT). Its mathematical formalism has 

been described with great details elsewhere [1-3]. Before going to discuss in simple terms 

what LFDFT is, let us first ask why we should use DFT for TMI complexes and can we 
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restrict the calculations of their ground and excited state electronic structure to a DFT 

treatment only ? 

2. A motivation for DFT 

In 1964 Hohenberg and Kohn [4] stated that there exists an universal functional of the 

electron density, which is independent of the chemical system (accounted for by an 

external potential) and for which the ground state energy has its correct minimal value for 

the system. In the formulation of their theorem, the electron density has been considered 

spin free. One year later,  Kohn and Sham provided a route to a set of working equations 

[5], similar to the ones of Hartree and Hartree-Fock. These  Kohn-Sham (KS) equations 

allow, for systems with slowly varying density (i.e. not far from a homogeneous electron 

gas) to calculate the electron density self-consistently, starting from a reasonable guess. 

The theory allows, finally, to calculate the electronic energy and other electronic 

properties for the system from the known electron density. In writing down these one-

electron equations, Kohn and Sham started from a reference system of non-interacting 

electrons and introduced exchange and Coulomb correlation using an approximate 

effective potential – the exchange correlation potential. It takes also care for the non-

additivity of the kinetic energy of the electrons due to their interactions. Subsequently, 

the Kohn-Sham equations became the building block of all user-oriented modern, 

molecular orbital based DFT programs(KSDFT). In fact, approximate functionals of 

improving quality have been proposed and applied with considerable success to 

thermochemistry, to predict: molecular geometry, force fields, Infra Red (IR), Nuclear 

Magnetic Resonance (NMR), photoelectron, Electron Spin Resonance (ESR),  Ultraviolet 

(UV) spectra and the reactivity of closed shell organic and inorganic (including TMI) 
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systems [6-7]. A great merit of the DFT is its ability to account for electronic correlation 

which is important for TMI complexes, at comparably low computational costs. This 

allows to calculate systems of significantly larger size than wave function based methods. 

However, for open-shell systems, the spin-density exhibits, in general, a lower symmetry 

than the electronic Hamiltonian (Kohn-Sham or Hartree-Fock); this is because of the 

spin-polarization yielding spin-densities which are no longer invariant with respect to the 

rotations of the symmetry point group. For example in the case of atoms, α (or β) spin 

possesses cylindrical symmetry and violates the spherical symmetry e.g. in cases of the C  

atom (3P ground state). Even larger problems are encountered in TMI in complexes of 

high symmetry (cubic, octahedral, tetrahedral). Here, orbitally degenerate ground states, 

say of CuF6
4-(2E) or MnF6

3- ( 5E – high-spin), or excited states - CrCl6
3- (4T2) - all with an 

octahedral geometry, cannot be described by DFT. Instead, a constraint  DFT procedure 

is applied: an average occupation of each degenerate orbital set (e, t2) is used in order to 

provide proper symmetry of the space part of the electron density, and a spin-restricted 

open shell procedure is adopted using non-integer and equal number of α and β spins in 

order to ensure correct spin-symmetry of the system. However, at variance to the spin-

restricted open-shell Hartree-Fock theory, Roothaan’s  spin-coupling operator [8], which 

is state and symmetry dependent, is replaced by an orbital independent  exchange-

correlation potential e.g. cf. DFT codes, such as ADF [9]. Current- and spin-density 

functional theory for inhomogeneous electronic systems in strong magnetic fields have 

been developed long time ago [10]. However, it happens, that practical implementations 

are lacking when compared to the theoretical developments. The symmetry problem 

seems to be solved in the open-shell localized Hartree-Fock approach to the exact-
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exchange Kohn-Sham treatment of open-shell atoms and molecules proposed by Görling 

et al [11]. However, Coulomb correlation, which, for TMI dominates the exchange 

correlation and the necessity to account for non-dynamic correlation (via Configuration 

Interaction (CI), see below)  remains still beyond the reach of the present DFT 

methodology. We can conclude that DFT alone is not able to account for both the 

electronic structure of the ground and the excited states of transition metal complexes and 

one has to resort to other methods or to a combination of different methods. 

 

3. Electronic structure models for TMI complexes: Ligand Field Theory 

Ligand field theory is an approximate theory, essentially applicable to mono-nuclear 

metal complexes. In this theory, the valence electrons are separated into two sets: (i) 

active electrons occupying d- (or f-) orbitals and (ii) passive electrons occupying ligand 

orbitals. The following approximations are made: a) The interactions of electrons in set 

(i) is treated exactly as in free ions; b) The energies of electrons in set (ii) are sufficiently 

low as compared to the energies of the d-(or f-) orbitals that their effect is merely to 

shield the nuclear charges; c) The effect of the passive electrons in set (ii) on the active d-

(or f-) electrons in set (i) is represented by an effective potential (or pseudopotential) 

called the ligand field potential which is generally represented in the basis of the d- (or f-) 

orbitals as ji h χχ , where χi, χj are either d- or f-orbitals (or both).  Thus in ligand 

field theory [12-13], one focuses on the dn-configuration and  considers the effective 

Hamiltonian eq.(1). It includes the one electron effective ligand field Hamiltonian h(i) 

(consisting of kinetic and potential energy for each electron) and the 

H = Σ(i)h(i) + Σ(i,j) G(i,j)       (1) 
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two-electron G(i,j) operator which takes account for the Coulombic interactions between 

d-electrons (via the 1/rij operator); summation is carried out over the d-electrons i>j. We 

note that the operators h(i) and G(i,j) are effective and various LF models differ in the 

way they approximate these operators. We expand the total wavefunction in a basis of 

Slater determinants (SD) - 45, 120, 210 and 252 SD for n=2(8), 3(7), 4(6) and 5.  When 

acting on the SD, the operator H leads to one- and two-electron matrix elements, hab and 

Gabcd (eq.(2)). In Eqs. (1) and Eq. (2) the symbols i,j(1,2) label electrons and the symbols 

a,b,c and d label orbitals, respectively. In the central field approximation the Gabcd 

integrals are 

hab = ∫ a*(1) h(1) b(1) dτ1  

Gabcd = ∫∫ a*(1) b*(2) G(1,2) c(1) d(2) dτ1 dτ2    (2) 

 

expressed in terms of the Racah parameters A, B and C, pertaining to the spherical 

symmetry but reduced from the free ion values by covalency (nephelauxetic effect). The 

ligand field does account for the symmetry lowering from spherical to the molecular 

point group of the complex due to the chemical environment. Thus, in ligand field theory 

the influence of the ligands on the TMI is described totally by the 5x5 ligand field matrix 

hab whose matrix elements reflect both electrostatic(crystal field) and covalent(overlap) 

perturbations from the coordinated ligands and thus the chemical features of the complex. 

For an octahedral complex and a basis of real d-orbitals, for example, the 5x5 matrix is a 

diagonal with matrix elements of εe = (3/5) 10Dq for the eg (ε = dx2-y2, θ = dz2) and εt = -

(2/5) 10Dq for the t2g(ξ = dyz, η = dzx and ζ = dxy) orbitals obeying the baricentre rule (2εe 
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+ 3εt = 0). The εe - εt orbital energy difference is nothing but the cubic ligand-field 

splitting parameter 10Dq, which is a positive quantity, because of the stronger/weaker 

σ/π interactions of the eg/t2g orbitals. The d-orbital splitting is smaller and opposite in a 

tetrahedral complex, where the metal-ligand interactions for e and t2 orbitals are of π  and 

σ+π type, respectively. Thus, for a d2 complex the total of the 45 electronic states is fully 

described in terms of three parameters only, 10Dq, B and C. The many-electron diagram 

(Tanabe-Sugano diagram, Fig.1) has been applied with success to interpret electronic 

spectra of d2-oxo-anions such as CrO4
4-, MnO4

3-, FeO4
2- [14-16], allowing to also 

determine the parameters 10Dq, B and C from the spectra. 

 

 

Figure 1. Tanabe-Sugano diagram for a tetrahedral d2 complex (C/B=4.0) 
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4. The LFDFT and its extension to di-nuclear TMI complexes. 

The LFDFT model [1-2] is based on a multi-determinant description of the multiplet 

structures originating from the dn configuration of the TMI in the surrounding of 

coordinating ligands by combining the CI and the KS-DFT approaches. In doing so, both 

dynamical correlation (via the DFT exchange-correlation potential) and non-dynamical 

correlation (via CI) is considered. The latter one does account for the rather localized 

character of the d- electron wavefunction. The key feature of this approach is the explicit 

treatment of near degeneracy effects (long-range correlation) using ad hoc configuration 

interaction (CI) within the active space of Kohn-Sham (KS) orbitals with dominant d-

character. The calculation of the CI-matrices is based on an analysis of the energies 

calculated according to KSDFT of the single determinants (micro-states) constructed 

from frozen Kohn-Sham orbitals. The LFDFT procedure consists of the following steps: 

(i) a spin-restricted KSDFT- Self Consistent Field (SCF) calculation corresponding to an 

Average-Of- Configuration (AOC) dn , with a n/5 occupation of each orbital is carried 

out. This insures that all active electrons (d- or f-) are treated on an equal footing and 

regarding interelectronic repulsion as being spherical. In doing so, we gather all the 

chemical information connected with the ligand field of symmetry lower than spherical 

into the one electron (5x5) LF matrix.   

(ii) using the Kohn-Sham orbitals from the first step and occupying them adequately, the 

energies of all SD are calculated;  
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(iii) finally, the SD energies are utilized (using a script, written in MATLAB) to obtain 

all needed model parameters - the 5x5 ligand field matrix and the parameters B and C -  

in a least-squares fit. Comparing SD energies from DFT with those calculated using LF 

parameter values, we can state for all considered cases, that the LF parameterization 

scheme is remarkably compatible with the SD energies from DFT; standard deviations 

between the two sets of SD energies (DFT and LFT) are found typically between 0.02 

and 0.1 eV.  

These parameters are used then in a full CI ligand field program to calculate energies and 

electronic properties of all multiplets split out of a dn configuration. Symmetry analysis is 

supported by the program, however it is a great merit of this approach being able to 

calculate systems of symmetry as low as C1. This makes the approach suitable to bio-

inorganic problems considering e.g. active sites in enzymes. In particular, the 5x5 LF 

matrix can easily be deduced from a single AOC DFT calculation. We have shown [2] 

that the matrix of the LF, resulting from the many electron treatment is essentially the 

same (differences between two set of data not exceeding 1-2%) as the one obtained using 

the following simple recipe [17]: 

Let us denote KS-orbitals dominated by d-functions which result from an AOC dn 

KSDFT-SCF calculation with column vectors iV  and their energies by , the latter 

defining the diagonal matrix E. From the components of the eigenvector matrix built up 

from such columns one takes only the components corresponding to the d functions. Let 

us denote the square matrix composed of these column vectors by U and introduce the 

overlap matrix S: 

KS
iε

S = UTU         (3) 
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Since U is in general not orthogonal, we use Löwdin’s symmetric orthogonalisation 

scheme to obtain an equivalent set of orthogonal eigenvectors (C): 

2
1

USC
−

=          (4) 

We identify now these vectors with the eigenfunctions of the effective LF Hamiltonian 

 we seek:  hLF
eff

µ

5

1µ
µii dc∑

=

=ϕ                                                                                                  (5) 

and i
eff
LFi

KS
i hε ϕϕ=  with the corresponding eigenvalues. The 5x5 LF matrix  

VLF={ hµν} is given by: 

VLF= C E CT = {hµν} = {     }                                                  (6) νi
KS
i

5

1i
µi cεc∑

=

Remarkably, the matrix VLF is obtained in a general form without any assumptions (such 

as is done in Crystal Field Theory (CFT) or in the Angular Overlap Model (AOM) and 

does account for both electrostatic and covalent contributions to the ligand field. 

Moreover, being determined in a variational DFT-SCF procedure, it circumvents 

assumptions based on perturbation theory. It is particularly suited in cases of low 

symmetry and complex coordination geometries where application of CFT or AOM, 

because of the large number of model parameters, is not easy. 

The LFDFT approach has been applied and validated using well documented spectra and 

structures on octahedral and tetrahedral TM complexes [1-3]. An extension of this 

method allows to estimate spin-orbit coupling constants [18] and to apply it for the 

calculation of g- and fine structure A-tensors in EPR [19]. With spin-orbit coupling at 
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hand also a treatment of the zero-field splitting [20]  and of the paramagnetic 

contributions to NMR shielding constants becomes possible [21].  

In the following, we briefly review on the extension of the LFDFT method to transition 

metal dimer complexes [22,23]. Let us assume that two semi-occupied orbitals dl1 and dl2 

located on both symmetry equivalent fragments couple to yield an in-phase (a) and an 

out-of-phase (b) MO (eq.7).  

a =
1
2

dl1 + dl2( )

b =
1
2

dl1 − dl2( )
                           (7) 

where a and b belong to two different irreps. Moreover we neglect here the overlap 

between dl1 and dl2. Six micro-states or Single Determinants (SD) result. Two are doubly 

occupied a+a− , b+b−  and four are singly occupied a+b− , a+b+ , a−b+ , a−b− . The 

doubly occupied SD having a⊗a= b⊗b=A spatial symmetry, correspond to closed shells 

and are spin singlets. The SD based on singly occupied spinorbitals have  a⊗b=B spacial 

symmetry and correspond to a singlet and to a triplet. The two SD with MS=0: a+b−  and 

a−b+ , belong both to a singlet and to a triplet. The energies of all these determinants can 

be calculated from DFT. Let us denote their energies by 

E1=E(|a+a-|), E2=E(|b+b-|), E3=E(|a+b+|)=E(|a-b-|),  

E4=E(|a+b-|)=E(|a-b+|)                                                                            (8) 

We note that the difference E4-E3 equals the exchange integral [ab⎪ab] which is also the 

quantity accounting for the mixing (1:1 in the limit of a full localization) between the 

|a+a-| and |b+b-| microstates. This leads to the secular  eq.9 which after diagonalization  
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⎥
⎦

⎤
⎢
⎣

⎡
−

−

234

341

E)E(E
)E(EE

                    (9) 

 

yields the eigenvalues E– and E+ and the energy separation between the lowest singlet 

state and the triplet E– – E3, referred to as the singlet-triplet spitting. The latter one is 

identical to the exchange integral in magnetism. It is a good measure for the covalence 

stabilization of a bonding electron pair with respect to a non-bonding triplet pair. When 

compared in the limit of complete dissociation these quantities yield the total bonding 

energy. 

Let us now consider the formation of bonding in terms of a localized model for bonding. 

Within such a model (cf. Anderson [24]), dl1 and dl2 are singly occupied in the ground 

state for separate fragments giving rise to a triplet and to a singlet with wave functions  

ψT and ψS (eq.10 and 11, respectively). There are  two further singlet states  and 

 arising when either of the two magnetic electrons is transferred to the other 

magnetic orbital (SOMO), i.e. 

ψS
CT

ψS
' CT

|),||(|
2

1|;||;| 21212121
+−−+−−++ += dldldldldldldldlTψ    (10) 

|),||(|
2

1|),||(|
2

1

|),||(|
2

1

2211
'

2211

2121

−+−+−+−+

+−−+

−=+=

−=

dldldldldldldldl

dldldldl

CT
S

CT
S

S

ψψ

ψ
  (11) 

where ψS lies by 2K12 at higher energy than ψT.  We take the energy of the latter state as 

reference {E(ψT)=0}. K12 is the classical Heisenberg exchange integral,  
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( ) ( ) ( ) ( ) == ∫∫ 21
*

21
12

2
*

112 22111 ττ dddldl
r

dldlK  [dl1dl2|dl1dl2]                       (12) 

which is always positive. It reflects the exchange stabilization of the triplet over the 

singlet due to gain in potential energy connected with the spatial extension of the Fermi 

(exchange) hole (potential exchange). The ψS two-electron wave-function can mix with 

the charge transfer state ψS
CT. Its energy, denoted with U equals the difference between 

the Coulomb repulsions of two electrons on the same center, i.e.: dl1
+ dl1

−  or dl2
+ dl2

−  

(U11=[dl1dl1|dl1dl1]=U22=[dl2dl2|dl2dl2]) and when they are located on different centers 

(the notation U12=[dl1dl1|dl2dl2] applies). Thus the energy separation between the dl1
2(or 

dl2
2) excited state and the dl1

1dl2
1 ground state configurations is: 

U=U11–U12              (13) 

U is also a positive quantity. The interaction matrix element between ψS and ψS
CT (eq.14) 

reflects the delocalization of the bonding electrons due to orbital overlap. The quantity t12 

=<dl1|h|dl2> is being referred to as the transfer (hopping) integral between the two sites. 

Thus, we get: 

<ψS|H|ψ >=2TCT
S 12=2(t12+[dl1dl1|dl1dl2])       (14) 

Calculations show that T12 = t12 in a very good approximation, differences being 

generally less than 0.002 eV.  This term tends to lower the singlet- over the triplet-energy 

and is intrinsically connected with the gain of kinetic energy (kinetic exchange). The 

interaction matrix (eq.15a) describes the combined effect of these two opposite  

interactions.  Using perturbation theory one obtains eq. 15b for the singlet-triplet   
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ψS              CT
Sψ              

⎥
⎦

⎤
⎢
⎣

⎡
+ 1212

1212

22
22

KUT
TK          (15a) 

U
TKJJJEE affP

PTS

2
12

12121212
42)( −=+==−                                                 (15b) 

energy separation , i.e. the exchange integral. As has been pointed out in ref.[25] , the 

parameters K

pJ12

12 , U and T12 can be expressed in terms of the Coulomb integrals (Jaa, Jbb 

and Jab), exchange integral Kab  and of ε(b)–ε(a), the KS-orbital energy difference. Eqs. 

16-18 below, resume these relations: 

( ) ( )42112 2
4
12

4
1 EEEJJJK abbbaa −+=−+=        (16) 

U = U11 − U12 = 2Kab = 2 E 4 − E 3( )                                               (17) 

( ) ( ){ } ( 1212 4
1

2
1 EEbaT −=ε−ε≅ )                                  (18) 

We like to point out that these expressions are furthermore related to the energies of the 

single determinants |a+a-|, |b+b-|, |a+b+|, |a+b-| (i.e. E1, E2, E3 and E4 respectively).  

Thus, eqs. (16) - (18) allow us to obtain K12, U and T12 directly from DFT. We get 

therefore a bonding model in terms of localized orbitals, whose parameters are readily 

obtained from the DFT SD energies E1,E2,E3 and E4 of the dinuclear complex. It is 

remarkable that the same model can be applied with success, both to magnetic exchange 

coupling and to bond analysis. This makes it possible to consider magnetic and bonding 

phenomena on the same footing. In fact, there is no fundamental difference between 

antiferromagnetism and chemical bonding.  
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5.Applications 

5.1. Exchange splitting in Cu(OH)2Cu dimers 

The usual pattern of an exchange coupling between pairs of TMI with open shells is an 

anti-ferromagnetic spin-alignment corresponding to a weak delocalization of unpaired 

spin-density from one center to another center, i.e. that of a weak covalent bond as 

described by the term: -4T12
2/U, eq.15b. It outweighs the contribution of the first term 

(2K12), the latter tending to lower exchange (Pauli) repulsion between electrons with 

parallel spins. It has been therefore challenging to find systems where the latter effect 

dominates, leading to ferromagnetic spin-alignments. This is the case if magnetic orbitals 

are orthogonal to each other or nearly so, a situation encountered in edge sharing square 

planes or octahedra with M1-X-M2 bridging angles β close to 90o [26]. An illustration of 

this is given by bis bipyridyl-µ-dihydroxo-dicopper (II) nitrate with a Cu-OH-Cu 

bridging angle of 95.6o and an exchange coupling constant J12=0.021 eV [27]. A DFT-

LDA geometry optimization using a [(NH3)2CuOH]2
2+ model cluster leads to a geometry 

of the bridging Cu(OH)2Cu2+ moiety very close to the experimental finding (Fig.2). 

Unpaired electrons on Cu2+ are characterized by a dx2-y2 ground state which is weakly 

affected by long axial contacts to NO3
-, which we neglect here. The exchange coupling 

constant J12=0.021 eV calculated by LFDFT matches perfectly well the experimental 

value, but deviates from the prediction of an antiferromagnetic coupling given by the 

broken symmetry (BS) DFT approach [28] (J12
BS=-0.099 eV). In Fig.3, we compare 

energies of the four independent Slater determinants as given by our procedure with the 

state energies after taking the |a+a-| - |b+b-| configurational mixing into account. The 

former configuration is stabilized by localization leading to a final singlet state, but it 

does not cross (as different to usual cases) the triplet term T. Experimental data show [27] 

that J12 becomes strongly antiferromagnetic when the Cu-O-Cu bridging angle (β) is 

 



Fig.2  Bond distances (in Å) and bond angles (in o) from a DFT geometry optimization(spin-unrestricted, S=Ms=1, LDA-VWN 
functional, non-relativistic TZP basis,Cu-2p, O-1s, N1-s, frozen cores) of a [Cu(NH3)2(OH)]2

2+ model cluster and experimental 
parameters (in square brackets) as reported from X-ray diffraction study of bis-bipyridil-µ-dihydroxo-dicopper(II) nitrate [Cu(C10H8N2)(OH)-(NO3)2], 
R.J.Majeste, E.A.Meyers, J.Phys.Chem. 74, 3497(1970). 

16 
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Fig.3 Correlation diagram between the energies of single determinants from DFT and the 
resulting multiplets of relevance for the magnetic exchange coupling in a  
[Cu(NH3)2(OH)]2

+2 model cluster with a ferromagnetic spin alignment. Model parameters 
for the calculation of the diagram (right), deduced from the DFT SD energies E1, E2, E3, 
E4  (-4.434, -3.798, -4.692, -4.238 eV, diagram left) are K12=0.061, t12=0.159, U=0.909 
eV. Values of the ferromagnetic and antiferromagnetic contributions J12(p)f and J12(p)af to 
J12(p) (=0.01 eV), eq.15b, are 0.121 and -0.111 eV, respectively.  
 
 

increased by structural manipulations allowing one to tune the magnetic properties. Thus 

the increase of  the value of β to 104.1o in [Cu(tmen)OH]2Br (tmen=N,N,N´,N´-

tetramethylethylenediamin) agrees with the reported negative value of  J12 (-0.063 eV 

[26].  Antiferromagnetism for this geometry is also obtained by LFDFT, but the resulting  

value exceeds now the experimental one by a factor of 2.88 (however the BSDFT value is 
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off by a factor of 4.61). The reason is that DFT leads systematically to lower values for 

the energy U which causes an increase of the -4T12
2/U, in cases where this term plays an 

important role (see Ref. [22] for further examples and for an analysis).  

It is remarkable that ferromagnetic contributions to J12 (2K12, eq.15b) seem to be 

described realistically by the LFDFT procedure and our results show that these terms 

could be indeed rather important (as large as 0.061 eV in the chosen example). Such 

terms have been neglected in earlier studies [29] or deemed to be small by physicists 

[24]. 

5.2. Metal-ligand and metal-metal bonding in Re2Cl8
2-

The discovery of a strong Re-Re bond in the Re2Cl8
2- anion in 1965 [30-32], termed 

quadruple bond did open a new area in inorganic chemistry. Moreover, it contributed to 

initiate studies which helped, to understand and to validate our knowledge about the 

chemical bond, based on the classical paper by Heitler-London [33] and on the Coulson-

Fischer description of the two-electron bond in the H2 molecule [34]. An excellent review 

of all developments covering both experiment and theory on the δ bond in the Re2
6+ and 

Mo2
4+ cores along with reference to original work has been published recently [35]. 

To analyze the Re-Re bond in Re2Cl8
2- it is reasonable to start from the two square 

pyramidal ReCl4
2- fragments. For this coordination, the |5d> orbitals of Re are split into 

6a1(dz2), 2b2(dxy), 6e(dxz,yz) and 4b1 (dx2-y2) species whose energies and compositions are 

depicted in Fig.4 (left). The dz2 orbital is antibonding, but is largely stabilized by the 5d-

6s mixing which pushes it down, thus making it lowest in energy. This mixing is such, 

that it increases the lobes along the axial direction and thus enhances the Re-Re overlap 

in the dimer. It follows that the Re-Cl bonding in the ReCl4
- fragment, which leads to 5d-
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6s hybridization  has an indirect enforcing effect on the Re-Re σ-bond. The energies of 

the 6e and 2b2 orbitals of the ReCl4
- unit indicate a strong Re-Cl π-bonding interaction 

(out-of-plane and in-plane interactions with respect to the ReCl4
- plane for 6e and 2b2, 

respectively),  which are calculated to lie at almost the same energy. They give rise 

 

Fig.4  Kohn-Sham MO- energy diagram for Re2Cl8
2- and its correlation with the KS-MO 

levels dominated by 5d orbitals and their percentages of the constituting ReCl4
- (C4v 

symmetry) fragment. For the sake of a better comparison, KS-MO energies for each 
cluster haven plotted taking their baricenter energy as a reference. Electronic ground state 
notations refer to C4v (common symmetry for ReCl4

- and Re2Cl8
2-). 

 

to π and δ Re-Re  bonds, respectively. All four orbitals, 6a1, 2b2 and 6e are singly 

occupied in ReCl4
2- and yield four bonds between the two  ReCl4

- - units: one σ, two π 

and one δ bond. A rough measure for the strength of these bonds are the spittings of the 

a1(9a1, 12a1), e(11e,12e)  and b2 (3b2,4b2) orbitals, which are calculated  to be 5.42, 3.58, 
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0.70 (Fig.4, right), respectively thus reflecting a decrease of bond strength from σ to π to 

δ. This is clearly manifested by the plots of the electronic localization function (ELF) 

[36] (Fig.5)  which takes values between 1 (electron localization) and 0 (no localization) 

and thus reflects the concentration of charge into bonding or non-bonding domains. Thus, 

while the plot in Fig.5a does not show any indication of accumulation of electron charge 

between the Re nuclei, the symmetry partitioned ELF plots (Fig.5b,c) nicely reflect this. 

The spectacular feature of these plots is the σ-bond pathway  which shows a bond-

localization attractor between the Re nuclei but not only. Indeed, the plot for π symmetry 

reflects a much weaker yet non-negligible bonding effect, while the one for δ does not 

display any bonding features. Apparently, the δ-bonding in Re2Cl8
2- can be regarded as a  

weak bond which might as well be considered as a strong antiferromagnetic coupling (see 

below). This interaction can be fully destroyed when going from the eclipsed (D4h) to the 

staggered (D4d) conformation. For this latter geometry, the δ-orbitals are rotated by a 45o 

with respect to each other, leading to strict orthogonality and to ferromagnetism. This 

could be achieved by chemical tuning [35]. The extended transition state (ETS, [37,38]) 

energy decomposition analysis lends support to this interpretation based on MO analysis 

and ELF plots (Table 1). In this analysis the interaction energy between  
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Table 1. The unique bonding situation in Re2Cl8
2- with a bonding energy partitioned with 

respect to two non-interacting Re2Cl4
1-  sub-units in its eclipsed (ideal for δ-bonding) and 

its staggered (δ-bonding is abolished) conformations.a
∆EPauli ∆EElstat ∆Eorb ∆Eint ∆Eorb(a1) ∆Eorb(a2) ∆Eorb(b1) ∆Eorb(b2) ∆Eorb(e) 
eclipsedb  
  (D4h) 
25.46 

 
 
-10.31 

 
 
-20.79 

 
 
-5.64 

 
 
-10.63 

 
 
   0.00 

   
  
 -0.07 

  
  
 -0.80 

 
 
 -9.29 

staggeredc

  (D4d) 
24.87 

 
 
-10.08 

 
 
-19.77 

 
 
-4.99 

 
 
-10.52 

 
 
  0.00 

 
   
 -0.08 

 
 
 -0.08 

 
  
-9.10 

a Scalar relativistic ZORA calculations. 
b 9a1

2(σ).11e(π)4.(3b2,4b2(δ))2 – singlet ground state 
c 9a1

2(σ).11e(π)4.(3b2,4b2(δ))2 – triplet ground state; C4v symmetry notations. 
 

 

two ReCl4
- fragments is partitioned into an electrostatic energy term ∆EElstat, the exchange 

(Pauli) repulsion energy ∆EPauli and orbital interaction term ∆Eorb, which is further 

subdivided into terms pertaining to each orbital symmetry. The absence of δ-bonds in the 

D4d geometry also explains the larger stability (by -0.65 eV for ∆Eint) of the eclipsed 

compared to the staggered form. The ∆Eint energy change when going from the D4h to the 

D4d complex is a result of the balance between the ∆EPauli term (which is in favor for the 

D4d geometry, δ∆EPauli= -0.59 eV) and ∆Eorb (δ∆Eorb=1.02), and to a lesser extend to the 

∆EElstat term (δ∆EElstat=0.23 eV, i.e. both ∆Eorb and ∆EElstat are in favor of the D4h 

geometry). It is interesting to note that all contributions to ∆Eorb become less negative 

when going from D4h to D4d. However, reduction in bond strength in this direction is 

dominated by δ [δ∆Eorb(δ)=0.72 eV], followed by π and  then by σ[δ∆Eorb(π)=0.19 and 

δ∆Eorb(σ)=0.11 eV].  
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Fig 5a 

 

Fig. 5b 
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Fig.5c 

 

 

Fig.5d 
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Fig.5  Electronic localization function  for Re2Cl8
2- taken within a plane containing the 

Re-Re bond and four Cl ligands belonging to the constituting ReCl4
- fragments. Contour 

diagrams have been plotted using the tolal density (a), the Re-Re σ-density - a1(C4v) 
symmetry (b); the Re-Re π-density – e(C4v) symmetry (c) and Re-Re δ-density – b2 (C4v) 
symmetry (d). See Fig.4 for symmetry notations and a correlation diagram within the C4v 
subgroup, common for the dimer  D4h Re2Cl8

2- and the ReCl4
-  fragment. 

 

Yet, another possibility to analyze Re-Re σ,π and δ bonds within DFT is to to apply to 

each of them our extended LFDFT model. This can easily be done for σ and δ symmetry, 

because for each type of bonding, there are two MOs and two electrons available in D4h 

symmetry. This allows an analysis along the lines of a homonuclear diatomic m.o. 

problem for each of the two bonding modes separately. This is similar to a discussion of 

bonding in these systems in which  δ electrons are being considered as decoupled from 

the π and σ-electrons (Bursten and Clayton [39]). For π-bonds, there are 4 electrons 

and 4 orbitals which makes the analysis cumbersome. However, also in this case, an 

approximate treatment can be given, restricting the consideration to two electrons 

distributed over only two orbitals - bonding and antibonding, each of them transforming 

as one of the components of the doubly degenerate orbital e. 

In Table 2 we include singlet triplet separations J12, corresponding to σ, π and δ bonding, 

obtained from DFT calculations. Re-Re bond energies decrease from  σ to π to δ 

following the lines of the MO and the ETS analysis. It is interesting to note that the δε(λ) 

(λ=σ, π, δ) splittings of the KS-MO energies and J12 (λ) are very close in magnitude and 

nearly equal to the values of the hopping integral t12. This reflects the common covalent 

origin of these parameters. At the same time, ∆Eorb(λ) deduced from the ETS analysis are 

larger than J12(λ) and δε(λ) (Table 2). Possibly, polarization effects contribute to this 

difference. The parameter K12 is just the ferromagnetic exchange integral which may 
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Table 2. Singlet versus triplet ground state stabilizations in eclipsed Re2Cl8
2- based on a 

two-electron-two-center bond model within the single determinant DFT approach of DFT 
for σ,π and δ bonds.a
 
               λ   =               σ                 π              δ 
          J12=E--ET             -5.259 

           (-4.769) 
            -3.470 
           (-3.125) 

           -0.461 
          (-0.419) 

          δε(λ)              -5.41            -3.58          -0.704 
         ∆Eorb(λ)           -10.633            -9.287          -0.802 
          K12              0.131 

            (0.100) 
             0.060 
            (0.068) 

            0.0045 
           (0.0045) 

          t12             5.714 
           (5.192) 

             3.757 
            (3.406) 

            0.719 
           (0.656) 

          U             0.391 
            (0.456) 

             0.340 
            (0.296) 

            0.630 
           (0.576) 

 
a Scalar relativistic (non-relativistic, in parenthesis) spin-unrestricted ZORA calculations 
in D4h symmetry with the following configurations for the Re d-orbitals for σ,π and δ 
bonding: (a+a-)= 6a1g

26e1u
42b2g

2; (b+b-)=6a2u
26e1u

42b2g
2, 6a1g

26e1u
26eg

2b2g
2, 

6a1g
26e1u

42b1u
2; (a+b+ and a+b-)= 6a1g

16a2u
16e1u

42b2g
2; 6a1g

26e1u
3 6eg

12b2g
2; 

6a1g
26e1u

42b2g
12b1u

1.(a,b orbitals under consideration are underlined). Values of the 
transfer(hopping) integral t12, the Heisenberg exchange integral (K12) and the effective 
transfer energy (U) are also included. Re-Re(2.236Å) and Re-Cl (2.331 Å) bond distances 
are obtained from LDA-DFT geometry optimizations. 
 

 

 become operational in the limit of zero overlap. It leads to a triplet (3A2) ground state in 

the staggered (D4d) conformation of Re2Cl8
2- where δ bonding is fully suppressed. 

 

6. Conclusions 

The LFDFT models developed in our group turn out to be able to calculate electronic 

multiplet structures as well as fine structures not only for single nuclear, but also in 

dinuclear TMI complexes. In this case, not only magnetic exchange, but also the metal-

metal chemical bond can be interpreted and well understood in terms of interactions 

between orbitals in the active space of the d-electrons. They can be used to interpret 
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bonding and magnetic phenomena on the same footing and are valuable in addition to 

other methods for the study of the chemical bond, e.g. the extended transition state 

method, the electron localization function and analysis of the Laplacian of the electron 

density (Bader analysis). Following a more general, symmetry based formalism [40] the 

method can be extended to charge transfer spectra. Its ability to also treat spectra of rare-

earth and actinide complexes is presently explored in our group [41]. 
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