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Abstract

The suprachiasmatic nuclei (SCN) contain a major circadian pacemaker, which is

regulated by photic and non-photic stimuli. While enkephalins are present in the SCN, their

role in phase regulation of the pacemaker is largely unknown. The opioid agonist fentanyl, a

homologue of morphine, is an addictive drug that induces phase shifts of circadian rhythms in

hamsters. We observed that these phase shifts are blocked by naloxone, which is a critical test

for true opioid receptor involvement, and conclude that opioid receptors are the sole

mediators of the actions of fentanyl on the circadian timing system. A strong interaction

between opioids and light input was shown by the ability of fentanyl and light to completely

block each other’s phase shifts of behavioral activity rhythms. Neuronal ensemble recordings

in vitro provide first evidence that SCN cells show direct responses to fentanyl and react with

a suppression of firing rate. Moreover, we show that fentanyl induces a strong attenuation of

light-induced Syrian hamster Period 1 (shPer1) expression during the night. During the

subjective day, we found no evidence for a role of shPer1 in mediation of fentanyl-induced

phase shifts. Based on the present results, however, we cannot exclude the involvement of

shPer2. Our data indicate that opioids can strongly modify the photic responsiveness of the

circadian pacemaker and may do so via direct effects on SCN electrical activity and

regulation of Per genes. This suggests that the pathways regulating addictive behavior and the

circadian clock intersect.
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Introduction

The major circadian pacemaker of mammals is located in the suprachiasmatic nuclei

(SCN) at the base of the anterior hypothalamus (Ralph et al., 1990; Takahashi et al., 2001).

Generation of rhythmicity in the SCN is genetically determined and based on a

transcriptional/translational feedback loop that involves several clock genes, such as Period

(Per), Cryptochrome, Clock and BMAL1 (Albrecht, 2002; Reppert and Weaver, 2002).

Entrainment to the environmental light-dark cycle can be explained by the pacemaker’s time

dependent responsiveness to light and is mediated by the retinohypothalamic tract (Morin,

1994; Meijer and Schwartz, 2003; Meijer and Takahashi, 2004). The clock genes Per1 and

Per2 have appeared important for light-induced phase resetting during the night (Albrecht et

al., 1997; Shearman et al., 1997; Shigeyoshi et al., 1997; Moriya et al., 2000; Albrecht et al.,

2001; Wakamatsu et al., 2001).

During the day, the SCN is responsive to pulses other than light, which are generally

referred to as non-photic stimuli. Examples are behavioral activity, social interactions,

benzodiazepines (e.g. midazolam), neuropeptide Y (NPY), opioids (e.g. fentanyl) and

serotonin (5-HT) agonists (Albers and Ferris, 1984; Mrosovsky, 1988; Wee and Turek, 1989;

Tominaga et al., 1992; Marchant and Mistlberger, 1995; Mrosovsky, 1996; Meijer et al.,

2000; Vansteensel et al., 2003). Several non-photic stimuli have been reported to result in

suppression of Per1 and Per2 expression, which has led to the proposition that these genes

play an important role in phase resetting also during the day (Horikawa et al., 2000; Yokota et

al., 2000; Fukuhara et al., 2001; Maywood and Mrosovsky, 2001; Maywood et al., 2002).

The projection from the midbrain raphe nuclei towards the SCN contains 5-HT, while

the afferent projection from the intergeniculate leaflet, the geniculohypothalamic tract,

contains NPY, -aminobutyric acid (GABA), neurotensin and enkephalins in the hamster

(Miller et al., 1996; Morin and Blanchard, 2001). The role of enkephalins in the circadian
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system has received increasing attention since -opioid receptors were identified in the

hamster-SCN (Byku et al., 2000) and the - and μ-opioid agonists BW373U86, SNC-80,

morphine and fentanyl were found to induce phase shifts in hamsters or mice when

administered during the day. While morphine-induced shifts were related to its direct effects

on behavioral activity, phase shifts in response to BW373U86, SNC-80 and fentanyl were

argued to occur independent of their direct behavioral effects (Marchant and Mistlberger,

1995; Byku and Gannon, 2000a,b; Meijer et al., 2000). These findings open a new and

promising avenue to study the interplay between the circadian clock and the mechanisms that

regulate drug abuse-related behaviors.

In the present experiments, we analyzed the working mechanism of opioids in the

circadian timing system by behavioral, electrophysiological and molecular investigations.

Wheel running activity was recorded to study the phase shifting effects of fentanyl and light

and the ability of naloxone to block these effects. The responsiveness of SCN neurons to

fentanyl was analyzed in acutely prepared SCN slices, and the expression levels of shPer1

and shPer2 were measured subsequent to fentanyl injections, both during subjective day and

subjective night.
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Methods

Behavioral experiments (experiments 1, 2 and 3)

Animals

All experiments were performed under the approval of the Animal Experiments

Ethical Committee of the Leiden University Medical Center. Male golden hamsters

(Mesocricetus auratus, 80 - 100 g) were obtained from Charles River Laboratories (Ki legg,

Germany). The animals were housed individually in cages that were equipped with running

wheels, in a sound attenuated and temperature controlled room. Food and water were

available ad libitum. The presence of wheel running activity was recorded automatically by a

computer system with a time resolution of 1 min. The animals were placed in a light-dark

regime (LD = 14:10) for at least 10 days and in constant darkness (DD) for 7 days to assess

their freerunning pattern. On the seventh day in DD, the animals were treated as described

below (experiments 1, 2 and 3). The animals were kept in DD for another 14 days after the

treatment day to establish steady state phase shifts.

Experiment 1

On the seventh day in DD, 15 hamsters received three injections during the mid-

subjective day as indicated in protocol 1 (Table 1): a naloxone injection (100 μg, 0.25 ml, i.p.,

naloxone hydrochloride, AZL, Leiden, The Netherlands), a fentanyl injection (100 μg, 2 ml,

i.p., fentanyl dihydrogencitrate, Genthon B.V., Nijmegen, The Netherlands) and a second

naloxone injection. This injection scheme was used because of the short half-life of naloxone

compared to fentanyl in rats (Berkowitz et al., 1975; Misra et al., 1976; Cox et al., 1998). A

similar injection scheme was used for control experiments (saline control injection, 2 ml, i.p.,

0.9% NaCl; protocol 2 and 3, Table 1). The experiments were performed as specified in Table

1 with intervals of at least one month between the protocols.
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Experiment 2

Twenty-one hamsters received a fentanyl injection (100 μg, 2 ml, i.p.) at circadian

time (CT) 6 on the seventh day in DD. The injections were followed by a 2.5-h light pulse of

100 lux. In a second series, the animals received a fentanyl injection at CT 6 that was not

followed by a light pulse of 2.5 h (control experiment).

Experiment 3

On the seventh day in DD, 23 hamsters received a fentanyl (100 μg, 2 ml, i.p.)

injection at CT 18.25, 45 min before a 15-min light pulse of 2 - 10 lux that was aimed at CT

19. In the control experiment, the animals received a saline injection (2 ml, i.p.) before the

light pulse. Notably, application of fentanyl alone at this circadian time did not induce

significant phase shifts of the hamsters’ activity rhythm (Meijer et al., 2000).

Note that in experiments 2 and 3, the duration and intensity of the light pulses differ.

The respective duration and intensities were used to render maximal detectability of effects.

In experiment 2, saturating light intensity was used and the duration of the light pulse was

based on the half-life of fentanyl after intravenous administration in rats (these data are not

available for hamsters). Fentanyl reaches the brain within several minutes and has a half-life

of 73 min (Cox et al., 1998). We assumed therefore that a 2.5-h light pulse would cover the

principal component of the presence of fentanyl. In experiment 3, a light pulse of half-

maximal light intensity and standard duration was used, based on the intensity response curve

described for the same strain of hamsters (Meijer et al., 1992), as a saturating light pulse may

prevent potential effects of inhibiting agents such as fentanyl to be detected.

Data analysis of the behavioral experiments
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The magnitudes of the steady state phase shifts were measured by fitting straight lines

through the activity onsets of the days before and after the injection day. The fitted lines were

extrapolated to the day subsequent to the injection day to measure phase advances or phase

delays. All values are given as mean ± sem. The differences within the animals between the

experimental- and control-induced phase shifts were analyzed with paired Students t-tests.

Statistical significance was reached when p < 0.05.

In vitro electrophysiology (experiment 4)

Animals and tissue preparation

Male golden hamsters of at least 4 - 5 weeks old were individually housed for ten days

or more under a light-dark cycle of LD = 14:10 in plastic cages equipped with a running

wheel, with food and water available ad libitum. Wheel running activity was recorded in 1-

min bins by a computer. Two hours after lights on, hamsters were killed by decapitation, and

their brains were rapidly dissected from the skulls and placed in ice-cold artificial

cerebrospinal fluid (ACSF). A block containing the hypothalamus, optic chiasm and adjacent

tissue was dissected and transferred to a cooled McIllwain–type tissue chopper. Coronal

hypothalamic slices (~ 400 - 500 μm thick), containing the SCN, were prepared and placed on

a platinum grid in a laminar flow chamber. Slices were mechanically stabilized and kept

under a thin fluid layer by using a tungsten fork. In the chamber the slices were perfused at a

rate of 2.5 ml / min with oxygenated (95% O2 : 5% CO2) ACSF that was prewarmed to 35°C.

Humidified and prewarmed O2 / CO2 mixture was blown over the slices. The chamber was

maintained at 36.0 ± 0.1°C with a temperature controller. The composition of the ACSF was

(in mM): 116.3 NaCl, 5.3 KCl, 1.8 CaCl2, 1.0 NaH2PO4, 0.8 MgSO4, 26.2 NaHCO3, 10

glucose and 5 mg/l gentamycin sulfate. The slices were equilibrated in the chamber for 1 h

before the start of the recording.
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Recording procedure

In order to record multiunit discharge activity, single metal electrodes coated with

Enamel (90% platinum - 10% iridium; resistance ~ 100 k ; tip diameter 75 μm) were

lowered 25 - 100 μm in the left and / or right SCN using micromanipulators under direct

visual control. The electrical activity was amplified with a low noise amplifier, filtered

(bandpass 300 Hz – 3 kHz) and displayed on an oscilloscope to visualize spike activity. After

further amplification, the electrical events were converted to pulses by window discriminators

that were set to measure multiunit activity. The signal-to-noise ratio was at least 2:1. The

pulses were counted by a computer in 10-s bins, using custom made software, and were stored

for off-line analysis.

During the recording of the neuronal activity, fentanyl, solved in the perfusion fluid at

a concentration of 2 μM, was applied to the slices for 30 min. Fentanyl was applied during the

subjective day, defined by the prior light-dark regime, by switching from the normal perfusion

fluid to the fentanyl-containing perfusion fluid. After fentanyl application, the recording was

continued for at least 30 min to determine washout characteristics.

Analysis of the in vitro electrophysiology

The obtained data were analyzed off-line. In order to determine the effect of fentanyl

application, the trend in the data was removed by linear regression. For every application, up

to 60 min of baseline preceding the pulse was used for the regression and the resulting line

was subtracted from the data. Subsequently, the data were smoothed (low-pass box filter) and

the maximum response during the fentanyl application was determined. A response was

considered significant if it was larger than two times the standard deviation of the baseline

before smoothing. The response magnitudes were normalized by expression of the maximum
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responses during fentanyl application as a percentage of the average discharge rate over the

last 5 min before fentanyl was applied.

In order to determine regional differences in responsiveness within the SCN, the

effects of fentanyl on the multiunit activity in the dorsal and ventral SCN were analyzed. The

magnitudes of the effects were compared using an independent Students t-test. All values are

expressed as means ± sem. Statistical significance was reached when p < 0.05.

In situ hybridization experiments (experiments 5 and 6)

Animals

Male golden hamsters (40 - 60 g) were treated as described under experiments 1, 2 and 3 until

the 7th day in DD.

Experiment 5

The effects of light and fentanyl on shPer1 and shPer2 expression during the

subjective night were examined in 16 hamsters that were randomly assigned to one of four

experimental groups. On the seventh day in DD, the first group was left untreated; the other

three groups received a 15-min light pulse of 2 - 10 lux starting at CT 19. One of these groups

received a fentanyl injection (100 μg, 2 ml, i.p.) at CT 18.25 and one of these groups received

a saline control injection (2 ml, i.p.) at CT 18.25. All animals were decapitated at CT 20.25

for in situ hybridization.

Experiment 6

In the first series of experiments, 16 hamsters were released into DD after they were

stably entrained to a light-dark cycle. On the seventh day in DD, the animals were randomly

assigned to one of four experimental groups. One of the groups was left untreated; the second



ht
tp
://
do
c.
re
ro
.c
h

10

group received a fentanyl injection at CT 5.75 (100 _g, 2 ml, i.p.); the third group received a

saline (2 ml, i.p.) injection at CT 5.75 and the fourth group received a fentanyl injection at CT

5.75 followed by a 1.5-h light pulse of 100 lux. At CT 7.25, all animals were decapitated for

in situ hybridization analysis.

In the second series, 16 hamsters were randomly assigned to one of four experimental

groups. These groups were treated as described above, apart from the fourth group, which

received a 2.5-h light pulse of 100 lux subsequent to the fentanyl injection. At CT 8.25, all

animals were decapitated for in situ hybridization analysis.

shPer1 and shPer2 expression levels in the SCN were quantified 1.5 h and 2.5 h after

treatment, since similar intervals are known to result in substantial Per1 and Per2 suppression

(Horikawa et al., 2000; Yokota et al., 2000; Fukuhara et al., 2001).

In situ hybridization

After decapitation, the hamster brains were quickly removed from the skulls and fixed

overnight in ice-cold 4% paraformaldehyde. The tissue was dehydrated and embedded in

paraffin and in situ hybridization was done according to Albrecht et al. (1998) using probes

for Per1 and Per2 as described in Albrecht et al. (1997) and Sun et al. (1997). Coronal

sections (7 μm thick) of the hamster brain were made and alternate sections were hybridized

with 35S-uridine triphosphate (New England Nuclear, NEG-039H) labeled cRNA. In most

cases, three sections per hamster-SCN were analyzed. Sections were exposed to Hyperfilm

(Amersham) and the signal was analyzed with a microcomputer using NIH-image. The

difference in signal intensity between the SCN and an equal area of the lateral hypothalamus

was used for normalization. The data were normalized with the no treatment group being

100% in all experiments. Values are expressed as means ± sem (n = 3 or n = 4 animals).
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Differences were tested for statistical significance with ANOVA’s and Bonferroni’s post hoc

test. Statistical significance was reached when p < 0.05.
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Results

Behavioral experiments

Experiment 1

Fifteen animals received fentanyl, naloxone and NaCl injections as described above

(Fig. 1). The average phase advance induced by fentanyl was 0.9 ± 0.1 h (Fig. 1A), while

fentanyl in the presence of naloxone resulted in shifts of 0.02 ± 0.1 h (Fig. 1B). Naloxone by

itself induced mean shifts of 0.03 ± 0.1 h (Fig. 1C). In all but one animal the phase shifts

induced by fentanyl were larger than those induced by naloxone or fentanyl plus naloxone

application. The fentanyl-induced phase shifts were significantly different from the phase

shifts induced by naloxone and by fentanyl plus naloxone (p < 0.001 in both cases). The phase

shifts induced by naloxone and fentanyl plus naloxone were not significantly different (p >

0.8).

Experiment 2

Twenty-one animals received a fentanyl injection at CT 6 followed by a light pulse of

2.5 h (Fig. 2). In the control experiments, the fentanyl injections were not followed by a light

pulse. The average phase advance induced by fentanyl alone was 1.2 ± 0.2 h (Fig. 2A). The

average phase shift induced by fentanyl with a light pulse was 0.3 ± 0.1 h (Fig. 2B). In all but

two animals, the phase shift induced by fentanyl alone was larger than the phase shift induced

by fentanyl with light. The fentanyl-induced phase shifts were significantly different from

those induced by fentanyl and light (p < 0.05).

Experiment 3

Twenty-three hamsters received a saline control or a fentanyl injection at CT 18.25

that was followed by a 15-min light pulse at CT 19 (Fig. 3). A light pulse preceded by a saline
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injection induced an average phase shift of 0.9 ± 0.1 h (Fig. 3A) and a light pulse preceded by

a fentanyl injection induced an average phase shift of 0.1 ± 0.1 h (Fig. 3B). For all animals,

the phase advance induced by light with fentanyl was smaller than the phase advance induced

by light with saline. The differences in light-induced phase shifts, with application of saline or

fentanyl, were highly significant (p < 0.001).

In vitro electrophysiology

Experiment 4

Multiunit recordings were performed on hypothalamic slices containing the SCN. In

nine slices, successful recordings were obtained from two electrodes and in four slices from

one electrode. Two recordings from one slice will be treated as independent recordings in the

analysis as there was no significant correlation between the responses to fentanyl in separate

recordings from one slice (R = 0.47, p > 0.15).

Fentanyl was applied for 30 min in the mid-subjective day, starting between Zeitgeber

time (ZT) 4 and ZT 6 (ZT 12 is defined as the projected time of lights off; Fig. 4). Fentanyl

application induced a significant decrease of SCN multiunit activity in all 22 recordings. The

average magnitude of the decrease was 17 ± 2%. After termination of fentanyl application, the

electrical activity showed a slow increase in most recordings.

We analyzed whether subdivisions of the SCN reacted differently to the application of

fentanyl. To this purpose, results obtained from dorsal and ventral parts of the SCN were

analyzed separately. The average magnitude of fentanyl-induced decrease of electrical activity

in the ventral and dorsal SCN was 20 ± 3% and 13 ± 2%, respectively. These values were not

significantly different from one another (p > 0.05).

In situ hybridization experiments
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Experiment 5

Four groups of four hamsters were treated as indicated. A 15-min light pulse at CT 19

increased the shPer1 levels in the SCN dramatically, compared to the control group that did

not receive a light pulse (p < 0.001). This effect of light was strongly inhibited by fentanyl (p

< 0.001), but not by saline (p > 0.05), administered at CT 18.25 (Fig. 5). In the same animals,

shPer2 expression could not be detected in any of the experimental groups (data not shown).

Experiment 6

Two series of experiments were carried out to quantify shPer1 and shPer2 expression

levels at two time points after fentanyl injection at CT 5.75 (i.e. CT 7.25 and CT 8.25). Due to

damaged brain tissue in one case, three hamsters per group were used for in situ hybridization

analysis at CT 7.25. Four hamsters per group were used in the second series.

No significant differences in shPer1 mRNA expression between the four groups were

observed in either series of experiments (ANOVA, p > 0.1; p > 0.1, respectively; Fig. 6). This

indicates that both at CT 7.25 and 8.25, neither fentanyl nor saline changed the shPer1

expression in the SCN compared to their control values. shPer1 expression in the SCN was

also unaltered when fentanyl injections were followed by a 1.5-h or a 2.5-h light pulse.

Statistical analysis of shPer2 expression, measured at CT 7.25 and at CT 8.25,

revealed no significant differences between the four treatments (ANOVA, p > 0.05; p > 0.1,

respectively, Fig. 6). In response to fentanyl injection, a substantial, but not significant,

shPer2 decrease of 28% and 38% (as compared to no treatment and saline injected groups,

respectively) was observed at CT 7.25. At CT 8.25 these values were 24% and 30%,

respectively. No decrease was observed when fentanyl injections were combined with a 1.5-

or 2.5-h light pulse. Despite the absence of significant effects on either time point, it is

remarkable that shPer2 expression level profiles were consistent between the two time points
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(c.f. Fig. 6C and D). Interestingly, when the shPer2 data from CT 7.25 and CT 8.25 were

pooled, the fentanyl-induced suppressions were significant (ANOVA, p < 0.05; fentanyl vs.

saline p < 0.01 by posthoc LSD test, p > 0.05 by posthoc Bonferroni test; fentanyl vs. fentanyl

plus light p < 0.05 by posthoc LSD test, p > 0.1 by posthoc Bonferroni test).
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Discussion

Opioid receptor activation

We used the opioid receptor agonist fentanyl and the antagonist naloxone to

investigate opioid responsiveness of the circadian system. The difference in half-life of

fentanyl and naloxone made it necessary to apply naloxone with an interval of 1 h. This

protocol appeared effective, as naloxone completely blocked the phase advances induced by

fentanyl in the mid-subjective day. Since fentanyl is a selective and potent opioid receptor

agonist (Chen et al., 1993), our data implicate the opioid receptor system as mediator of the

phase shifts observed in response to fentanyl injection. The blockade after naloxone

administration further strengthens our argument. Naloxone blocks _-, _, and _-opioid

receptors (Lord et al., 1977; Minami and Satoh, 1995) and effectively renders the preparation

into a pharmacological opioid receptor knockout animal (Dahan et al., 2001). We therefore

argue that the observed fentanyl-induced phase advances were solely mediated by opioid

receptors, indicating their role in the circadian timing system.

The specific type of opioid receptor involved in these effects of fentanyl on the

circadian timing system is presently unknown. Fentanyl is a potent μ-opioid receptor agonist

but is also able to bind to (albeit to a lesser extent) - and -opioid receptors (Chen et al.,

1993). No general agreement exists about the presence of the several types of opioid receptors

in the rat-SCN (Desjardins et al., 1990; George et al., 1994; Mansour et al., 1994; Arvidsson

et al., 1995; Ding et al., 1996). Interestingly, recent studies suggested that the -opioid

receptor is involved in phase shifting mechanisms (Byku and Gannon, 2000a, b), and is amply

present in the hamster-SCN (Byku et al., 2000). Despite its presence in the SCN (Allen et al.,

1999), the orphanin-FQ/nociceptin receptor, a structural homologue to the classical opioid

receptors, is unlikely to mediate the effects of fentanyl on the circadian timing system as its

affinity for this receptor is extremely low (Zaveri et al., 2001). Future experiments should
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elucidate the involvement of μ-, -, or -opioid receptors or an interaction between them in

mediating fentanyl-induced shifts (Palazzi et al., 1996; O’Neill et al., 1997; Matthes et al.,

1998).

Opioid-light interaction

Our experiments indicated that a light pulse blocks phase advances of wheel running

activity rhythms induced by fentanyl at CT 6, while application of light by itself is ineffective

during the day. Vice versa, fentanyl blocks phase advances induced by light at CT 19, but

does not induce phase shifts during the night (Meijer et al., 2000). The latter finding is

consistent with findings of Tierno et al. (2002), who found that -opioid agonists, but not

antagonists, block phase shifts induced by light during the late night. We conclude that

fentanyl and light interact at the level of phase shifting mechanisms during the day and the

night, indicating convergence of photic and opioid-activated pathways.

An interaction between light-induced phase advances and other non-photic stimuli has

been described before. Phase advances induced during the subjective day by NPY, the 5-HT

agonist 8-OH-DPAT or wheel running, are blocked by subsequent light exposure (Biello and

Mrosovsky, 1995; Ehlen et al., 2001). Phase advances induced during the night by light are

amongst others blocked by NPY, the 5-HT agonists TFMPP, CGS 12066A and 8-OH-DPAT

and by wheel running (Rea et al., 1994; Pickard et al., 1996; Weber and Rea, 1997;

Mistlberger and Antle, 1998). The suppression of phase shifting effects at both phases of the

circadian cycle is often substantial. In our study a nearly 100% suppression of phase shifting

effects was observed at the two circadian time zones that were investigated. The data suggest

that a large number of SCN neurons involved in phase shifting is under the control of the

opioid system. As the projections from the geniculohypothalamic and retinohypothalamic
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tracts overlap in the SCN, a neuroanatomical basis exists for convergence of opioid and photic

influences on SCN neurons (Miller et al., 1996; Moga and Moore, 1997).

In vitro electrophysiological response to fentanyl

In vitro electrophysiological experiments showed that application of fentanyl to SCN

neurons induces consistent decreases in the multiunit activity. This decrease is in agreement

with the inhibitory effect of opioid agonists in most brain areas (Duggan and North, 1984).

Our results are somewhat different from data by Cutler et al. (1999), who found a rebound

excitatory response in the SCN upon removal of morphine or enkephalins, despite the absence

of direct effects of enkephalins or morphine on the basal or NMDA-evoked firing rate of

single neurons. This rebound excitatory response is consistent with the general inhibitory

effects of opioids, but was not observed in our experiments with fentanyl. The differences

between the results may be caused by the difference in substance used or by the difference in

recording technique (single unit recording versus multiunit recording). Moreover, in the

experiments by Cutler et al. (1999), a criterion was set of 20% change from baseline firing

rate, which is common for single unit recordings. The responses that were observed in our

experiments were somewhat smaller (mean: 17%), but significant due to the low variability in

the multiunit recording traces. We conclude that fentanyl is able to change directly the

electrical activity of SCN neurons.

Opioid-stimulated pathways during the night

A light pulse during the late subjective night strongly induced shPer1 expression,

which is in correspondence with previous studies (Albrecht et al., 1997; Shearman et al.,

1997; Shigeyoshi et al., 1997; Horikawa et al., 2000; Moriya et al., 2000; Yokota et al., 2000).

A fentanyl injection that preceded the light pulse by 45 min attenuated this induction,
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indicating that the observed blockade of light-induced phase shifts by fentanyl could have

been mediated by suppression of shPer1. In contrast, no shPer2 induction was detected 1.25 h

after the start of a light pulse during the late subjective night. This might be explained by the

relatively slow responses that have been observed for Per2 in the hamster (Fukuhara et al.,

2001). A previous study has suggested that the attenuation of light-induced phase shifts

during the late subjective night by injection of the benzodiazepine brotizolam is accompanied

by a suppression of Per1 (Yokota et al., 2000). Novelty-induced wheel running, however,

blocks photic shifts via mechanisms other than Per1 (Edelstein et al., 2003). We conclude that

non-photic stimuli inhibit light-induced phase shifts via diverse intracellular pathways.

To understand the effects of opioids on photic entrainment, it is important to identify

their working mechanism. The major transmitter of the retinohypothalamic tract involved in

phase shifting by light is the excitatory amino acid glutamate (De Vries et al., 1993, 1994).

The first site of action of fentanyl may have been pre- or postsynaptically on SCN neurons or

afferents. Our data agree with opioids affecting the SCN via presynaptic modulation of the

retinal input, as was proposed by Cutler et al. (1999). Based on our findings that fentanyl

directly decreases SCN neuronal firing rate, it is also possible that fentanyl affects the SCN

neurons postsynaptically by hyperpolarization of the membrane, thereby counteracting the

glutamate-induced depolarization. Opposing effects of light- and behaviorally induced

changes in electrical discharge have been shown in vivo, indicating that such mechanisms

may exist in the SCN (Schaap and Meijer, 2001). Finally, fentanyl may affect the light-

induced intracellular signaling pathway. The binding of glutamate to NMDA receptors results

in membrane depolarization, which is followed by calcium influx during the night. From

there, the light-induced signaling pathway has been proposed to contain e.g. nitric oxide

synthase, nitric oxide, the ryanodine receptor, guanylyl cyclase, cyclic GMP, protein kinase

G, MAP kinase, Ca2+/cAMP response element binding protein and the clock genes Per1 and
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Per2 (Ding et al., 1997; Shearman et al., 1997; Obrietan et al., 1998; Gillette and Mitchell,

2002). Opioid receptors belong to the superfamily of seven-transmembrane domain receptors

coupled to G-proteins. Opioid-induced activation of G-proteins may lead to calcium channel

blockade, an important step in the photic signaling pathway (Minami and Satoh, 1995). It is

possible, therefore, that opioids have suppressed light-induced shPer1 induction and phase

shifts in behavioral activity by interfering with known components of the photic input

pathway, either pre- or postsynaptically.

Opioid-stimulated pathways during the day

Previous studies have indicated a causal relationship between suppression of the clock

gene Per1 and the occurrence of non-photically induced phase shifts in behavioral activity

rhythms (Hamada et al., 2004). Several studies described a decrease in Per1 expression of up

to 60% in response to (i) confinement to a novel running wheel, (ii) intraperitoneal injections

with brotizolam or 8-OH-DPAT, (iii) injections adjacent to the SCN with NPY, (iv) NPY

application to a brain slice containing the SCN, or (v) dark exposure (Maywood et al., 1999;

Horikawa et al., 2000; Yokota et al., 2000; Fukuhara et al., 2001; Maywood and Mrosovsky,

2001; Maywood et al., 2002; Mendoza., 2004; but see Yannielli et al., 2002; Poirel et al.,

2003). Interestingly, a fentanyl injection at CT 5.75 did not change the levels of shPer1

expression significantly. Compared to the no treatment group, fentanyl induced a 3 - 16%

decrease and compared to the saline group a 9 - 17% increase in shPer1, which is small

relative to the Per1 suppression levels found in aforementioned studies. Despite the lack of

shPer1 suppression in our study, the fentanyl-induced phase shifts of the behavioral activity

rhythm were in the same order of magnitude as those induced by other non-photic stimuli

(Horikawa et al., 2000; Yokota et al., 2000). Our results suggest that fentanyl-induced phase
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shifts are not correlated with changes in shPer1 expression, indicating that opioids exploit

routes other than Per1 to phase shift the clock during the subjective day.

Additional analyses were performed to study whether fentanyl application affects Per2

expression, because of the putative role of Per2 in non-photic phase shifting (Maywood et al.,

1999; Horikawa et al., 2000; Yokota et al., 2000; Fukuhara et al., 2001; Maywood et al.,

2002; Yannielli et al., 2002; Mendoza et al., 2004, but see Poirel et al., 2003). Generally, in

these studies Per2 levels are suppressed by 10 - 40%, depending on the stimulus applied. In

our study, the average Per2 expression levels were decreased by about 30% as compared to

no treatment and saline injected groups at CT 7.25 and also at CT 8.25. Despite the

consistency of the effects at both time intervals, none of these suppressions was statistically

significant. This is probably due to relatively large standard errors as pooling the data from

the two time points revealed an effect of fentanyl on shPer2. On the basis of the present

results we hypothesize a direct effect of fentanyl on the molecular clock during the subjective

day. Future studies should provide more information on the involvement of shPer2 in the

mediation of fentanyl-induced phase shifts.

The present study shows that opioids have phase shifting effects on the circadian

timing system and strong interactions with photic input pathways. This is in line with other

reports showing that flies and mice mutant in clock components exhibit changes in cocaine

sensitization (Andretic et al., 1999; Abarca et al., 2002) and alcohol intake (Spanagel et al.,

2005) suggesting that the circadian clock and modulator mechanisms of drug abuse-related

behaviors intersect (Yuferov et al., 2003). Notably, methamphetamine injection causes

increase of Per gene expression in the caudate putamen of the mouse (Masubuchi et al., 2000;

Nikaido et al., 2001). Our finding that opioids affect the circadian timing system is of

importance insofar that endogenous enkephalins and their receptors are present in the SCN.

The question arises under what circumstances these endogenous enkephalins are released in
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the SCN and have functional significance for photic and non-photic entrainment. Apart from

their role under physiological conditions, opioids may affect the circadian clock in patients

when administered exogenously in a clinical setting. This is especially important after

ambulatory surgery and in the treatment of chronic pain.
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Tables

Table 1

Protocol CT 5.75 CT 6 CT 6.75

1 Naloxone Fentanyl Naloxone

2 Naloxone NaCl Naloxone

3 NaCl Fentanyl NaCl



ht
tp
://
do
c.
re
ro
.c
h

32

Legends

Table 1

Injection protocols of experiment 1

The animals in experiment 1 were subsequently exposed to protocol 1, 2 and 3. In each

injection protocol, the animals received three injections at the indicated circadian times.

Naloxone-fentanyl-naloxone is referred to in the text as “fentanyl plus naloxone”, naloxone-

NaCl-naloxone as “naloxone”, and NaCl-fentanyl-NaCl as “fentanyl”.
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Figure 1

Naloxone blocks phase advances induced by fentanyl at CT 6

A-C) Double plotted actograms of hamster wheel running activity rhythms in constant

darkness (DD). Days are plotted underneath each other and black vertical marks indicate the

presence of wheel running activity. CT 6 is indicated by a black dot. A) Injection of fentanyl

at CT 6 induces a phase advance. B) Injection of fentanyl plus naloxone as well as C)

injection of naloxone fail to induce phase shifts. D) Phase shifts (mean ± sem) of the circadian

wheel running activity rhythms of hamsters. The animals received fentanyl, fentanyl plus

naloxone and naloxone injections at about CT 6. The phase shifts induced by fentanyl were

significantly different (*) from the phase shifts induced by fentanyl plus naloxone and by

naloxone.
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Figure 2

Light blocks phase advances induced by fentanyl at CT 6

A-B) Double plotted actograms of hamster wheel running activity rhythms in constant

darkness (DD). Days are plotted underneath each other and vertical black marks indicate the

presence of wheel running activity. CT 6 is indicated by a black dot. A) Injection of fentanyl

at CT 6 without a subsequent light pulse induces a phase advance whereas B) injection of

fentanyl at CT 6, followed by a 2.5-h light pulse fails to change the phase of the wheel

running activity rhythm. C) Phase shifts (mean ± sem) of the circadian wheel running activity

rhythms of hamsters. Hamsters received fentanyl alone at CT 6, and fentanyl followed by a

2.5-h light pulse. The phase shifts induced by fentanyl plus light were significantly different

(*) from the phase shifts induced by fentanyl alone.
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Figure 3

Phase advances induced by light at CT 19 are blocked by fentanyl

A-B) Double plotted actograms of hamster wheel running activity rhythms in constant

darkness (DD). Days are plotted underneath each other and vertical black marks indicate the

presence of wheel running activity. CT 19 is indicated by a black dot. A) A 15-min light pulse

at CT 19, preceded by a saline control injection at CT 18.25 results in a phase advance of the

wheel running rhythm. B) If the light pulse is preceded by a fentanyl injection at CT 18.25, no

phase shift is induced. C) Phase shifts (mean ± sem) of the circadian wheel running activity

rhythms of hamsters. Hamsters received a saline or a fentanyl injection at CT 18.25 and a

light pulse at CT 19. The phase shift induced by fentanyl plus light was significantly different

(*) from the phase shifts induced by saline plus light.
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Figure 4

Fentanyl induces a decrease of SCN neuronal firing rate

A-B) The effect of 30 min of fentanyl application on the neuronal discharge rate in the SCN

in vitro was measured in 22 recordings from 13 slices. Two representative graphs show the

responsiveness to fentanyl when applied during the mid-subjective day. Zeitgeber time (based

on prior photoperiod) is plotted on the x-axis and the multiunit neuronal activity from the

SCN neurons on the y-axis. In the examples shown, two electrodes were placed in the slice.

The results from the first electrode are indicated by black squares, from the second by black

horizontal dashes. The time interval of fentanyl application is indicated by black lines on top

of the graphs. The application of fentanyl during the subjective day caused a decrease in the

discharge rate of SCN neurons. When fentanyl was removed from the perfusion fluid, the

discharge rate recovered in most cases to baseline levels (see A with recovery in one trace and

no recovery in the other trace).
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Figure 5

Fentanyl blocks light-induced shPer1 expression

Effects of a 15-min light pulse with or without a fentanyl injection on shPer1 expression

during the subjective night. Injections were given at CT 18.25 and light pulses started at CT

19. A light pulse significantly increased shPer1 expression. This effect was significantly

attenuated by fentanyl, but not by saline. Treatments are indicated on the x-axis (N, no treat;

F, fentanyl; S, saline) and the relative mRNA abundance of shPer1 is presented on the y-axis.
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Figure 6

The effects of fentanyl on the shPer1 and shPer2 expression in the SCN

A-B) Effects of a fentanyl injection (CT 5.75) during the subjective day on shPer1 expression

at CT 7.25 (A) or CT 8.25 (B) with and without accompanying light pulses that lasted for 1.5

h or 2.5 h, respectively. None of the treatments changed the shPer1 expression significantly.

C-D) Effects of a fentanyl injection during the subjective day (CT 5.75) on shPer2 expression

at CT 7.25 (C) or CT 8.25 (D) with and without accompanying light pulses that lasted for 1.5

h or 2.5 h, respectively. Although fentanyl seemed to suppress shPer2 by about 30%, none of

the treatments changed the shPer2 expression significantly. Treatments are indicated on the x-

axis (N, no treat; F, fentanyl; S, saline) and the relative mRNA abundance of shPer1 or

shPer2 is presented on the y-axis.
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