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Abstract

We present a multivariate, non-parametric technique for constructing reliable daily VaR
predictions for individual assets belonging to a common equity market segment, which takes
also into account the possible dependence structure between the assets and is still com-
putationally feasible in large dimensions. The procedure is based on functional gradient
descent (FGD) estimation for the volatility matrix (Audrino and Bühlmann, 2002) in con-
nection with asset historical simulation and can also be seen as a multivariate extension
of the filtered historical simulation method proposed by Barone-Adesi et al. (1998). Our
FGD algorithm is very general and can be further adapted to other multivariate problems
dealing with (volatility) function estimation. We concentrate our empirical investigations on
the Swiss pharmaceutical and the US biotechnological equity market and we collect, using
statistical and economical backtests, strong empirical evidence of the better predictive poten-
tial of our multivariate strategy over other univariate techniques, with a resulting significant
improvement in the measurement of risk.

Key words: Volatility estimation; Filtered Historical Simulation; Value-at-Risk

1 Introduction

The measurement of market risk (the risk that a financial institution incurs losses on its trading
book due to unexpected changes in prices or rates) has assumed a primary importance for
regulators and for internal risk control, because of the growth in derivative trading in most
financial institutions. One of the most widely used risk measures is Value-at-Risk, or VaR (see
Duffie and Pan, 1997, for a review of the early literature on VaR). A portfolio’s (or an asset’s)
VaR is commonly defined as the maximum loss that will be incurred on the portfolio with a given
level of confidence over a specified holding period, based on the distribution of price changes
over a given historical observation period. Or, in other words, a VaR calculation amounts of
course to a simple quantile estimation of the Profit-and-Loss distribution of a given portfolio
over a prescribed holding period.

The main advantage of using VaR as a risk measure is that it is very simple and can also
be used to summarize the risk of individual positions. Because of this, it has been adopted
for regulatory purposes. More specifically, the BIS has stipulated that the minimum capital
requirement for market risk should be based on a 10-day VaR at 99% confidence level.

∗I thank Peter Bühlmann for some interesting remarks.
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A lot of different ways have been proposed so far to compute VaR with univariate methods:
see for example Dowd (1998) or Jorion (2001). In this paper, we study whether the accuracy of
VaR predictions for individual positions estimated with univariate techniques can be significantly
improved using multivariate methods, which can also take into account the predictive contribu-
tions and interactions of other positions belonging to a common market segment. We present
here the results found for the Swiss chemical/pharmaceutical and the US biotechnological equity
market segment.

Although VaR is conceptually a simple measure of risk, computing it in practice with mul-
tivariate methods for large equity markets can be very difficult when taking into account also
the dependence structure between the different assets. We present a non-parametric technique
for constructing accurate daily VaR estimates for individual assets, which is still computation-
ally feasible for multivariate problems in large dimensions, where so far it does not exists any
alternative competitive method. Our strategy is based on functional gradient descent (FGD)
estimation, a recent technique for the classification problem from the area of machine learning
(Mason et al., 1999; Breiman, 1999; Friedman et al., 2000; Friedman, 2001), for the multivariate
conditional covariance matrix of the individual assets in connection with historical simulation.
The FGD algorithm that we propose is the same as in Audrino and Bühlmann (2002), who
have studied the statistical performance of FGD in the financial field. It is very general and
can be further adapted to solve other multivariate problems dealing with (volatility) function
estimation, such as for example asset allocation problems or risk management for global trading
portfolios of large trading banks with time dependent weights. In this instance VaR has been so
far computed only using approximations and univariate models (Berkowitz and O’Brien, 2002).

The main advantage of our technique is its ability to construct reliable and powerful VaR
predictions in a high-dimensional multivariate GARCH-type set-up. So far, it was not possible
to use multivariate GARCH-type models, such as for example the BEKK models, to estimate the
conditional covariance matrix in large dimensions, because we would have to face an intractable
model-selection problem and the most parameters would have to be set to zero in order to
avoid overfitting. Using FGD this problem can be overcome: this technique can be also used in
situations where we deal with more parameters than observations. Choosing reasonable starting
functions (for example estimated by a very simple multivariate GARCH-type model), FGD
try to improve, often successfully, those components where the initial predictions are poorest.
Clearly, as Audrino and Bühlmann (2002) have already shown, we can not expect to learn in all
d dimensions when increasing d and keeping sample size fixed. However, although the gain on
average will generally decrease, FGD still improve the worst cases.

Once that FGD yields accurate predictions for the conditional covariance matrix, we can
use a model-based bootstrap (Efron and Tibshirani, 1993) to recursively generate pathways for
future returns. This methodology can also be seen as a multivariate extension of the method
proposed and backtested by Barone-Adesi et al. (1998) and (2002) based on filtered historical
simulation, where we use a multivariate GARCH-type model in connection with FGD for filtering
the residuals.

Our strategy contrasts well most critiques made about the use of filtered historical simulation
for estimating VaR (Pritsker, 2001). First of all, our FGD technique allows for the use of the
estimation cross-terms as predictor variables. This is a reasonable assumption if we consider
that assets belonging to a common market segment (like in our case) show some dependence
structure and it is conceivable that one asset can be influenced and predicted by the past values
of some other. This possibility have not been considered in the filtered historical simulation
method proposed by Barone-Adesi et al. (1998), where the volatility of an asset depends only
on its own past lagged values and volatilities.
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A second critique is related to the assumption of independent identically distributed (i.i.d.)
innovations, which implies fixed conditional correlations in a multivariate setting. In our proce-
dure, we only assume constant conditional correlations in a rolling (i.e. not fixed) time-window
of about three years of data, using to model the dynamics of the multivariate return series a
constant conditional correlation (CCC)-type model firstly proposed by Bollerslev (1990). Our
method can be perhaps further improved by assuming dynamic conditional correlations (see for
example Engle, 2002), but this is not in the spirit of this paper and is left to future research.

The third and last critique on the use of the filtered historical simulation method by Barone-
Adesi et al. (1998) for estimating VaR is an empirical one: Pritsker found in his investigations
that this method is not able to accurately estimate VaR for long time horizons and at high
confidence levels (for example for 10-day VaR at 99%) using 2 years of historical data. This
is due to a lack of extreme outliers in the filtered data set. One solution can be the use of a
longer span of historical data, which may improve the VaR predictions by allowing for more
extreme observations. Unluckily, this will not be consistent with the use of fixed conditional
correlations, assumption which is clearly violated if we consider longer periods of historical data.
On the other side, we found through a simulation exercise and in our real examples that our
multivariate procedure yields more accurate VaR predictions by allowing the information to
flow through the different series; the lack of extreme outliers in a particular series is filled up by
multivariate modelling.

Using different statistical and economical backtests, we collect empirical evidence of the
better predictive potential of our multivariate procedure over other univariate techniques, and
in particular the filtered historical simulation method of Barone-Adesi et al. (1998). The VaR
estimates for the individual assets belonging to a common equity market segment are more
accurate using our technique with a resulting improvement in the measurement of market risk.

The paper is organized as follows. We present and discuss our FGD algorithm in section
2. Section 3 is concerned with the description of the model-based bootstrap method used
for the construction of daily VaR estimates. In section 4 we propose a simulation exercise
which proves that multivariate modelling can correct the possible inaccuracies of daily VaR
predictions estimated with the univariate method of Barone-Adesi et al. (1998). The results of
our real empirical investigations and the backtest analysis are summarized in section 5. Section
6 concludes the paper.

2 Volatility estimation with Functional Gradient Descent

The multivariate real data of interest are in our case time series of asset prices {Pt,i; t =
0, 1, . . . , T, i = 1, . . . , d}. Their (log)-returns (in percentages) are then defined as the change in
the logarithms of the individual prices

Xt,i = 100 · ( log(Pt,i)− log(Pt−1,i)
)
, t = 1, . . . , n.

We assume stationarity of the returns (at least within a suitable time-window). In the empirical
investigations of section 5, we always report results using a rolling time-window of about three
years, which seems to be consistent with the assumption of stationarity (Mikosch and Starica,
1999).

As Audrino and Bühlmann (2002) have already shown, a slightly modified (from the generic
one of Friedman et al., 2000 or Friedman, 2001) Functional Gradient Descent (FGD) technique is
a powerful strategy to construct computable and good predictions for the multivariate volatility
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matrix

Vt = Covd×d(Xt|Ft−1), Xt = (Xt,1, . . . , Xt,d)T , (2.1)

where Ft−1 denotes the information available up to time t − 1, i.e. the σ-algebra generated by
{Xs; s ≤ t − 1}. As already mentioned in section 1, the importance of FGD is revealed par-
ticularly in large dimensions (for example d in the hundreds) where predicting the multivariate
volatility matrix raises huge challenges in computational and modelling issues due to the well-
known curse of dimensionality. In such a case FGD is one of the few non parametric techniques
(if not the only one so far) which are feasible.

Our working model is a generalization of the classical constant conditional correlation (CCC)
GARCH model firstly introduced by Bollerslev (1990),

Xt = µt + ΣtZt, (2.2)

where we assume the following:

(A1) (innovations) {Zt}t∈Z is a sequence of i.i.d. multivariate innovations with spherical distri-
bution (e.g. multivariate normal) having mean zero and covariance matrix Cov(Zt) = Id.
Moreover, Zt is independent from Ft−1 = {Xs; s ≤ t− 1}.

(A2) (CCC construction) The conditional covariance matrix Vt = Cov(Xt|Ft−1) = ΣtΣT
t is

almost surely positive definite for all t. The typical element of Vt is vt,ij = ρij(vt,iivt,jj)1/2

(i, j = 1, . . . , d). The parameter ρij = Corr(Xt,i, Xt,j |Ft−1) equals the constant conditional
correlation and hence −1 ≤ ρij ≤ 1, ρii = 1.

(A3) (functional form) The conditional variances are of the form

vt,ii = σ2
t,i = Var(Xt,i|Ft−1) = Fi({Xt−j,k; j = 1, 2, . . . , k = 1, . . . , d})

where Fi takes values in R+.

(A4) (conditional mean) The conditional mean µt is of the form

µt = (µt,1, . . . , µt,d)T = AXt−1

with A a diagonal d× d matrix (vector AR(1) in mean).

Note that (A2) can be represented in matrix form as

Vt = ΣtΣT
t = DtRDt,

Dt = diag(σt,1, . . . , σt,d), R = [ρij ]di,j=1.

The functional form (A3) allows clearly for cross-terms, since the conditional variances of one
series depends on the past multivariate observations. This is one of the nice features of such a
multivariate GARCH-type model and is motivated from the fact that in reality some instruments
can be influenced and better predicted using the past information from other risk factors.

We propose FGD for estimating the (squared) individual volatility functions Fi(·) in (A3),
where we restrict Fi(·) : Rpd → R+ with p finite, i.e. involving the first p lagged multivariate
observations. The main idea of FGD is to find the estimates for the functions Fi(·) which
minimize a suitable loss function λ, under the constraint which requires that the solutions
F̂i(·) are additive expansions of ”simple estimates”. These ”simple estimates” are given from a
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statistical procedure S, called the base learner, which is often constructed from a (constrained or
penalized) least squares fitting; common examples of base learners are regression trees, projection
pursuit or neural nets. For more details, we remand to Friedman et al. (2000), Friedman (2001)
and, for the applications in the financial field, Audrino and Bühlmann (2002).

To proceed with the FGD technique, we have therefore to specify a suitable loss function
which has to be minimized during the estimation. Assuming multivariate normality of the inno-
vation variables Zt in (2.2), we have that the (multivariate) negative log-likelihood (conditional
on the first p observations) is given by

−
n∑

t=p+1

log
(
(2π)−d/2det(Vt)−1/2 exp(−ξT

t V −1
t ξt/2)

)

=
n∑

t=p+1

(
log(det(Dt)) +

1
2
(D−1

t ξt)T R−1(D−1
t ξt)

)
+ n′d log(2π)/2 + n′ log(det(R))/2

where ξt = Xt − µt, Dt is diagonal with elements
√

Fi(Xt−1
t−p) and n′ = n− p. For this reason a

natural loss function is

λR(Y, f) = log(det(D(f)) +
1
2
(D(f)−1Y)T R−1(D(f)−1Y) +

1
2

log(det(R)) +
d

2
log(2π),

D(f) = diag(f1, . . . , fd), (2.3)

where the terms d log(2π)/2 and log(det(R))/2 are constants and could be dropped. As pointed
out with the subscript, the loss function λR depends on the unknown correlation matrix R. The
FGD algorithm will be constructed iteratively by estimating R and using the loss function with
the estimated R to get an estimate for all Fi’s.

Estimation of the correlation matrix R can be easily done via empirical moments of residuals.
Having (previous) estimates F̂ = (F̂1, . . . , F̂d), we build the residuals

ε̂t,i = (Xt,i − µ̂t,i)/F̂i(Xt−1, . . .)1/2, t = p + 1, . . . , n

and define

R̂ = (n− p)−1
n∑

t=p+1

ε̂tε̂
T
t , ε̂t = (ε̂t,1, . . . , ε̂t,d)T . (2.4)

As the name ”functional gradient” suggests, we need to calculate the partial derivatives of
the loss function λR. They are given (in the case of normality of the innovations Zt) by

∂λR(Y, f)
∂fi

= (fi −
d∑

j=1

γijyiyj

f
3/2
i f

1/2
j

)/2, i = 1, . . . , d, (2.5)

where [γij ]di,j=1 = R−1. This will be used when computing negative gradients (see Step 2 in the
following FGD algorithm) for every component i = 1, . . . , d.

If the assumption of normality of the innovations Zt in (2.2) is violated, the estimates may be
consistent but inefficient and this can result in poor performance. As it is shown in the empirical
investigations of section 5, a possible alternative can be to assume a fat-tailed distribution for
the innovations (such as for example a scaled tν distribution with fixed degrees of freedom
parameter ν), that is consistent with the belief that financial (log-) returns are leptokurtic.
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Another possibility could be to assume a normal inverse gaussian distribution, which seems to
work quite well (Venter and de Jongh, 2001).

The FGD algorithm, which is the same FGD algorithm for multivariate volatility as in
Audrino and Bühlmann (2002), looks as follows.

FGD algorithm

Step 1 (initialization). Choose the starting function F̂i,0(·) and denote by

F̂i,0(t) = F̂i,0(Xt−1,Xt−2, . . .), i = 1, . . . , d.

Construct estimates µ̂t for the conditional mean from a starting model and compute R̂0 as in
(2.4) using F̂0. Set m = 1.

For every component i = 1, . . . , d, do the following.

Step 2i (projection of component gradients to base learner). Compute the negative gradient

Ut,i = −
∂λR̂m−1

(Xt − µ̂t,F)

∂Fi
|F=F̂m−1(t), t = p + 1, . . . , n.

This is explicitly given in (2.5). Then, fit the negative gradient vector Ui = (Up+1,i, . . . , Un,i)T

with a base learner, using always the first p time-lagged predictor variables (i.e. Xt−1
t−p is the

predictor for Ut,i)

f̂m,i(·) = SX(Ui)(·),

where SX(Ui)(x) denotes the predicted value at x from the base learner S using the response
vector Ui and predictor variables X.

Step 3i (line search). Perform a one-dimensional optimization for the step-length,

ŵm,i = argmin
n∑

t=p+1

λR̂m−1
(Xt − µ̂t, F̂m−1(t) + wf̂m,i(Xt−1

t−p)).

(F̂m−1(t)+wf̂m,i(·) is defined as the function which is constructed by adding in the ith component
only). This can be expressed more explicitly by using (2.3).
(Note that the line search guarantees that the negative log-likelihood is monotonely decreasing
with every iteration.)

Step 4 (up-date). Select the best component as

i∗m = argmini

n∑

t=p+1

λR̂m−1
(Xt − µ̂t, F̂m−1(t) + ŵm,if̂m,i(Xt−1

t−p)).

Up-date

F̂m(·) = F̂m−1(·) + ŵm,i∗m f̂m,i∗m(·).

Then, compute the new estimate R̂m according to (2.4) using F̂m.
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Step 5 (iteration). Increase m by one and iterate Steps 2–4 until stopping with m = M . This
produces the FGD estimate

F̂M (·) = F̂0(·) +
M∑

m=1

ŵm,i∗m f̂m,i∗m(·).

The stopping value M is chosen with the following scheme: split the (in-sample) estimation
period into two sets, the first of size 0.7 · n used as training set and the second of size 0.3 · n
used as test set (this can also be used when the data are dependent). The optimal value of M
is then chosen to optimize the cross-validated log-likelihood.

Remark 1. Initialization in Step 1 is very important in the financial field to achieve good
estimates. As a starting function, we propose to use the fit from a AR(1)-CCC-GARCH(1,1)
model (Bollerslev, 1990) which is of the form (2.2) with (A3) specified to

Fi(Xt−1, Xt−2, . . .) = σ2
t,i = α0,i + α1,iξ

2
t−1,i + β0,iσ

2
t−1,i, i = 1, . . . , d.

We construct the estimates with maximum likelihood from the d individual series, ignoring
the more general correlation structure in R, causing some statistical decrease in efficiency, but
gaining the advantage that the estimates remain quickly computable in high dimensions d.
Note that the starting estimates µ̂t for the conditional mean are kept fixed during the FGD
estimation of the conditional volatility functions.

Remark 2. The base learner in Step 2 obviously determines the FGD estimate F̂M (·).This
should be “weak” (not involving too many parameters to be estimated) enough not to immedi-
ately produce an overfitted estimate at the first iteration. The complexity of the FGD estimate
F̂M (·) is increased by adding further terms with every iteration (Bühlmann and Yu, 2001). We
choose decision trees as base learners, since particularly in high dimensions, they have the ability
to do variable selection by choosing few of the explanatory variables for prediction. This choice
should not be regarded as exclusive: other base learners could be tried out and compared using
some form of cross-validation.
For the reasons explained above, it is often desirable to make a base learner sufficiently “weak”.
A simple but effective way to reduce the complexity of the base learner is via shrinkage towards
zero. The up-date in Step 4 of the FGD algorithm is then replaced by

F̂m(·) = F̂m−1(·) + ν · ŵm,i∗m f̂m,i∗m(·), 0 < ν ≤ 1. (2.6)

Obviously, this reduces the variance of the base learner by the factor ν2.

Remark 3. Stopping in Step 4 is important. It can be viewed as a regularization device
which is very effective in complex model fitting. We find empirically that estimating M by the
simple 70%-30% cross-validation scheme works well.

A good feature of such a FGD procedure, particularly in connection with tree-structured base
learners (see Remark 2), is that it is a computationally feasible, simple method aiming to improve
the initial estimates. FGD traces out a one-dimensional sequence of estimated predictions, which
is feasible to optimize via choosing a stopping value M . One can alternatively try to estimate
predictions for the volatility matrix Vt in (2.1) with more complex multivariate GARCH models,
but this becomes quickly an intractable model-selection problem in large dimensions d. For
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example, if we may wish to fit a multivariate BEKK model (Engle and Kroner, 1995) with
d = 10 individual series many of the hundreds of parameters would have to be set equal to zero
in order to avoid overfitting and more than 1073 models would have to be fitted and checked
when using a classical strategy for selecting the best subset of non-zero parameters with a
model-fitting criterion such as for example the Akaike’s information criterion (AIC).

A feasible extension, left to future research, of our FGD algorithm could be the use, instead
of our working model (2.2), of a generalization of the dynamic conditional correlation (DCC)
model, recently proposed by Engle (2002), using FGD for estimating the individual conditional
variances. Note that in our working model (2.2) we assume constant conditional correlations
only in a rolling (not fixed) time-window, which contains the last 800 days of data (about
three years) used for the estimation (i.e. at time t, the time-window contains the multivariate
observations Xt−1

t−800), and not in the full period. This bring us to the next section, where we
present the technique we use for estimating VaR.

3 VaR estimation

We calculate VaR following a multivariate generalization of the filtered historical simulation
procedure proposed by Barone-Adesi et al. (1998). Our simulation is based on the combination of
multivariate GARCH modelling, using the FGD technique introduced in section 2, and historical
asset returns. As we have already explained in section 1, the use of the multivariate GARCH
model (2.2) in connection with FGD as a filter for the estimation of the standardized residuals
is motivated by the need to overcome the main criticisms about VaR estimation using standard
filtered historical simulation (see Pritsker, 2001). For example, the working model (2.2) allows
clearly for cross-terms and consequently the (squared) volatility function Fi(·) of an asset i
can be influenced and predicted by all the p-past lagged multivariate observations. This is
a realistic assumption if we consider (log-) returns of different assets belonging to a common
market segment (in our empirical cases the chemical or the biotechnological one).

The complete methodology stands as follows. In a first step, we filter the multivariate
standardized innovations Zt with our model (2.2)

Zt = (Σt)−1(Xt − µt),

Vt = ΣtΣT
t = DtRDt, t = 1, . . . , n,

where the individual (squared) volatility functions σ2
t,i = Fi(·), i = 1, . . . , d are estimated using

the FGD technique presented in the algorithm of section 2. Under the assumption (A1), the
standardized innovations are i.i.d. and independent from the past.

Now, the historical standardized residuals can be drawn randomly (with replacement) and
may be used to generate pathways for future returns. In other words, we use a model-based
bootstrap (Efron and Tibshirani, 1993): from an i.i.d. resampling of the standardized residuals
we recursively generate a time series using the structure and the fitted parameters of the esti-
mated optimal model (2.2). Thus, we choose randomly dates with corresponding standardized
innovations

Z∗1,Z
∗
2, . . . ,Z

∗
x, (3.1)

where x is the time horizon at which we want to estimate the VaR (in general from 1 up to
10 days), and we construct for each asset i pathways for (squared) volatilities and returns from
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t + 1 up to t + x using (2.2):

v̂∗t+b,ii = (σ̂∗t+b,i)
2 = F̂i({X∗

t+b−s,k; s = 1, 2, . . . , p, k = 1, . . . , d})
v̂∗t+b,ij = ρ̂ij

√
v̂∗t+b,iiv̂

∗
t+b,jj

X∗
t+b,i = µ∗t+b,i + (Σ̂∗t+bẐ

∗
b)i, b = 1, . . . , x, i, j = 1, . . . , d. (3.2)

Note that all quantities denoted by “̂” use the fitted structure and parameters from the FGD
algorithm of section 2.

The “empirical” distribution of simulated, model-based returns at the chosen time horizon
x for each asset i, i = 1, . . . , d, is obtained replicating the above procedure a large number
of times, e.g. 2000. An estimate of the VaR at time horizon x and at level q (q in general
∈ {0.05, 0.01, 0.005}) is given by the corresponding q-quantile of the “empirical” returns distri-
bution.

An alternative way to calculate VaR could be the use of extreme value theory (EVT) in
connection with the popular peaks over the threshold (POT) method. Such a strategy is well
illustrated in McNeil and Frey (2000) and, if we believe that the assumption made in the FGD
estimation of section 2 (i.e. normal or scaled tν distributed innovations) is violated, it can
sometimes behave like a correction and yield better VaR predictions than the simpler empirical
quantiles.

4 A simulation exercise

In this section, we present a simulation exercise to study the differences of daily VaR predictions
estimated with the filtered historical simulation method of Barone-Adesi et al. (1998), which
from now on we denote with BAGV (deriving from the names of the authors), in comparison
with the ones obtained from our multivariate procedure. We will confront our results with the
ones found by Pritsker (2001) in his investigations. We concentrate our analysis on the case
of 10-day VaR estimates for 99% confidence level. This is of particular interest since the BIS
capital requirements for market risk are based on VaR at this horizon and confidence level.

To focus exclusively on the differences of the two approaches, the simulations are conducted
under ideal conditions for using the BAGV method. In particular, exactly as in Pritsker (2001),
we assume that the parameters of the GARCH processes are estimated exactly, the filtered
innovations that are used in the simulations are the true filtered innovations, and that the
starting conditional volatility is known, and that all pricing models are correct.

To examine the accuracy of the 10-day VaR estimates from our procedure and the BAGV
method, we generated 800 days of random data for five assets among the ones of the AMEX
Biotechnological Index, and then used the simulated data with the true GARCH parameters
to estimate VaR at a 10-day horizon using our FGD strategy and BAGV. The VaR estimates
form these methods are then evaluated by comparing them with VaR predictions based on a full
Monte-Carlo simulation.

The data are generated exactly with the same methodology already given in Pritsker (2001),
Appendix B. We assume that the primitive shocks are independent scaled t4 random variables
(i.e. with variance equal to one) and that the beginning conditional volatilities for each asset
are chosen by picking days between June 1996 and June 1999 and starting the process with
that day’s conditional volatilities. To keep the results from depending on any particular set of
filtered innovations, the results are based on 100 independent simulations.
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To verify the accuracy of the 10-day VaR predictions for 99% confidence level from the
BAGV method and our FGD procedure,we consider differences between the true VaR’s and the
estimates from the two different strategies and use the concept of hypothesis testing.

For each individual asset, we consider the differences between the true 10-day VaR and the
10-day VaR estimates from the two methods for 100 independent simulations

D̂t = VaRk;true − V̂aRk;method, k = 1, · · · , 100 .

We are now testing the null hypothesis that the differences D̂k have mean zero against the
alternative of mean less or bigger than zero, i.e. we have a risk under- or over-estimation,
respectively. For this purpose, we use t-tests for the independent observations D̂k.

We also perform sign-type tests based on the number of positive differences

Ŵk = I{ bDk≥0}, k = 1, . . . , 100 ,

for the null hypothesis that the positive differences Ŵk have mean 1
2 against the alternative of

mean less (or bigger, respectively) than 1
2 .

The number of positive differences and the results of the t-type and sign-type tests are
summarized in Table 4.1.

TABLE 4.1 ABOUT HERE

Considering the t-tests, we find that in two cases out of five at the 10% level and in one out
of five at the 5% level BAGV significantly underestimate the risk. Moreover, if we consider the
sign-type tests, which are robust against deviations from Gaussianity, this results becomes more
evident: in four cases out of five at the 10% level and in two out of five at the 5% level the null
hypothesis is rejected for the 10-day VaR estimates computed with BAGV and the risk tends to
be under-estimated (only in one case we have a overestimation of the risk). On the other side,
our multivariate approach yields better and more accurate 10-day VaR estimates and in no case
we have a rejection of the null hypothesis for both t-type and sign-type tests at the 10% or 5%
level.

This result corresponds to one of Pritsker (2001). Using the BAGV method, we are not able
to compute accurate 10-day VaR predictions for 99% confidence level, due to a lack of extreme
observations in the filtered data set. Our multivariate strategy, on the other side, allowing to
predict one particular series future returns also using the information coming from others, yields
more accurate risk management. The lack of extreme observations in one series seems to be filled
up by multivariate modelling.

5 Backtesting VaR for two real data examples

We backtest here the non-parametric procedure for the estimation of VaR proposed in the last
two sections on two different real data examples. The tests we make are essentially the same as
in Barone-Adesi et al. (2002).

The analysis is based on two criteria: statistical and economical. The former investigate the
frequency and the losses exceeding the VaR predicted by our strategy (violations); the latter
examine the implications of these violations (or breaks) and of the structure of the estimated
VaR in economic terms.

As VaR’s and asset gains and losses are calculated consistently, they can be compared directly
to each other, for the corresponding number of days ahead in the holding period. We define the
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following:

a violation (or a break) has occurred when
(
VaR > actual asset value

)
. (5.1)

The objective is to exceed the actual asset losses a certain number of times which corresponds
to the total number of testing days multiplied by the confidence level used. This means that
sometimes the VaR estimated is not sufficient to cover the actual loss. For example, for 95%
confidence and 1500 testing days, we should have 75 violations (or breaks).

We concentrate our empirical investigations on two particular market segments of two dif-
ferent countries: the Swiss chemical/pharmaceutical one and the US biotechnological one. In
each of the following two backtests, we stored the risk measures for five different VaR hori-
zons (x = 1, 2, 3, 5, 10 days) and three different probability levels (q ∈ {0.95, 0.99, 0.995}). We
estimate daily VaR for 5 and 13 asset for a period of 300 days in the Swiss and US example, re-
spectively. The results from our procedure are always confronted with the ones from the BAGV
method.

5.1 The Swiss chemical/pharmaceutical case

We consider five assets of the SPI chemical and pharmaceutical segment among the ones with
more liquidity with 1100 daily (log-) returns (in percentages): from the Novartis company, the
Roche holding, the Serono company, the Ciba Spez Chemie company and the Sika company.
The data are from the time period between June 4, 1997 and August 21, 2001. We always
report with the use of a rolling window of 800 days for the estimation and the parameters are
re-calculated every 10 days (about two business weeks).

We estimate daily VaR for each of these five assets for a backtesting period of 300 days
using the strategy proposed in sections 2-3, where we assume normal distributed innovations
in the FGD algorithm. These values are then compared to the actual ones and the number of
violations is recorded.

The first tests we make are overall frequency tests. In the following Table 5.1, we show the
number of violations across all five assets for our backtesting period (total of 1500 daily assets).
The number of violations recorded for the entire backtesting period are reported in each column,
where 1-Day up to 10-Day are the 1,2,3,5 and 10-day VaR horizons. We record the violations
at each of the three different confidence levels used in the backtest for our procedure (denoted
by FGD VaR) in confront with the standard one of Barone-Adesi et al. (1998) (denoted by
BAGV). The backtest results marked with an asterisk show some significant difference from the
following success criterium. Under the hypothesis of independence, the numbers of violations
are binomially distributed around their expected values, with standard deviation ranging from
8.44 (95% level) to 2.73 (99.5% level). A two-standard deviation interval can be heuristically
augmented to account for the dependence across assets, leading to a tolerance of 3-4 standard
deviations.

TABLE 5.1 ABOUT HERE

From the results summarized in Table 5.1 we can see that in all tests and especially at high
confidence levels and long time horizons we record more violations than expected, although the
values are not significantly different from our success criterium except for one case. This happens
for both the methods we consider, which yield similar results. Consequently, it seems that the
risk is slightly underestimated. As we have already explained in section 2, this can be given by
the fact that the normal assumption is violated leading to inefficient estimates. We try to check
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this assuming t4 distributed innovations in (2.2) and allowing for more fat-tails. The results are
summarized in the following Table 5.2.

TABLE 5.2 ABOUT HERE

Confronting the results of Table 5.1 with the ones of Table 5.2 we can see the effect given
by the new distribution assumed for the innovations: at high confidence levels and long time
horizons we record less violations and the risk seems to be better estimated. Analogous results
can be obtained using EVT.

A second type of tests that we perform are individual firm tests. These tests determine
whether violations occur randomly in our sample or cluster for some firms for which risk may
be miss-specified. Under the hypothesis of randomness the number of violations in the two
halves of our backtesting period are independent and therefore a cross-sectional regression of
the violations, which each asset reports in the first half on the number of violations recorded in
the second half, should have zero slope. The values of these tests are for all confidence levels
and at all time horizons for the two method proposed not significant and therefore not reported
here.

The next step is to search for a time clustering effect. We apply the well-known Ljung-
Box test to the time series of the aggregate number of violations occurring each day, since by
autocorrelations in this series we can detect whether days with large number of violations across
all assets tend to be followed by other days with large number of violations, pointing to a miss-
specification of the time series model of volatility. We found no significant serial correlation’s
(order 1 to 6) for any confidence level at 1-day VaR horizon using our procedure and the BAGV
method. The results for 1-day VaR at 99% are summarized in Table 5.3.

TABLE 5.3 ABOUT HERE

To end this section, we want to concentrate our backtest analysis on some economical criteria.
So far, the tests that we have performed have not shown a significant difference between our
multivariate procedure and the BAGV technique from Barone-Adesi et al. (1998), and both
methods seem to work well and yield good VaR predictions. Now, if we concentrate a little more
on the accuracy of the VaR estimates obtained using the different methods, we can observe some
interesting differences.

The first one, well illustrated by Figure 5.1, is that the BAGV method particularly in the
periods of low returns (in absolute values) yields too conservative VaR predictions and tends to
overestimate the risk. On the other side, our approach is less conservative and captures better
the passage from stressed, high volatility periods to more stable periods and vice versa.

FIGURE 5.1 ABOUT HERE

This result is confirmed when we look at the average estimated individual VaR: the average
capital employed when estimating daily VaR with our procedure is for all assets at all time
horizon lower than the one required by BAGV. This is a consequence of our model assumptions
in (2.2), which allow for cross-terms. Information can then flow from one asset to an other
causing a better reaction to changes in the market conditions and a further reduction of the
VaR predictions (in absolute terms) during the periods characterized by small magnitude of
returns.

A second difference appears clearly when we consider the largest daily violation recorded.
The example illustrated by Figure 5.2 for a 3-day VaR horizon and at 99% confidence level is
obtained by aggregating (with equal weights) individual asset violations.

FIGURE 5.2 ABOUT HERE
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Our procedure is able to remove some of the largest aggregated violations, although in some
cases yielding a large number of small ones, which occur when VaR is estimated using standard
filtered historical simulation. As the results of the overall frequency tests have already shown,
in this case we can improve our FGD VaR procedure and also the BAGV method by changing
the assumption of normality in (2.2). As we expect, assuming scaled t4 distributed innovations
we can further reduce the number of days and the size of large aggregated violations.

To conclude the analysis, we compare the intervals within the sum of VaR’s (in %) over the
different days for all assets (aggregated with equal weights) ranges with the maximal and the
mean size of aggregate violations. The results are summarized in Table 5.4.

TABLE 5.4 ABOUT HERE

At high confidence levels, the maximal sum of VaR’s needed as reserve estimated with our
FGD VaR procedure is considerably smaller (from 0.4% up to 1%, depending on the chosen
horizon and confidence level) respect to the ones from a classical filtered historical simulation.
On the other side, the maximal and the mean size of aggregate violations between the method
are very similar, with a little improvement using our strategy. Moreover, the intervals, within
the sum of VaR’s ranges, are in the most cases also smaller and the risk estimated with our
strategy seems to be less noisy; in particular, the standard deviation of estimated VaR is lower
using our procedure for each asset and at all time horizons. Consequently the uncertainty over
the amount of capital required to cover unexpected losses is reduced. This is also a consequence,
as we have already explained above, of the more information that we use in our method for
prediction.

5.2 The US biotechnological case

We consider here all 13 assets with enough liquidity belonging to the US AMEX Biotechnology
Index with 1100 daily (log-) returns (in percentages): from the Affymetrix Inc., the Amgen Inc.,
the Biogen Inc., the Cephalon Inc., the Chiron Corporation, the Genzyme Corporation, the
Gilead Sciences Inc., the Human Genome Sciences Inc., the IDEC Pharmaceuticals Corporation,
the Medimmune Inc., the Millenium Pharmaceuticals Inc., the Protein Design Labs Inc. and the
Vertex Pharmaceuticals Inc. The data are from the time period between June 7, 1996 and
August 24, 2000. The analysis is made using for prediction a rolling time-window of 800 days
and the parameters are re-calculated every 10 days.

We estimate daily VaR for each of these thirteen companies for a backtesting period of 300
days using our FGD algorithm with normal distributed innovations and BAGV method. The
estimates are then compared to the actual values and the number of violations is recorded. The
tests we perform are the same already introduced for the Swiss example of last section 5.1.

The backtest results of the overall frequency tests are summarized in the Table 5.5.

TABLE 5.5 ABOUT HERE

As we can see, most values, including all values from the BAGV method, are significantly
different from our success criterium. The two methods seem to underestimate the risk, although
our procedure is better for estimating VaR at short time horizons.

We try now with some other tests to understand the reason why our procedure and the
BAGV method yield such poor predictions for daily VaR, in particular at long-time horizons. We
perform individual firm tests to determine whether violations cluster for one or two companies
for which risk may be miss-specified. The values of these tests are for all confidence levels and at
all time horizons not significant and therefore we do not report them here. We also search for a
time clustering effect applying the Ljung-Box test to the time series of the aggregate number of
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violations across all companies occurring each day. The resulting values for 1-day VaR at 99%
confidence level are summarized in Table 5.6.

TABLE 5.6 ABOUT HERE

The tests reject clearly for both methods the assumption of no autocorrelations in the time
series of aggregate number of violations for orders bigger than 3. This result is true for all confi-
dence levels. A detailed analysis of the time series of aggregate violations show that breaks tend
to cluster for a short period in March 2000 (10 business days) in relation with the well-known
US technological market crash, where all companies contemporarily have registered several con-
secutive big losses. This can be the reason why daily VaR predictions using both strategies for
these days are poor and the risk tends to be underestimated.

The values for the same overall frequency tests and clustering tests (1-day time horizon, 99%
confidence level) on the violations recorded during the backtesting period without the dates
between March 3, 2000 and March 21, 2000 are summarized in Table 5.7 and 5.8 respectively.

TABLES 5.7 AND 5.8 ABOUT HERE

We found that without this short period in March 2000 we have no significant serial corre-
lation’s (order 1 to 6) for any confidence level at 1-day time horizon for the remaining dates.
Moreover, the most values of the overall frequency tests are now turned to be not significant.
The better potential in predicting daily VaR of our FGD procedure over the BAGV method is
clearly shown by the results of Table 5.7. Particularly when considering daily VaR predictions
at long-time horizons for all confidence levels, our strategy results to be more attractive for risk
management than the standard filtered historical simulation BAGV method. The reason of this
result (similarly to Pritsker, 2001) could be the fact that, in this particular case, the time-window
of 800 days used for predictions may not contain enough extreme outliers to accurately compute
VaR at long time horizons and high confidence levels using the BAGV method. On the other
side, our procedure, using a larger number of predictor variables and allowing the information
available for each asset to depend on all past multivariate observations, yields more precise VaR
estimates (see also the simulation exercise of section 4).

To conclude the section, we concentrate on the same economical criteria already introduced
for the Swiss example. The results for the largest daily (aggregate) violations, the intervals
within the sum of VaR’s (equally weighted) for all companies ranges, the value of the maximal
aggregate violation and the mean size of aggregate violations are similar to the ones of section
5.1. One sample example for the largest daily violations at 10-day time horizon and for 99.5%
confidence level is shown in Figure 5.3.

FIGURE 5.3 ABOUT HERE

Using our procedure to estimate daily VaR reduces some peaks with large (aggregate) viola-
tions when compared to the ones from the BAGV method. As we expect, the period of time with
the largest aggregate daily violation is March 2000, where we have seen that the violations tend
to cluster. In particular, for 99.5% confidence level and at 10-day VaR horizon, the maximal
aggregate violation and the mean size of violations are significantly larger (17.21% vs. 14.88%
and 3.56% vs. 3.24%) using the BAGV method. Analogously to the Swiss example, we found
that BAGV tends to yield too conservative VaR predictions in the periods of low (absolute)
returns and that the reserve needed to cover the eventual losses is on average smaller when
estimating daily VaR with our procedure.
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6 Conclusions

We have presented a non-parametric technique to construct daily VaR estimates. Our strategy
is based on a multivariate FGD algorithm, which is a method for estimation of the conditional
covariance matrix in (2.1), in connection with historical simulation. The use of multivariate
GARCH-type models as a filter for historical simulation improves and contrasts the most criti-
cisms about the use of the BAGV method based on filtered historical simulation (Barone-Adesi
et al., 1998) for predicting VaR. For example, our technique allows for cross-terms and the condi-
tional correlation matrix is assumed to be constant only in a rolling (i.e. not fixed) time-window.

So far, the use of multivariate GARCH-type models (for example BEKK models) for the
estimation and the prediction of the conditional covariance matrix (2.1) for large dimensions
was a huge challenge in computational issues and in most cases an intractable model-selection
problem. Our FGD algorithm solves this problem: it is computationally feasible in multivariate
set-ups with dozens up to hundreds of return series. Choosing a reasonable model for estimating
the starting functions in FGD (in our case the standard CCC-GARCH(1,1) model), we try
to improve the initial predictions with some iterations. This is the most attractive feature of
FGD, which is therefore not necessarily restricted to the framework of CCC models, but can be
extended to other more complex multivariate models, for example extending our working model
by assuming dynamic conditional correlations (Engle, 2002).

We have demonstrated through one simulation exercise and on two real data-sets belonging to
the pharmaceutical and biotechnological market segment that our technique produces accurate
and powerful daily VaR estimates, significantly outperforming the VaR predictions from the
BAGV method. The results of the backtests provides empirical evidence of the fact that our
multivariate FGD VaR technique is able to correct inaccuracies, which sometimes occurs when
daily VaR is estimated at long time horizons (5 to 10 days) and for high confidence levels (99%
or 99.5%) using the BAGV method, yielding better risk estimation and capital allocation. We
found that BAGV tends to overestimate risk during the periods of low volatility. Moreover,
for high confidence levels the maximal sum of (aggregate) VaR’s needed as reserve to cover the
eventual losses is considerably smaller and the number and magnitude of the largest aggregate
violations are significantly reduced when using our procedure instead of the BAGV method.

In the backtests of section 5, we have also shown how our procedure can be further improved
if the daily VaR predictions from the standard FGD algorithm are not satisfactory (for example,
with a modification of the assumption about the distribution of the innovations in (2.2)). This is
left to future research. The proposed FGD algorithm is very general and can be further adapted
to other multivariate problems dealing with volatility estimation, such as computing VaR for
global trading portfolios of large trading banks.
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Asset 1 Asset 2 Asset 3 Asset 4 Asset 5

Method BAGV FGD BAGV FGD BAGV FGD BAGV FGD BAGV FGD

# pos. diff. 58 49 40 56 41 51 43 49 51 47

t-tests
0.994 0.865 −1.515 −0.675 −0.253 1.141 −2.203 0.589 1.074 0.400

(0.161) (0.195) (0.066) (0.251) (0.400) (0.128) (0.015) (0.279) (0.143) (0.345)

sign-tests
1.613 −0.199 −2.031 1.203 −1.821 0.199 −1.407 −0.199 0.199 −0.598

(0.053) (0.421) (0.021) (0.114) (0.034) (0.421) (0.080) (0.421) (0.421) (0.275)

Table 4.1: t-type and sign-type tests for the differences between true VaR’s and 10-day VaR
estimates computed with BAGV and our multivariate FGD strategy for 100 independent simu-
lations. P-values are given between parentheses.
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C. level Expected Model 1-Day 2-day 3-Day 5-Day 10-Day

95% 75
BAGV 80 78 78 75 78

FGD VaR 78 84 80 79 74

99% 15
BAGV 21 22 20 23 20

FGD VaR 20 21 19 23 24

99.5% 7.5
BAGV 12 14 14 12 12

FGD VaR 11 16∗ 14 13 14

Table 5.1: Overall frequency tests: violations across five assets belonging to the SPI segment of
chemi/pharma recorded during the backtesting period between June 28, 2000 and August 21,
2001.
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C. level Expected Model 1-Day 2-day 3-Day 5-Day 10-Day

95% 75
BAGV with t4 79 80 80 77 75

FGD VaR with t4 81 82 80 81 72

99% 15
BAGV with t4 17 20 22 21 20

FGD VaR with t4 20 21 20 21 17

99.5% 7.5
BAGV with t4 13 13 12 8 11

FGD VaR with t4 12 14 13 11 10

Table 5.2: Overall frequency tests: violations across five assets belonging to the SPI segment of
chemi/pharma recorded during the backtesting period between June 28, 2000 and August 21,
2001. The estimates are constructed assuming t4 distributed innovations in (2.2).
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Q1 Q2 Q3 Q4 Q5 Q6

FGD VaR 0.187 0.957 1.009 1.190 1.907 2.632

BAGV 0.110 0.989 1.083 1.188 2.010 2.842

Table 5.3: Time clustering effect: Ljung-Box tests for the aggregate number of violations at 99%
confidence level and 1-day horizon for five assets belonging to the SPI segment of chemi/pharma
recorded during the backtesting period between June 28, 2000 and August 21, 2001.
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C. level Time horizon Model Sum of VaR’s interval Max viol. Mean size of viol.

95% 1-Day
BAGV 2.20 to 3.91 6.53 1.68

FGD VaR 2.00 to 3.64 6.76 1.61

95% 10-Day
BAGV 2.31 to 3.57 6.59 1.74

FGD VaR 2.16 to 3.43 6.62 1.73

99.5% 1-Day
BAGV 3.82 to 7.24 7.02 2.70

FGD VaR 3.94 to 6.80 6.86 2.62

99.5% 10-Day
BAGV 4.35 to 7.66 3.75 2.48

FGD VaR 4.16 to 6.76 3.84 2.28

Table 5.4: Intervals for the sum of VaR’s, the maximal aggregate violation and the mean size
of aggregate violations (in %) estimated using our FGD VaR procedure and classical BAGV
method from Barone-Adesi et al. (1998) for all five assets belonging to the SPI segment of
chemi/pharma (aggregated with equal weights) over the backtesting period between June 28,
2000 and August 21, 2001.
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C. level Expected Model 1-Day 2-day 3-Day 5-Day 10-Day

95% 195
BAGV 260∗ 260∗ 264∗ 275∗ 294∗

FGD VaR 247 244 249 259∗ 276∗

99% 39
BAGV 69∗ 74∗ 69∗ 71∗ 78∗

FGD VaR 68∗ 68∗ 66∗ 66∗ 67∗

99.5% 19.5
BAGV 42∗ 45∗ 40∗ 44∗ 52∗

FGD VaR 35 39∗ 36 35 39∗

Table 5.5: Overall frequency tests: violations across thirteen assets belonging to the AMEX
Biotechnology Index recorded during the backtesting period between July 1, 1999 and August
24, 2000. The values marked with an asterisk show some significant difference from our success
criterium.
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Q1 Q2 Q3 Q4 Q5 Q6

FGD VaR 3.799 6.065∗ 6.950 22.57∗ 23.08∗ 23.49∗

BAGV 3.823 5.611 8.116∗ 20.61∗ 20.62∗ 20.88∗

Table 5.6: Time clustering effect: Ljung-Box tests for the aggregate number of violations for
99% confidence level and at 1-day time horizon for thirteen companies belonging to the AMEX
Biotechnology Index recorded during the backtesting period between July 1, 1999 and August
24, 2000. The values marked with an asterisk are significantly different from our null-hypothesis
of no autocorrelations in the time series of aggregate number of violations.
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C. level Expected Model 1-Day 2-day 3-Day 5-Day 10-Day

95% 188.5
BAGV 229 227 230 237 255∗

FGD VaR 216 211 216 224 236

99% 37.7
BAGV 54 58∗ 53 50 62∗

FGD VaR 53 52 50 45 50

99.5% 18.85
BAGV 31 33∗ 29 33∗ 37∗

FGD VaR 26 28 27 22 24

Table 5.7: Overall frequency tests: violations across thirteen assets belonging to the AMEX
Biotechnology Index recorded during the entire backtesting period without the dates between
March 3, 2000 and March 21, 2000. The values marked with an asterisk show some significant
difference from our success criterium.
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Q1 Q2 Q3 Q4 Q5 Q6

FGD VaR 0.143 1.797 3.663 7.131 7.357 7.779

BAGV 0.003 2.199 3.764 7.681 8.602 8.961

Table 5.8: Time clustering effect: Ljung-Box tests for the aggregate number of violations for
99% confidence level and at 1-day time horizon for thirteen companies belonging to the AMEX
Biotechnology Index recorded during the backtesting period without the dates between March
3, 2000 and March 21, 2000. The values marked with an asterisk are significantly different from
our null-hypothesis of no autocorrelations in the time series of aggregate number of violations.
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Ciba Spez Chemie VaR estimates at 1-Day, 99%
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Figure 5.1: Backtest analysis: VaR estimates at 99% confidence level and 1-day time horizon
obtained using the FGD strategy proposed in sections 2-3 (dotted line) and the BAGV method
from Barone-Adesi et al. (1998) (dashed line) superimposed on the (log-) returns of the Ciba
Spez Chemie firm for the entire backtesting period between June 28, 2000 and August 21, 2001.
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Figure 5.2: Backtest analysis: largest daily violation (equally weighted, in %) for a 3-day VaR
horizon and at 99% confidence level obtained aggregating individual asset (belonging to the SPI
segment of chemi/pharma) violations from our procedure FGD VaR (bottom left), our strategy
FGD VaR with t4 distributed innovations (bottom right), the standard BAGV method from
Barone-Adesi et al. (1998) (top left) and the BAGV method with t4 distributed innovations
(top right) during the backtesting period between June 28, 2000 and August 21, 2001.
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Largest Daily Violation for 10-Day VaR at 99.5%
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Figure 5.3: Backtest analysis: largest daily violation (equally weighted, in %) for a 10-day
VaR horizon and at 99.5% confidence level obtained aggregating individual asset (belonging to
the AMEX Biotechnology Index) violations from our procedure FGD VaR (solid line) and the
BAGV method (dotted line) during the backtesting period between July 1, 1999 and August
24, 2000.
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