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Abstract

A theoretical study of the structural, electronic and optical properties of KMgF; is presented using the full-potential linearized augmented
plane wave method (FP-LAPW). In this approach, the local density approximation was used for the exchange-correlation potentials. First,
we present the main features of the structural and electronic properties of this compound, where the electronic band structure shows that the
fundamental energy gap is indirect. The contribution of the different bands was analysed from the total and partial density of states curves.
The different interband transitions have been determined from the imaginary part of the dielectric function. The results are compared with
previous calculations and with experimental measurements. The present work also deals with the behaviour of electronic properties, namely,
the energy band gaps, and the valence bandwidth of KMgF; subject of hydrostatic pressures up to 30 GPa.
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1. Introduction

Technological demands on optical lithography in semi-
conductors require increasingly minute detail, and this in turn
requires shorter wavelength lithographic light [1]. Hence
vacuum-ultraviolet-transparent (VUV-transparent) materials
for lenses in optical lithography steppers are desired.
Perovskite structures, in general, are interesting materials
for dielectric studies and several of them find application in
optical, electronic and other solid-state devices. The ternary
compounds belonging to the group of fluoroperovskites,
having the general formula ABF3, where A and B stands for
alkali metals and alkaline earth metals, respectively, have
recently received some attention in view of their possible
use as lens materials because they do not have birefringence
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which makes design of lenses difficult [2-8]. Also, the possi-
ble problems in using optical materials for the UV and VUV
regions are their limited transmission and the difficulty of
material processing and polishing due to cleavage or the hy-
droscopic nature of the materials. KMgF3 does not have these
problems and, therefore, will be a suitable optical material
for the UV and VUV regions, thus becoming more important
for the next-generation of the lithographic technology [9].
Massa and Babel [10] have provided information on the
equilibrium properties of this material, including lattice pa-
rameter, bulk moduli and lattice energy. Darabont et al. [11]
investigated the KMgF3 single crystals by X-ray diffraction
and suggest that these crystals have a cubic perovskite struc-
ture with one molecule per unit cell, with lattice parameter
a=3.978+0.05A. Its structure is scheduled stable by many
criteria [15,16] and, in fact, no phase transition has been
observed for this compound. The elastic constants of this
material were reported by Reshchikova [17] and Rosenberg
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Fig. 1. (a) Crystal structure of KMgFs. (b) Brillouin zone for the simple
cubic lattice.

and Wigmore [18]; and the dielectric characteristics were
also studied [19-21]. However detailed characteristics of
KMgF3 have not yet been well investigated. Our intention in
this paper is to obtain a further understanding of structural,
electronic and optical properties for this material by using
full-potential linearized augmented-plane-wave calculations
(FP-LAPW).

2. Computational details

The primitive cell for the ideal perovskite structure ABC3
is illustrated in Fig. 1(a). For the perovskite-like fluoride
KMgF3, the body-center position is occupied by the alkali
metal Mg atom, the edges by alkaline atoms K and the face
centers by F atoms. The space group is Pm3m and the cor-
responding irreductible wedge in reciprocal space is shown
in Fig. 1(b). The equilibrium structure, elastic constants and
other properties of KMgF3 were determined within the lo-
cal density approximation (LDA) [22] as implemented in the
wien2k package [23-25], using the full-potential linearized
augmented-plane-wave method (FP-LAPW). The lattice is

divided into muffin-tin spheres and an interstitial region. The
muffin-tin radii used are 2.8, 1.65 and 1.65 a.u. for K, Mg and
F, respectively. Inside the muffin-tin spheres, the wave func-
tions charge densities, and potential are expanded in terms
of the spherical harmonics. The cut-off angular momentum
(Limax) is 10 for the wave functions. The Brillouin-zone inte-
gration is carried out using the improved tetrahedron method
[26]. The number of the augmented plane waves included is
about 533 per atom, i.e. RyTkmax =7. A 16 x 16 x 16 grid of
k-points is sampled in Brillouin zone to determine the self-
consistent charge densities. The self-consistent cycles are ter-
minated when the total energy cycles converges to within
0.1 mRyatom~1.

3. Resultsand discussions
3.1. Total energy and elastic constants

The calculated total energy as a function of volume per
atom for perovskite KMgFs is displayed in Fig. 2. The elastic
moduli for an ideal perovskite structure may be divided into
two parts, the bulk modulus B = (C11 + 2C12)/3, and the
two shear moduli, C11—C12 and Ca4. The bulk modulus B is
related to the curvature of E(V), by a set of energies E(V;)
for a discrete number of volumes V;, and by making a least
squares fit of the computed energies to the algebraic form
proposed by Murnaghan [27], where we extract equilibrium
volume Vy of the unit cell, the equilibrium energy Eg per unit
cell at volume Vg, as well as the pressure derivative of the
bulk modulus B'.

The shear moduli require knowledge of the derivative of
the energy as a function of lattice strain [28] with preserved
volume. Thus for the calculation of the modulus C11-Ci2,
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Fig. 2. Calculated total energy vs. relative volume in the perovskite KMgF3.



Table 1
Calculated lattice constant (ap), bulk modulus (Bp), pressure derivative of bulk modulus B, and elastic constants of KMgF3
a0 (A) B (GPa) Cu1 (GPa) C12 (GPa) Cas (GPa)

Present 391 90.97 4.64 119.26 38.26 63.23
Exp. 3.978 4 0.052, 3.973" - 132¢ 39.6° 48.5¢
The experimental values are also listed for comparison.

2 Ref. [11].

b Ref. [13].

¢ Ref. [18].

we used the volume-conserving tetragonal strain tensor.

—-8/2 0 0
i=| 0o -2 0 1)
0 0

Application of this strain changes the total energy from its
unstrained value to

E(8) = E(—8) = E(0) + 1(C11-C1,) V& + O[6*] )

where V is the volume of the unit cell and E(0) the energy of
the unrestrained lattice at volume V.

For the elastic modulus Cg4, we used the volume-
conserving trigonal strain tensor

0 68/2 §/2
g=|s82 0 s2 3)
§/2 8/2 0

which changes the total energy to
E(8) = E(—8) = E(0) + 3Cas V5% + O[8*] (4)

Table 1 liststhe calculated lattice parameter (a), bulk modulus
(B) and its derivative (B') and elastic constants. As we can
see, the lattice parameter is in excellent agreement with the
experimental value. The calculated elastic constants compare
very well with available experimental values.

3.2. Band structure and density of states

The first Brillouin zone is shown in Fig. 1(b), where sym-
metry points I'(0, 0, 0), X(1, 0, 0), M(1, 1, 0) and R(1, 1, 1)
are indicated in units of x/a along with the symmetry axes:
A(x, 0,0), Z(1, %, 0), >(x,x,0), T(1, 1, ), A(X, X, X) and K1,
X, X), X being in the range 0 <x<1. The calculated energy
bands along the high-symmetry lines in the Brillouin zone
for KMgF3 are shown in Fig. 3. The width of the F 2p band
(4.25eV) and the energy difference between the K 3p and F
2p bands (7-8 eV) are in good agreement with experimental
photoelectron spectroscopy data [32,33]. This band structure
is representative of wide-gap-perovskite-like fluorides with
indirect band gaps [29-31,34]; KMgF3 has its conduction
band minimum (CBM) at the T" point and its valence band
maximum (VBM) at the R point. The band gap width Eg is
7.8 eV which is much smaller than the experimental value of

12.4eV [33,35,36]. The origin of this discrepancy is proba-
bly due to the use of LDA which generally underestimates the
band gap in semiconductors and insulators [37]. The nine va-
lence bands between —4.0eV and the Fermi level (zero) are
mainly due to p orbitals of F atoms. These nine valence bands
are splitinto three triply degenerate levels at the I" point (I'15,
I'z5 and I'15) separated by energies of 0.25eV (I'15—-T'25) and
1.4eV (I';5—T"15), due to the crystal field and electrostatic in-
teraction between mainly three F atoms in the unit cell. The
topmost valence bands are the F 2pyy states. In the conduc-
tion band region, the bottom is at I'; state which is composed
of s orbitals of all three kinds of atoms. The triply degenerate
(T'25) and doubly degenerate (I'12) levels represent K 3d(t2g)
and K 3d(eg) orbitals separated by energy of 2.2 eV. The first
ones are from about 10 to 13 eV above the Fermi level aris-
ing from predominantly K 3d(t2g) states with a small F 2p
mixing. The next bands belong to K 3d(eg) states. To further
elucidate the nature of the electronic band structure, we have
also calculated the total and atomic site projected densities
of states (DOS) of KMgF3. These are displayed in Fig. 4.
The bands with the lowest energy, lying between —20 and
—18.8eV, correspond to a very large extend to F 2s states.
The band around —8.8 eV is due to K 3p states. There is no
mixing between s and p orbitals of the F atoms though allowed
by symmetry. A large part of the bands connected to I'17 and
"o is quite flat along the X—M direction. These bands corre-
spond to Rydberg states with dominant K 3d character, such
states correspond to conduction bands which have extreme
sensitivity to external influences such as fields and in which
one of the electrons has been excited. They range from 10 to
14.4 eV above the Fermi level.

3.3. Didlectric characteristics

The optical properties of matter can be described by the
complex dielectric function e(w), which represents the linear
response of a system due to an external electromagnetic field
with a small wave vector. It can be expressed as [38—41]:

e(@) = e1(w) + igz(w) ®)

where g1 and ¢, are the real and imaginary components of
the dielectric function, respectively. Calculations ignore ex-
citonic effects but include the local-field effect. The direct
interband contribution to the imaginary part of the dielec-
tric function is calculated by taking all possible transitions
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Fig. 3. Valence and conduction bands of KMgF3 along some high-symmetry directions calculated using FP-LAPW method, within the LDA. The horizontal
line shows the top of the valence band. The bands are numbered from the upper-valence band.

from occupied to unoccupied states, taking the appropriate
transition matrix element into account [42,45].

4722
e2(0) = (%) > [ amitaa- 5
ij
x8(Ef — E; — w) d*k, (6)

where M is the dipole matrix, i and j the initial and final
states, respectively, f; the Fermi distribution function for the
ith state, and E; the energy of electron in the ith state.

To give an overview of the optical properties of KMgF3
and in particular to show the different optical interband tran-
sitions, the calculated dielectric function is shown in Fig. 5,
including a life-time broadening of 0.15 eV in order to reduce
the number of interband contributions to the essential ones.

Through the calculated electronic band structures and den-
sity of states, we can explain the different peak structures seen
inFig. 5. The origin of the peaks is investigated by decompos-
ing e2(w) into its partial band-to-band contributions, where
the energy band surfaces in k-space are numbered in order of
increasing energy irrespective of crossings along symmetry
lines. This type of decomposition leads to the general assign-
ments of peaks mentioned above. Regions of low dispersion
in the interband transition energy surface indicate nearly par-
allel bands and hence large joint densities of states.

Inthis way, the spectra can be divided into four main peaks;
the first peak at 11.53 eV is mainly due to the transitions from
the last valence band to the second conduction band, from a
region RI"'M plane, where the bands are parallel. The second
peak at 13.11eV is due to transitions from bands 7 and 8 to
band 13 in the T'X direction near I". There is also significant
contribution from band 9 to band 14 in the RT" direction near
I', and from band 3 to band 11 in the direction of RI" direction
and at X point. The third peak at 14.97 eV originate from
transitions from the first valence band to band 12 in the RT"
direction near R, and from the second valence band to band
14 from a region RT'M plane, where the bands are parallel.
The last peak at 16.80 eV is mainly due to transitions from the
second valence band to band 16 in the XM direction. At still
higher energy the spectrum is without structures and decays
very rapidly with photon energy.

3.4. Pressure dependence of band gaps

When the material of interest is compressed, the posi-
tions of all critical points cited above are shifted towards
an increased energy as compared to that at normal pressure.
The LDA does not accurately describe the eigenvalues of the
electronic states, which causes quantitative underestimation
of the band gaps. These quantities are not well predicted by
LDA. However the pressure derivatives of conduction band
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Fig. 4. The calculated total and projected density of states (DOS) for KMgFs.

states [44] and the relative positions are predicted reasonably
well by the LDA. The underestimation of the pressure coef-
ficients can probably be attributed to LDA, but for a small
percentage compared to the absolute band gaps. We there-
fore assume that the band gap states calculated within the
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Fig. 5. The imaginary part of the dielectric function for KMgF3 including a
life-time broadening of 0.15 eV. The most important interband contributions
to the imaginary part of the dielectric function are included.

LDA show the qualitatively correct ordering and dependence
on the cell volume. In order to investigate the dependence
of the cell volume up on the size of the energy gaps related
to conduction band minimum for KMgF3: the band energies
at selected symmetry points were examined as a function of
cell volume. The results of these calculations for the direct
band gaps of this material versus volume are shown in Fig. 6,
where the solid lines are linear and quadratic least square fits.
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Fig. 6. Calculated dependence of the direct band gaps of KMgF3 on the
change of the volume.



Table 2
Calculated linear and quadratic pressure coefficients of important band gaps
for KMgF3

R-R r-r X=X z-Z M-M
E(©)  10.38 7.68 10.68 11.07 11.00
b 0.06 0.12 0.10 0.11 0.08
c -0.0014  —0.0014  —0.0017  —0.0023  —0.0014

Ei(p) =Ei(0) + bp+cp?, b=0E/dp in eV GPa~1, c= 32E;/ap? in eV GPa 2.
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Fig. 7. Calculated dependence of the valence bandwidth of KMgF3 on the
change of the volume.

Whereas Table 2 contains the values of linear and quadratic
pressure coefficients calculated for the important band gaps in
KMgFs. Considering Fig. 6, all energy gaps shown increase
with decreasing volume corresponding to an increase of hy-
drostatic pressure up to 30 GPa. It should be noted that also
the minimum of the first valence band at R-point is shifted
downwards when volume decreases. This leads to an increase
of the valence bandwidth (VBW). Our results showed that
the latter increases from 3.6 to 5eV when going from 71.7
to 48.2 A3 for the volume. In Fig. 7 we show the dependence
of the VBW on volume variation. Accordingly, the VBW in-
creases monotonically with decreasing volume. Part of this
effect arises from hybridization accompanying the change in
bonding in KMgF3. Consequently, this reflects the decrease
of the ionicity character of KMgF3 under pressure.

4. Summary

We have used the FP-LAPW method to study the struc-
tural, electronic and optical properties of the perovskite
KMgF3. A detailed investigation of its structural, electronic
band structure and different band contributions from the par-
tial and total density of states curves have been made. Our
results show that the fundamental band gap of KMgFs is indi-
rect between I" and R symmetry points of the Brillouin zone.
From the imaginary part of the dielectric function and the real
part of the optical conductivity curves we have studied the
different optical transitions, for which we have presented the
different peak structures associated with their assignment of
the interband transitions. The high hydrostatic pressure de-

pendence of the electronic properties of perovskite KMgF3
has been investigated for pressures up 30 GPa using the FP-
LAPW. The dependence of the electronic structure on hydro-
static pressure shows a linear behavior.
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