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Abstract

A derivative version of the well-known direct inversion in the iterative subspace (DIIS) algorithm is presented. The

method is used to solve the coupled perturbed Hartree–Fock (CPHF) equation to obtain the first and second derivatives

of the density matrix with respect to an external electric field which, in this case, leads to the electric molecular po-

larizability and hyperpolarizability. Some comparisons are presented and the method shows good convergences in

almost all cases.

1. Introduction

A number of molecular properties [1] as for

example: second-order geometric derivatives [2,3],

non-linear optical properties [4–6], nuclear mag-

netic resonance [7,8], g tensor [9], Raman intensity

[10], etc. can be formulated in terms of derivatives
of the total energy E, with respect to the pertur-

bational parameter(s), xa; xb; . . .

Eða;b;...Þ ¼ o
oxa

o
oxb

� � �E: ð1Þ

The perturbation(s) xa; xb; . . . can include, for ex-

ample: nuclear displacements, external electric

and/or magnetic field, and nuclear magnetic spin

moment. Thus a large variety of molecular prop-

erties can be computed in the framework of the

coupled perturbed equations.

In this Letter, we present a method to reduce

the number of iterations during the resolution of

the coupled perturbed Hartree–Fock (CPHF) or

Kohn–Sham (CPKS) equations.

We will show that an extension using deriva-
tives of the well-known direct inversion in the it-

erative subspace algorithm (DIIS) [11,12] is well

suited, in principle, for any kind and order of the

CPHF or CPKS equations. To the best of our

knowledge, it is the first use of such a kind of ex-

tension of the Pulay�s method applied to the

CPHF/CPKS equations. This algorithm has been

implemented in our new quantum chemistry pro-
gram package FREEMOLREEMOL [13]. Using the proposed

method we find a significant reduction of the

number in iterations needed to reach convergence

for a given threshold during the computation of

both static polarizability and hyperpolarizability.
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Comparisons with the results obtained using the

program GAMESSAMESS [14] show a gain factor between

1.7 and 3.9 for the set of molecules taken as test

(see Tables 1–4).

This Letter is organized as follows: in Section 2

we present the methodology, Section 3 will be
dedicated to the presentation of the results and

finally the conclusions will be drawn in Section 4.

2. Methodology

In molecular orbital (MO) theory it is well-

known that the convergence of the Roothaan–Hall
self-consistent field iterations can be accelerated by

several methods. The most simple being the con-

stant or dynamic damping [15] method, and one of

the most popular ones is the DIIS [11,12] or the

new energy direct inversion in the iterative sub-

space (EDIIS) recently developed by Canc�ees and

co-workers [16,17].

2.1. Constant damping algorithm

The constant damping algorithm is the simplest

and rather trivial method to avoid convergence

problems. It consists in mixing by a linear com-

bination the old density matrix Dk�1 and the new

density Dk as

~DDk ¼ aDk þ ð1� aÞDk�1; ð2Þ
where a is a predefined constant factor in the in-

terval [0; 1].

2.2. Direct inversion in the iterative subspace

The DIIS method, introduced some time ago by

Pulay [11,12], provides a significant acceleration of

the SCF rate. The idea of the DIIS scheme consists

in using the information accumulated during the

preceding iterations by constructing an averaged

effective atomic orbital (AO) Fock matrix ~FFk at the
kth iteration. This effective Fock matrix is then

used instead of Fk to generate an improved set of
molecular orbitals and thus an improved density

matrix Dkþ1 on the basis of atomic orbitals (AO

density matrix). In this manner, the SCF proce-

dure is stabilized and the oscillations avoided.

2.3. SCF based DIIS algorithm

The Pulay�s DIIS scheme is based on the mini-
mization of the norm of the error vector ei given

by the commutator

ei ¼ ½F ðDiÞ;Di�S ¼ F ðDiÞSDi � DiSF ðDiÞ; ð3Þ
with the quadratic coefficients being the products

of the two error vectors

Table 1

Number of iterations needed for the calculation of the electric polarizability and first hyperpolarizability of sulfur hexafluoride with

three different methods: CDAðaÞ, DDIIS and CDAðaÞ and DDIIS or CDAðaÞ (see text), where a is the value of the damping factor

Method axx bxxx byxx

CDA(0.20) 19(30) 23(32) 23(34)

CDA(0.15) 17(28) 21(30) 21(31)

CDA(0.10) 17(26) 22(31) 20(29)

CDA(0.05) 24(29) 29(41) 19(28)

DDIIS and CDA(0.20) 9(12) 14(16) 9(11)

DDIIS and CDA(0.15) 9(11) 14(16) 9(11)

DDIIS and CDA(0.10) 8(11) 14(16) 9(11)

DDIIS and CDA(0.05) 8(11) 14(16) 9(11)

DDIIS or CDA(0.20) 8(10) 14(16) 9(11)

DDIIS or CDA(0.15) 8(10) 14(16) 9(11)

DDIIS or CDA(0.10) 8(10) 14(16) 9(11)

DDIIS or CDA(0.05) 8(10) 14(16) 9(11)

The number of iterations is given for a threshold on the first and second derivatives of the density matrices of DD1;max ¼ 10�4 a.u.

(DD2;max ¼ 10�6 a.u. correspond to the values in parentheses) and a threshold for the tensor components of Damax ¼ Dbmax ¼ 10�4 a.u.

have been used for all calculations.
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fDIISðc0; . . . ; ckÞ ¼
Xk

i;j¼0

cicjei � ej

¼
Xk

i¼0

ci½F ðDiÞ;Di�S
�����

�����
2

; ð4Þ

where k � k denotes the Frobenius norm and S the

AO overlap matrix. It is worth mentioning that the

error vector is proportional to the electronic gra-

dient ðrjEÞ [18] with respect to the orbital rota-

tion parameters jpq as

rjE ¼ 4½F ;D�S ¼ 4e: ð5Þ
One solves in practice the constrained optimiza-

tion problem

inf fDIIS;
Xk

i¼0

ci

(
¼ 1

)
; ð6Þ

where fDIIS is given by (4). Once the optimal co-

efficients cki have been obtained, it is then possible

to find a linear combination of Fock matrices

~FFk ¼
Xk

i¼0

cki Fi; ð7Þ

so that the corresponding error vector
~eek ¼

Pk
i¼0 c

k
i ei approximates the zero vector in the

least-squares sense. This interpolation – like vio-

lates the idempotency of the density matrix at the
second-order, however, this becomes insignificant

when the SCF convergence has been reached.

2.4. Derivative based DIIS algorithm (DDIIS)

In this subsection we introduce the DDIIS

method which is an extension of the Pulay�s DIIS

algorithm.
By straightforward differentiation of the error

vector ei defined in (3) with respect to the pertur-

Table 2

Comparison between the number of iterations needed for the

calculation of the electric polarizability and first hyperpolariz-

ability of sulfur hexafluoride with GAMESSAMESS [14] and FREEMOLREEMOL

Method axx bxxx byxx

GAMESSAMESS 31 32 22

DDIIS and CDA(0.20) 8 14 9

DDIIS and CDA(0.15) 8 14 9

DDIIS and CDA(0.10) 8 14 9

DDIIS and CDA(0.05) 8 14 9

DDIIS or CDA(0.20) 8 14 9

DDIIS or CDA(0.15) 8 14 9

DDIIS or CDA(0.10) 8 14 9

DDIIS or CDA(0.05) 8 14 9

Two different methods are presented: DDIIS and CDAðaÞ
and DDIIS or CDAðaÞ (see text), where a is the value of the

damping factor. The number of iterations is given for a

threshold on the first and second derivatives of the orbital ro-

tation matrices DUmax ¼ 10�5 a.u. and a threshold on the tensor

components of Damax ¼ Dbmax ¼ 10�4 a.u. have been used for

all calculations.

Table 3

Number of iterations needed for the calculation of the electric polarizability and first hyperpolarizability of DP5 molecule with three

different methods: CDAðaÞ, DDIIS and CDAðaÞ and DDIIS or CDAðaÞ (see text), where a is the value of the damping factor

Method axx ayy azz bxxx byxx byyy bzxx bzyy bzzz

CDA(0.20) 44(47) 13(20) 19(33) 37(>50) 20(30) 16(30) 31(44) 18(27) 24(38)

CDA(0.15) 42(44) 13(18) 19(30) 34(48) 19(28) 16(28) 29(41) 17(25) 22(35)

CDA(0.10) 28(42) 12(17) 25(29) 32(45) 18(26) 19(28) 27(38) 16(24) 23(33)

CDA(0.05) 37(39) 11(16) 33(37) 36(48) 17(24) 24(36) 26(38) 15(22) 29(41)

DDIIS and CDA(0.20) 21(29) 7(11) 13(36) 24(31) 10(13) 12(19) 16(23) 8(12) 15(22)

DDIIS and CDA(0.15) 18(23) 7(10) 13(20) 24(31) 10(13) 12(19) 16(23) 8(12) 15(22)

DDIIS and CDA(0.10) 26(30) 7(10) 15(20) 24(31) 10(13) 12(19) 16(23) 8(12) 15(22)

DDIIS and CDA(0.05) 23(33) 7(10) 15(20) 24(31) 10(13) 12(19) 16(23) 8(12) 15(22)

DDIIS or CDA(0.20) 16(22) 7(10) 13(30) 24(31) 10(13) 12(19) 16(23) 8(12) 15(22)

DDIIS or CDA(0.15) 19(21) 7(10) 16(20) 24(31) 10(13) 12(19) 16(23) 8(12) 15(22)

DDIIS or CDA(0.10) 21(23) 7(10) 14(20) 24(31) 10(13) 12(19) 16(23) 8(12) 15(22)

DDIIS or CDA(0.05) 20(20) 8(10) 13(19) 24(31) 10(13) 12(19) 16(23) 8(12) 15(22)

The number of iterations is given for a threshold on the first and second derivatives of the density matrices of DD1;max ¼ 10�4 a.u.

(DD2;max ¼ 10�6 a.u. correspond to the values in parenthesis) and a threshold for the tensor components of Damax ¼ Dbmax ¼ 10�4 a.u.

have been used for all calculations.
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bation parameters xa; xb; . . . one obtains the gra-

dient error vector as

e
ða;b;...Þ
i ¼ oaob � � � ½F ðDiÞ;Di�S ; ð8Þ
where we have used the short-hand notation

e
ðaÞ
i � e

ðaÞ
i ðxÞ � oaeiðxÞ � oeiðxÞ

oxa
: ð9Þ

The first and second derivatives are

e
ðaÞ
i ¼ ½F ðaÞ

i ; S�Di
þ ½Fi; SðaÞ�Di

þ ½Fi; S�DðaÞ
i
; ð10Þ

and

e
ða;bÞ
i ¼ ½F ða;bÞ

i ; S�Di
þ ½Fi; Sða;bÞ�Di

þ ½Fi; S�Dða;bÞ
i

þ ½F ðaÞ
i ; SðbÞ�Di

þ ½F ðbÞ
i ; SðaÞ�Di

þ ½F ðaÞ
i ; S�

DðbÞ
i
þ ½F ðbÞ

i ; S�
DðaÞ
i

þ ½Fi; SðaÞ�
DðbÞ
i
þ ½Fi; SðbÞ�

DðaÞ
i
: ð11Þ

The derivative equivalent of the quadratic function

(4) can be written as

fDDIISðc0; . . . ; ckÞ ¼
Xk

i;j¼0

cicje
ða;b;...Þ
i � eða;b;...Þj : ð12Þ

One finally solves the constrained optimization

problem

inf fDDIIS;
Xk

i¼0

ci

(
¼ 1

)
: ð13Þ

Once the optimal coefficients cki have been com-

puted, it is then possible to find the extrapolated
derivative Fock matrix ~FF ða;b;...Þ

k by

~FF ða;b;...Þ
k ¼

Xk

i¼0

cki F
ða;b;...Þ
i : ð14Þ

3. Implementation

We have implemented the DDIIS in the DIIS

routine of FREEMOLREEMOL [13]. In order to take maxi-

mum advantage of the DDIIS method during the

first few iterations, the routine uses only a constant
damping scheme (CDA) with a constant parame-

ter a. When the norm of the error vectors ek is less

than a certain threshold ee, the subprogram can

switch to a DDIIS with or without constant

damping what we will call DDIIS and CDA and

DDIIS or CDA, respectively.

At every CP iteration we compute the B ma-

trices where the elements are Bij ¼ e
ða;b;...Þ
i � eða;b;...Þj .

We keep 10 previous matrices F ða;b;...Þ
i and e

ða;b;...Þ
i in

a cyclic queue and replace the oldest one. As al-

ready mentioned by Pulay the DIIS is an extrap-

olation scheme. The optimal coefficients cki are

solution to the following quadratic programming

problem:

inf

(
� 1

2
cTBc;

Xk

i¼0

ci ¼ 1

)
; ð15Þ

Table 4

Comparison between the number of iterations needed for the calculation of the electric polarizability and first hyperpolarizability of

DP5 molecule with GAMESSAMESS [14] and FREEMOLREEMOL

Method axx ayy azz bxxx byxx byyy bzxx bzyy bzzz

GAMESSAMESS 43 14 45 42 19 31 36 17 36

DDIIS and CDA(0.20) 21 8 30 27 11 14 20 10 19

DDIIS and CDA(0.15) 18 8 16 27 11 14 20 10 19

DDIIS and CDA(0.10) 26 8 16 27 11 14 20 10 19

DDIIS and CDA(0.05) 23 8 15 27 11 14 20 10 19

DDIIS or CDA(0.20) 15 8 25 27 11 14 20 10 19

DDIIS or CDA(0.15) 16 8 16 27 11 14 20 10 19

DDIIS or CDA(0.10) 19 8 15 27 11 14 20 10 19

DDIIS or CDA(0.05) 19 8 15 27 11 14 20 10 19

Two different methods are presented: DDIIS and CDAðaÞ and DDIIS or CDAðaÞ (see text), where a is the value of the damping

factor. The number of iterations is given for a threshold on the first and second derivatives of the orbital rotation matrices

DUmax ¼ 10�5 a.u. and a threshold for the tensor components of Damax ¼ Dbmax ¼ 10�4 a.u. have been used for all calculations.
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whose associated Euler–Lagrange equation reads

B 1

1T 0

� �
� c

k

� �
¼ 0

1

� �
; ð16Þ

where 0 ¼ ð0; . . . ; 0ÞT and 1 ¼ ð1; . . . ; 1ÞT are vec-

tors whose all components are 0 and 1, respec-

tively, and k is the Lagrange multiplier of the

constraint
Pk

i¼0 ci ¼ 1. In our code, the set of lin-
ear equations are solved by inverting the left-hand

side matrix. The inverse matrix is iteratively re-

fined and thus if a linear set of equations is en-

countered, the oldest iterations are discarded until

the system of equations becomes solvable as it is

done in all common programs.

In the case of a perturbational independent

basis set (for example, in the case of the pertur-
bation due to an external electric field as consid-

ered in the following), the derivatives of the atomic

overlap matrix S with respect to the external

electric field Ea cancel identically ðSðaÞ ¼ Sða;bÞ ¼ 0Þ
and thus Eqs. (10) and (11) reduce to the following

simpler expressions:

e
ðaÞ
i ¼ ½F ðaÞ

i ; S�Di
þ ½Fi; S�DðaÞ

i
; ð17Þ

and

e
ða;bÞ
i ¼ ½F ða;bÞ

i ; S�Di
þ ½Fi; S�Dða;bÞ

i
þ ½F ðaÞ

i ; S�
DðbÞ
i

þ ½F ðbÞ
i ; S�

DðaÞ
i
: ð18Þ

In this way the number of matrix multiplications

and consequently the computational effort are
strongly reduced.

3.1. A simple example

In Section 4 we will present the results obtained

for the resolution of the CPHF equation in the

case of a static electric field perturbation as pro-

posed by Sekino and Barlett [4] and Karna and
Dupuis [5,6]. In this case the problem reads

alm ¼ �Tr½H ðlÞDðmÞ� and blmn

¼ �Tr½H ðlÞDðm;nÞ�; ð19Þ
where Tr stands for the trace of a matrix, H ðlÞ is
the AO matrix of the electric dipole moments in

the l directions and DðmÞ and Dðm;nÞ are the first and

second derivatives of the density matrices w.r.t. the

external static electric field components, respec-

tively. The indices l, m and n run over Cartesian

coordinates x, y and z. The matrices DðmÞ and Dðm;nÞ

are obtained at the CPHF level of theory by the
following iterative schemes developed, among

others, by Karna and Dupuis [6]. For the sake of

clarity, the following explanations will be focused

only on the first-order perturbation and the ex-

tension to higher order is straightforward. At each

ith iteration, the derivative AO Fock matrix F ðmÞ
i is

set with the help of the AO density matrix DðmÞ. At

this stage the error vector for the current ith iter-
ation eðmÞi is built up using Eq. (17) since the basis

set is independent of the external electric field ap-

plied on the system. Once the B matrix is set up

with the current and previous error vectors

feðmÞi ; eðmÞi�1; . . . ; e
ðmÞ
i�ng, where n is the number of vec-

tors retained, then the Euler–Lagrange equation

(16) are solved to give the set of coefficients fcki g.
At this stage, the extrapolated AO Fock matrix
~FF ðmÞ
i can be formed by a linear combination of the

previous Fock matrix from (14). The iterations are

repeated until the convergence is reached.

4. Results and discussion

Throughout, we have kept 10 error vectors in
memory to set up the DIIS matrix (16) and all test

calculations were carried out with the 6–31G basis

set [19] for the corresponding optimized geome-

tries [20] at the Hartree–Fock level of theory. The

modified DIIS subroutine was tested for sulfur

hexafluoride and 1,10-diphenyl-deca-1,3,5,7,9-

pentaene molecules (diphenylpolyene-5 or DP5).

For DP5 the molecular chain has been oriented
along the x axis. During the first step the sub-

routine uses the CDA with a given damping factor

a. When the norm of the error vector kek becomes

smaller than the given threshold kek < emax (which

we choose to be emax ¼ 2:0 a.u. throughout this

work), the subroutine switches to the DDIIS pro-

cedure with a possibility to continue to use the

CDA (see Tables 1–4).
The convergence criteria were based: firstly on

the maximum absolute variation of the derived

density matrix DDða;b;...Þ
i as

5
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DDða;b;...Þ
i ¼ max

p;q
Dða;b;...Þ

pq;i

���n � Dða;b;...Þ
pq;i�1

���o; ð20Þ

where the indices p and q refer to the pq density

matrix element at the ith iterations; and secondly
on the absolute variation of the electric tensor

component Dalm and Dblmn as

Dalm ¼ jalm;i � alm;i�1j; Dblmn

¼ jblmn;i � blmn;i�1j; ð21Þ
where l, m and n run over the Cartesian directions

x, y and z. For the sake of comparison we have

used another criterion based on the maximum
absolute variation of orbital rotation derivative

DU ða;b;...Þ
i as used in the GAMESSAMESS program package

[14].

In Tables 1 and 3 the number of iterations nee-

ded to compute the polarizability and the first hy-

perpolarizability of SF6 and DP5 is presented. The

following criteria were set: Damax ¼ Dbmax ¼ 10�4

a.u. on the tensor elements and DD1;max ¼ 10�4 and
DD2;max ¼ 10�6 on the density matrix elements.

In Tables 2 and 4 the number of iterations ob-

tained with the program GAMESSAMESS and the DDIIS

method within the precision fixed at the DU ða;b;...Þ
i

< 10�6 a.u. matrices is presented. We can see that

the convergence is significantly accelerated by a

factor between 2.4 and 3.9 for the SF6 and that the

number of steps is not dependent on the type of
the method used. In the case of DP5, the acceler-

ation factor is obtained between 1.7 and 2.8 for the

method started by the CDA followed by the

DDIIS with a damping factor a ¼ 0:15.
One of the disadvantages of using the DDIIS

method presented in this Letter is the significant

number of commutators which needs to be evalu-

ated, (10) and (11) in the case where the basis set
depends on the perturbational parameter(s), thus

the time spent for the evaluation of these com-

mutators for big system (number of basis functions

N > 1000) should be taken into consideration.

Anyway with the currently available efficient

sparse matrix linear algebra packages (among

other SPARSKITPARSKIT [21]) the problem of matrix

product, which is in principle scaling as OðN 3Þ,
should be strongly reduced toward O(N).

5. Conclusion

The examples presented in this Letter show that

the DDIIS is a useful tool for the calculation of

first- and second-order analytic derivatives, with
potential extension to any order, at the Hartree–

Fock or Kohn–Sham level of theory. The cost of

the calculations needed to reach the convergence is

significantly reduced by the use of the DDIIS when

the norm of the error vector is not too large

ðemax < 2:0 a.u.). Some problems remain when the

CDA cannot provide a stable derivative density

matrix, thus the program cannot switch to the
DDIIS subprogram. This aspect is currently under

investigation.

Acknowledgements

V. Weber is grateful to I. Ciofini and S. Niketic

for the careful reading of this manuscript and for
their pertinent suggestions. This work is supported

by the Swiss National Science Foundation OFES

and the European COST Action D14.

References

[1] J. Gauss, Modern Methods and Algorithms of Quantum

Chemistry, John von Neumann Institute for Computing,

Research Center Julich, Germany, 2000.

[2] J.A. Pople, R. Krishnan, H.B. Schlegel, J.S. Binkley, Int. J.

Quantum Chem.: Quantum Chem. Symp. 13 (1979) 225.

[3] P. Deglmann, F. Furche, R. Ahlrichs, Chem. Phys. Lett.

362 (2002) 511.

[4] H. Sekino, R.J. Bartlett, J. Chem. Phys. 85 (1986) 976.

[5] S.P. Karna, M. Dupuis, Chem. Phys. Lett. 171 (1990) 201.

[6] S.P. Karna, M. Dupuis, J. Comput. Chem. 12 (1991) 487.

[7] R. Ditchfield, Mol. Phys. 27 (1974) 397.

[8] M. Dupuis, Comput. Phys. Commun. 134 (2002) 150.

[9] F. Neese, J. Chem. Phys. 115 (2001) 11080.

[10] O. Quinet, B. Champagne, B. Kirtman, J. Comput. Chem.

22 (2001) 1920.

[11] P. Pulay, Chem. Phys. Lett. 73 (1980) 393.

[12] P. Pulay, J. Comput. Chem. 3 (1982) 556.

[13] V. Weber, F. Mariotti, C. Daul, FREEMOLREEMOL an ab-inito

quantum chemistry package.

[14] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert,

M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A.

Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgom-

ery, J. Comput. Chem. 14 (1993) 1347.

6



UN
CO

RR
EC
TE
D
PR
OO

F

[15] M.C. Zerner, M. Hehenberger, Chem. Phys. Lett. 62 (1979)

550.

[16] E. Canc�ees, C.L. Bris, Int. J. Quantum Chem. 79 (2000) 82.

[17] K.N. Kudin, G.E. Scuseria, E. Canc�ees, J. Chem. Phys. 116

(2002) 8255.

[18] T. Helgaker, P. Jorgensen, J. Olsen, Molecular Electronic-

Structure Theory, Wiley, Chichester, 2000.

[19] W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56

(1972) 2257.

[20] M.J. Frisch et al., GAUSSIANAUSSIAN 98 (Revision A.7), Gaussian

Inc., Pittsburgh, PA, 1998.

[21] Y. Saad, SPARSKITPARSKIT: a basic tool kit for sparse computa-

tions, VERSION 2. Technical report, Compiler Science

Department, University of Minnesota, 1994.

7


