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Abstract

In this paper we discuss deformations of the BRST operator of the fermionic string.

These deformations preserve inlpotency of the BRST operator and correspond to

turning on infinitesimal Gravitino and Ramond-Ramond spacetime fields.
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One of the outstanding problems of string theory is to understand the equations of
motion for the fields of the theory ( massless and massive ) and the higher symmetries that
relate them [1],[2]. Progress towards this direction can be achieved by studying infinites-
imal deformations of the SuperVirasoro algebras that preserve superconformal invariance
[3]. The problem of finding superconformal deformations is an interesting problem in its
own right, but it also provides us with insights into the symmetry structure of string
theory since spacetime symmetry transformations are particular superconformal defor-
mations [4]. In a recent paper [5] we constructed a class of superconformal deformations,
termed canonical deformations, in terms of superfields (see also [6]). Although properly
speaking we need to discuss deformations of two copies of the SuperVirasoro algebra in
the remainder of this paper we shall concentrate only on one copy. More specifically we
found that a deformation of the form

δT (σ) = δTF (σ) + θδT (σ) = ΦF (σ) + θΦB(σ) (1)

where ΦB(ΦF ) is the bosonic (fermionic) component of a superfield of dimension (1
2
, 1
2
),

preserves superconformal invariance.
Canonical deformations have a number of interesting features: superprimary fields of

dimension (1
2
, 1
2
) are in natural correspondence with the physical states of string theory,

being the vertex operators. As such they have a nice spacetime interpretation in terms
of turning on spacetime fields. Appealing though they are canonical deformations have
also significant drawbacks. They do not appear to describe spacetime fermions and R-R
bosonic fields which are written in terms of spin fields. Spin fields cannot be written as su-
perfields. These string backgrounds have attracted interest recently due to the conjectured
AdS/CFT equivalence [7]. We might attempt to identify the bosonic component ΦB(σ)
of the canonical deformation with the appropriate spacetime gravitino vertex operator

δT (σ) = ΦB(σ) = Ψα
µ(X)Sαe

−

φ

2 ∂Xµ + Ψ̃α
µ(X)(X)S̃αe

−

φ̃

2 ∂Xµ

+ ∂λΨ
α
µ(X)Sαe

−

φ

2 ψ̃λψ̃µ + ∂λΨ̃
α
µ(X)ψλψµS̃αe

−

φ̃

2 .

(2)

In order to calculate δTF we need to calculate the commutator of ΦB(σ) with the super-
current TF (σ). The commutator of the vertex operator which is written in terms of spin
fields with the supercurrent TF is not well-defined since the corresponding OPE in the
complex plane involves branch cut singularities

TF (z)ΦB(w) =
γλαβ̇∂λΨ

α
µ(X)S β̇e−

φ

2 ∂Xµ

(z − w)
3

2

+
γλαβ̇Ψ

α
µ(X)S β̇e−

φ

2 ∂Xλ∂X
µ

(z − w)
1

2

+
γραβ̇∂ρ∂λΨ

α
µ(X)S β̇e−

φ

2 ψ̃λψ̃µ

(z − w)
3

2

+
γραβ̇∂λΨ

α
µ(X)S β̇e−

φ

2 ∂Xλψ̃
λψ̃µ

(z − w)
1

2

(3)

where we have omitted terms that are either regular or have poles as singularities. This
suggests then that the canonical deformations we have constructed in terms of superfields
are not the most general solution to the deformation equations.
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The failure to derive an expression for δTF is puzzling. It is not clear if the presence of
the spin fields breaks superconformal invariance or if superconformal invariance is realised
in an apparent nonlocal manner.

Instead of deforming the stress energy superfield, we could have deformed the BRST
charges Q and Q. Nilpotency then requires

{Q, δQ} = 0 , {Q, δQ} = 0 , {Q, δQ} + {Q, δQ} = 0 (4)

under the infinitesimal deformations

Q → Q + δQ , Q → Q + δQ . (5)

Although the two approaches are equivalent in the presence of NS-NS backgrounds,
they are not necessarily equivalent in the presence of gravitino and Ramond-Ramond
backgrounds. In fact, given a deformed BRST charge, the components of the deformed
stress energy superfield can be extracted by calculating the commutator or anticommu-
tator of Q with the ghost field b or β, assuming that the commutator or anticommutator
exists. In the presence of spin fields the commutator of β with the deformed BRST charge
does not exist.

Next we shall derive the form of the deformation of the BRST operator which cor-
responds to turning on a spacetime gravitino. We shall employ a particular formalism
which relates superconformal deformations and spacetime symmetries. In string theory,
the stress energy superfield TΦ = TF (Φ) + θTΦ depends on the spacetime fields Φ. Space-
time symmetries are superconformal deformations that induce changes in the spacetime
fields:

δT = i [h, TΦ] = TΦ+δΦ − TΦ

δTF = i [h, TF (Φ)] = TF (Φ+δΦ) − TF (Φ) . (6)

The operator h is the generator of the spacetime symmetry; it is the zero mode of a sum of
dimension (1, 0) and (0, 1) currents. The previous discussion can also be carried through
in terms of the BRST formalism. Let us suppose that QΦ is nilpotent BRST charge,
function of the spacetime fields. Then Φ → Φ + δΦ is a spacetime symmetry if

δQΦ = i [h,QΦ] = QΦ+δΦ − QΦ (7)

In order to generate a gravitino background we need to perform a supersymmetry
transformation about flat spacetime. The operator h that generates N = 2 spacetime
supersymmetry transformations is [8]

h =
∫

dσ
[

ǫα(X)Sαe
−

φ

2 + ǫ̃α(X)S̃αe
−

φ̃

2

]

(8)

where Sα, e−
φ

2 , S̃α and e−
φ̃

2 are the spin fields for the two-dimensional fermions ψµ(σ),
ψ̃µ(σ) and the superconformal ghosts β(σ), γ(σ) β̃(σ), γ̃(σ) respectively. The integrand is
again superprimary of dimension (1, 0) only if the parameters ǫα(X) and ǫ̃α(X) satisfy

✷ǫα(X) = ✷ǫ̃α(X) = 0, γµ∂µǫ
α = γµ∂µǫ̃

α = 0. (9)
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Let’s calculate i[h,Q]. The result is

δQ = i[h,Q] =
∫

dσ
(

c∂µǫ
α(X)Sαe

−

φ

2 ∂Xµ + c∂µǫ̃
α(X)S̃αe

−

φ̃

2 ∂Xµ
)

(σ)

+
1

2

∫

dσ eφη∂µǫ̃
α(X)ψµS̃αe

−

φ̃

2 (σ).

(10)

Although these backgrounds are pure gauges, we gain an insight into the form of the de-
formation which corresponds to turning on the appropriate spacetime fields. The obvious
ansatz for the canonical deformation then corresponding to gravitino propagation about
flat spacetime is

δQ =
∫

dσ
[

cΨα
µ(X)Sαe

−

φ

2 ∂Xµ + cΨ̃α
µ(X)(X)S̃αe

−

φ̃

2 ∂Xµ +
1

2
eφηΨ̃α

µ(X)ψµS̃αe
−

φ̃

2

]

(σ)(11)

since under a supersymmetry transformation the gravitinos transform about flat spacetime
as, δΨα

µ = ∂µǫ
α and δΨ̃α

µ = ∂µǫ̃
α. This particular ansatz does not obey the deformation

equations

{Q, δQ} = 0, {Q, δQ} = 0, {Q, δQ}+ {δQ,Q} = 0 (12)

and it has to be supplemented with extra terms. We find that

δQ =
∫

dσ
[

cΨα
µ(X)Sαe

−

φ

2 ∂Xµ + cΨ̃α
µ(X)(X)S̃αe

−

φ̃

2 ∂Xµ + c∂λΨ
α
µ(X)Sαe

−

φ

2 ψ̃λψ̃µ

+ c∂λΨ̃
α
µ(X)ψλψµS̃αe

−

φ̃

2 +
1

2
eφηΨ̃α

µ(X)ψµS̃αe
−

φ̃

2 +
]

(σ) (13)

satisfy equations (12) if the gravitino wave function satisfies the following equations

✷Ψα
µ(X) = 0, γµ∂µΨ

α
ν (X) = 0, ∂µΨα

µ(X) = 0. (14)

We observe the emergence of an equation of motion and a gauge condition. Of course the
first equation is redundant since it follows from the Dirac equation. The gauge condition
imposes transversality in X-space and eliminates part of the spin 1

2
component of Ψα

µ(X).
The gauge condition does not fix the gauge completely and subsequently the fermionic
wavefunction describes the emission of a gravitino (spin 3

2
part) and a dilatino (spin 1

2

part). In order to separate the gravitino and dilatino parts we write Ψα
µ(X) = χα

µ(X) +
γµλ

α(X) and demand that γµχα
µ = 0. The gravitino and dilatino wavefunctions can be

expressed in terms of Ψα
µ(X)

λα(X) =
1

D
γµΨα

µ(X), χα
µ(X) = Ψα

µ(X)−
1

D
γµγ

λΨα
λ(X) (15)

and the equations (16) imply

γµ∂µχ
α
ν (X) = 2∂νλ

α, γµχα
µ(X) = 0, ∂µχα

µ(X) = 0, γµ∂µλ
α(X) = 0. (16)

It is obvious again that the most general superconformal deformation is not canonical
since it corresponds to turning on spacetime fields in a particular gauge. In a subsequent
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publication we shall discuss how to relax the gauge condition and go beyond canonical
deformations.

Finally we will discuss deformations that correspond to turning on Ramond-Ramond
spacetime fields. These fields appear in type II superstrings and their vertex operators
are written in terms of bispinors F αβ(X). The spinor indices are contracted by the
left-right spin fields [9]. Strings in Ramond-Ramond backgrounds have been discussed
in [10]. In order to generate a Ramond-Ramond background about flat spacetime we
need to perform two consecutive supersymmetry transformations. This leads us (11) to
the following ansatz for the superconformal deformation that corresponds to turning on
Ramond-Ramond backgrounds

δQ =
∫

dσ c(σ)F αβ(X)SαS̃βe
−

1

2
(φ+φ̃). (17)

This ansatz obeys the deformation equations if the bispinor F αβ(X) obeys the following
equations

✷F αβ(X) = 0, γ
µ

αβ̇
∂µF

αβ(X) = 0 γ
µ

ββ̇
∂µF

αβ(X) = 0. (18)

The bispinors F αβ describe a collection of massless antisymmetric tensors F µ1µ2···µd as
can be seen by expanding them in a complete basis of all gamma matrix antisymmetric
products

F αβ(X) =
10
∑

n=0

in

n!
F µ1µ2···µn(X)(γµ1µ2···µn

)αβ. (19)

The chirality conditions that the bispinor obeys limits the number of the antisymmetric

tensors present in the spectrum of the theory. In type IIA string theory Sαe
−

φ

2 and S̃βe
−

φ̃

2

have opposite chirality while in type IIB the have the same

(γ11)
α
δF

δβ(X) = ±F αδ(X)(γ11)
α
δ = F αβ(X). (20)

Furthermore we can convert the equations of motion for the bispinor wavefuction onto
equations for the antisymmetric tensor wavefunctions by using γ matrix identities

∂[λF µ1···µd] = 0 ∂λF
λµ2···µd = 0 (21)

which are the Bianchi identity and the massless equation of motion for an antisymmetric
tensor field strength.

In this paragraph we shall summarize what we have done in this paper. We discussed
deformations of superconformal field theories by varying the BRST operator Q such that
(Q + δQ)2 = 0, thus preserving nilpotency of the BRST operator to first order in δQ.
These deformations describe strings propagating in gravitino and Ramond-Ramond back-
grounds.
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