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Résumé

Cette thèse introduit une approche méthodologique à la conception d’a-
gents artificiels. En une tentative de résoudre le problème de l’enracine-
ment symbolique en intelligence artificielle, une nouvelle perspective théo-
rique sur la relation agent-environnement est explorée et un jeu d’expérien-
ces sont menées pour motiver cette méthodologie. Suite à l’idée selon
laquelle l’enracinement d’un agent dans son environnement est dépendant,
intuitivement, de l’adaptation de ses mécanismes de représentation inter-
nes à la structure de l’environnement, l’hypothèse discutée est que l’en-
racinement n’est possible que si un agent est capable d’appliquer un prin-
cipe de compression d’information à sa représentation de l’environnement.
Ceci mène à la suggestion que les algorithmes de contrôle d’agents soient
classifiés selon les ressources nécessaires à ces algorithmes pour résoudre
une série de problèmes types.

Pour soutenir cette hypothèse, une plateforme d’expérimentation ap-
pelée EMud a été concue et implémentée. Le modèle d’environnements
supporté par cette plateforme à été élaboré pour que des expériences gradu-
ellement plus complexes puissent être effectuées, en particulier pour que le
modèle puisse être utilisé dans le cadre de simulations de systèmes dis-
tribués dans lesquels des agents artificiels opèrent. Le type d’algorithme
choisi pour tester les idées théoriques introduites dans la première par-
tie de la thèse est le système classificateur XCS, dont une version à été
implémentée. Au cours de la présentation formelle de ce système, une
démonstration de l’équivalence d’une forme simplifiée de ce système avec
l’algorithme de Q-Learning est faite. Une nouvelle illustration du rôle de
la notion de précision dans ce système est aussi introduite.

Des expériences sur le problème du multiplexeur sont ensuite menées
pour exhiber les propriétés de compression d’information or de généralisa-
tion du XCS. En utilisant une approche sur différentes représentations du
multiplexeur, la capacité à généraliser du système XCS et son influence sur
la résolution du problème est étudiée. Par la suite, une seconde expérience
dans laquelle l’information nécessaire à la résolution du problème est répar-
tie temporellement est menée. Les résultats dans cette situation montrent
que le système XCS est incapable de généraliser efficacement. Il est conclu
que par une classification des algorithmes basée sur l’efficacité avec laque-
lle ceux-ci peuvent représenter l’information nécessaire à la résolution de
problèmes types, il devrait être possible de mieux comprendre comment
concevoir des agents artificiels pour des problèmes spécifiques.



Abstract

This thesis introduces a methodological approach to artificial agent design.
In an attempt to solve the symbol grounding problem of artificial intelli-
gence, a new theoretical perspective on the agent-environment relation is
explored and experimentation is led to motivate this methodology. From
the original idea that in order to ground an agent in an environment, the
agent’s representation mechanisms must intuitively be close to the struc-
ture of the environment, the hypothesis that grounding is possible only
when an agent is able to apply information compression to its internal rep-
resentation of the environment is discussed. This leads to the suggestion
that a classification of control algorithms be made, based on the resources
an algorithm requires to efficiently solve various categories of problems.

In order to support this hypothesis, an experiment environment plat-
form called the EMud is designed and implemented. The environment
model is designed to support sufficiently general structures, so that gradu-
ally more complex environments can be designed within their specification
framework, in particular to be able to use the model as a simulation of dis-
tributed systems where artificial agents operate. As a sample algorithm
used to advocate the theoretical ideas, an XCS classifier system is imple-
mented. A formal presentation of this system is made and the equivalence
of Q-Learning with a simplified version of XCS is demonstrated. A refor-
mulated illustration of the role of accuracy in the system is also presented.

Experimentation with multiplexer problems is then performed to ex-
hibit the information compression or generalization properties of the XCS
system. By using an approach where experiments on the representation of
the multiplexer problem are performed, the generalization characteristics
of the XCS system and their influence in solving the problem are studied.
A further experiment in an EMud environment where temporal informa-
tion is essential to solving the problem goes to show that the XCS system
is unable to generalize in this situation, thus breaking down the efficiency
of the system. It is concluded that by making a classification of algorithms
based on the efficiency with which algorithms can represent various types
of problem space in order to solve these problems, one should be able
to better understand how artificial agents should be designed for specific
problems.
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Chapter 1

Introduction

Over the course of these few years spent in the field of artificial intelligence
(AI), many topics have interested me, indeed, one can hardly focus AI re-
search on algorithms only, without seeing the links and implications these
might have in biology, psychology, philosophy of mind or cognitive science
in general.

This particular status of artificial intelligence as an experimental plat-
form for theories about intelligence has several positive and negative as-
pects. On the positive side, one can mention that there are very few, if
any, other fields of research where natural science meets human science
so vitally and where researchers have as much interest in understanding
fellows from other disciplines. This gives a taste for variety and arouses
curiosity for other domains in a sometimes shy scientific environment. Fur-
ther, problems linked with mind, intelligence, or cognition also encourage
a feeling of excitement about the importance of discoveries that could be
made in the field. And with the slow maturation of complexity theories,
system theories and cognitive theories, the (mistaken?) feeling that science
is near a revolution of the type described by Thomas S. Kuhn [32] feeds
the excitement. On the negative side, the very richness of the field makes
it impossible to acquire a perfect overall understanding of the disciplines
involved. Due to this, research has to be led with the constant attention not
to be pulled into areas of personal incompetence or general ignorance, for
example, as was elegantly put by Brooks [6], “the temptation to introduce
artificial intelligence research with a definition of intelligence incurs the
danger of deep philosophical regress without recovery”. I have attempted
to avoid this trap, even though much of the theoretical work that I will in-
troduce in the early chapters of this thesis has been heavily influenced by
my philosophical readings.

To continue with an aspect that I have found difficult to manage over
the course of this work, I have to mention the lack of structure in the overall
domain. I think this is due to the youth of the field, since no effort to classify
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and formalize the main problems that must be solved has yet succeeded.
Comparing this to mathematics, I have the impression that an endeavor
comparable to that of Hilbert or the Bourbaki group in the early twentieth
century still needs to be made (of course, mathematics have a history of two
thousand years behind them and if computer science was able to structure
itself in a comparable way after only sixty years of existence it would be an
impressive result). I am hoping that through some of the ideas presented
here this problem will be more easily addressed.

1.1 Research Context

In the parallelism and artificial intelligence (PAI) research group at the Uni-
versity of Fribourg, our interest is focussed on both the technical questions
regarding parallel and distributed processing and the implementation of
problem solving solutions in such computers or networks of computers
through the use of artificial intelligence techniques.

This thesis is part of the AXE project, funded by the Swiss national fund
for scientific research, in which aspects of massively parallel processing are
studied. The overall aim of the AXE project is to provide a foundation and
design methodology for evolutive parallel and distributed systems com-
posed of artificial agents. In this global problematic, various aspects have
been studied and are still under study, such as on the level of network op-
erating systems (the WOS project [52, 45]), programming languages for dis-
tributed systems (the STL coordination language [31]), agent communica-
tion in distributed systems ([10] or the Saga project [51]) or agent popula-
tion interactions with sexual and asexual reproduction mechanisms (Bio-
machines [35]). The direction in which this thesis is inscribed is in the
autonomy and coordination part of the project, where the problem of in-
teractions between agents in a complex environment is addressed.

The ultimate goal of this research is to understand how agents situated
in an environment made of an open network of computers can compete,
collaborate or simply maintain themselves in order to accomplish their
tasks. In order to tackle this question, I have taken the path of understand-
ing how artificial agents relate to their environment. It is in this perspective
that I have developed a model of text-based virtual worlds, that have been
implemented as EMuds. The EMud model is based on the idea that in
order to understand the processes that occur in a computer network, an
agent has to be able to adapt to unpredictable symbolic information gener-
ated by an environment in which it is embedded. EMuds provide such a
framework by describing an environment as a virtual physical dimension
in which agents exist and where virtual physical laws can affect the agents.
The size of the environments that can be built in an EMud, along with the
possibility of integrating multiple interacting agents in these environments
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make them an ideal platform for experimentation. In view of further ex-
tensions of research towards human-machine interfaces, EMuds also allow
human agents to coexist and interact with the artificial agents in an EMud.

1.2 Symbol Grounding

When considering agents “living” in a dynamic environment, artificial in-
telligence is faced with problems of representation and perception of the
environment. Various techniques have been developed to solve these prob-
lems, but for the time being, these methods are unable to fully integrate
agents in a complex environment such as complex dynamic artificial envi-
ronments or, a fortiori, the real world.

The problem encountered in artificial intelligence that is descriptive for
this overall situation is called the symbol grounding problem. The symbol
grounding problem is a problem that initially appears when one studies
the relation between the real world and a system that uses some form of
model or representation of reality to make decisions about a real world
problem. Typically, when an expert system uses an internal representation
of symptoms, illnesses and diagnoses to help a practician pronounce a pa-
tient’s diagnosis or when a mobile robot uses an internal representation of
the room it is in to decide how to move about, the representation and the
world are two distinct entities. Since this situation appears to be a limit-
ing factor for further development of artificial intelligence techniques, the
question is how do these entities relate to each other? Can the symbols ma-
nipulated by the computer systems acquire an intrinsic meaning (related
to the problem) in the system as opposed to an external meaning bestowed
by a human observer of the system.

Now, if the symbol grounding problem is analyzed, there are several
new problems in different areas that appear. First of all, why does one re-
quire symbols to have an intrinsic meaning? The answer is that if such sym-
bols have no meaning for the system, new situations that were unplanned
in the internal representation will be dealt with randomly by the system. A
problem for computer science is then to find the best “random” choice and
this seems to require some form of meaning to be included in the symbols.
Secondly, what is meaning actually? Is there an internal and an external
meaning, is there meaning without intent and then, what is intentional-
ity? All questions leading to deep philosophical problems. Thirdly, can
complete or more accurate representations of the world be used to avoid
the problem of meaning? An approach that is often used, but leads to the
problem of the observer that is very acute in physics or the problem of
closed/open systems that has been studied extensively, with pessimistic
results for this approach: there is no closed physical system. What then is
the minimal size (minimal level of detail) of an accurate description for an
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open system? Fourthly, assuming there was a way of bestowing meaning
to symbols in a representation, what meaning should the symbols acquire?
Should some form of computer psychology be elaborated?

As is evident from these few remarks, any endeavor in which a com-
puter system must make decisions about the real world is faced with far
reaching questions that can either be addressed or ignored. In some situa-
tions, ignorance works well and in some others, not at all. The frontier is
not clear and what is easy to solve for a human being is often intractable to
the current state of computer science. We should be reassured that the re-
verse is also true, I for one have problems with solving ��� multiplications
without mistake, but it seems natural for some reason. In this work, I have
taken the option to acknowledge these difficulties and attempt to provide a
(demystifying) scientific interpretation of meaning for symbol systems. For
this purpose, I have sought to maintain a scientific approach to the prob-
lem studied by introducing ideas and using them as working hypothesis,
although a philosophical perspective to these ideas could also be inves-
tigated. I have intentionally used generous reduction in the presentation
of the philosophy underlying my personal position in the domain while
hopefully giving a satisfying synthesis of the relevant ideas in the field that
will situate the work and encourage further reading. On the other hand,
since I intend to support the idea that reduction is an important part of
understanding, the approach is coherent with the goal.

1.3 Document Presentation

For the purpose of the presentation, the document chapters are organized
as a gradation from the more theoretical work to the practical implementa-
tions used to illustrate these theoretical ideas.

Theoretical Aspects

Chapter two introduces the philosophical framework in which the ideas
of the third chapter are developed. It begins by explaining the general
trends in theories of mind that philosophers have developped to this day
and focusses on Functionalism, which is the theory of mind at least par-
tially adopted by most AI researchers. The relevance of Functionalism to
Computer Science is then introduced and the concept of abstract machine
as artificial mind is presented. To conclude this chapter, the importance
of the embodiment of a system in an environment is noted and enaction
theory presented.

The goal pursued in chapter three is to hypothesize a model of under-
standing based on the process of information compression, and to use it as
a classification scheme for problem solving algorithms. The chapter begins
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by a statement of the symbol grounding problem and an overview of pre-
vious attempts to solve this problem. It is here suggested that the current
formulation of the symbol grounding problem based on an overgeneral
sense of meaning makes it unsolvable in its present form. With a defini-
tion of meaning based on information compression, the problem becomes
tractable. Grounding an agent is then a matter of degrees, where ground-
ing is directly related to the efficiency of an agent’s ability to represent envi-
ronment structures in its own internal representation language. It is argued
that the ability of an agent to accurately represent a complex environment
with limited ressources through information compression is characteristic
of the use of an appropriately expressive internal representation language
for the problem faced by the agent. The mesure of algorithmic information
is then suggested as an appropriate candidate for mesuring this degree of
grounding of an agent. The key idea is to use algorithmic information not
as a universal mesure of information content, but as a value calculated for
each type of problem and each type of control algorithm so as to be able to
compare algorithms by the complexity with which they represent problem
environments.

With chapter four, the terminology of artificial intelligence used in the
following chapters is clarified or introduced. The notions covered by agents,
behaviors and autonomy are first introduced to give a foundation of agent
theory. Concepts used when dealing with multiple agents sharing a same
environment are then presented with multi-agent systems, interactions and
emergence. The second part of the chapter gives an overview of the current
practice in artificial intelligence. The subjet matter presented here is used
as the basic theory upon which the next chapters are built.

EMud Environment Model

In chapter five, the type of experimentation platform used to support the
hypothesis made in chapter three is described. Three types of problems
that must be possible to adress with this platform are first described: sim-
ple symbolic problems such as multiplexer or Santa Fe Trail experiments,
complex symbolic experiments such as the simulation of distributed com-
puting problems such as load balancing or communication management
and finally experiments where unpredictability plays a fundamental role,
typically such as when human agents interact intensively with a system.
Text-based virtual reality games are then introduced from a historical per-
spective and the possibilities of interaction in such systems are illustrated.
Finally, it is shown how this type of gaming environments support the pos-
sibility of approaching the gradually more difficult artificial intelligence
problems presented at the beginning of the chapter.

Chapter six describes the EMud environment implemented following
the ideas introduced in the preceding chapter and presents its possible uses.
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In the chapter, the structural components forming an EMud environment
are described, followed by an explanation of how the dynamics of these en-
vironments are handled. Since the strength of this experimentation model
is that it allows the definition of new environments for each experiment, a
description of the environment specification procedure is made.

Practical Study and Conclusion

Chapter seven gives a formal description of the agent control system used
to illustrate the methodological ideas suggested in chapter three. The al-
gorithm studied is the XCS classifier system introduced by S. Wilson. The
chapter proceeds by an introduction to these systems through their two
main components: reinforcement learning and genetic algorithms. The ar-
chitecture of the system is then described and an analysis of its functioning
is made. In this analysis, an original result on the equivalence between the
reinforcement learning algorithm of Q-Learning and a simplified version of
XCS is demonstrated. The role of accuracy in the generalization mechanism
of the system is then explained through a novel illustration. To conclude
the chapter, a classical experiment is led on the system implemented in Fri-
bourg, confirming the results previously observed for this experiment with
other implementations of the XCS.

Chapter eight develops a new experimental approach used to highlight
fundamental information compression characteristics of an algorithm, in
order to support the thesis that the information compression/generalization
properties of an algorithm determine its efficiency in dealing with an envi-
ronment. The first set of experiments uses permutations on the represen-
tation of the multiplexer problem to show that the system obtains optimal
results in solving the problem as long as the generalization mechanism is
able to sucessfully store all the necessary information about the problem
within the available ressources of the algorithm. So that even with a large
search space, with generalization can produce a mapping of the problem
in the limited representation space of the algorithm. As soon as this gener-
alization cannot occur due to incompatible problem representation, the al-
gorithm performance breaks down. It is then shown with a problem where
temporal information is required for its resolution that the generalization
mechanism is unable to extract the needed information for an optimal solu-
tion to the problem and that in this case, random permutations on the static
representation of the problem have no noteworthy effect on the efficiency
of the algorithm. The conclusion of this chapter is that as was suggested
in chapter three, a classification of algorithms based on their compression
of information characteristics be made. This can be done by using a simi-
lar line of thought as in the calculation of algorithmic information, by de-
termining the total amount of ressources needed by various algorithms to
express an optimal solution to various chosen benchmark experiments.
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The conclusion in chapter nine reviews the question that were adressed
in the thesis, starting by practical aspects of the design of an EMud experi-
ment environment and its implementation. A critical review of the missing
components of the implementation follows. An overview of the theoret-
ical problems that were adressed in the work and their tentative answer
is then presented, while proposing a future course of study for the actual
implementation of the ideas introduced over the course of the first eight
chapters.
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Chapter 2

From Philosophy to Computers

2.1 Philosophy of Mind

Philosophy of mind is concerned with all the deep questions regarding the
human mind, from freedom of will, personal identity or the existence of
the soul to the nature of behavior, emotions or consciousness. With the
advent of computing machines, the philosophy of mind has extended to
the question of what minds are in general, and of whether human-made
artifacts can possess minds, an interrogation that has renewed the interest
in the mind-body problem. The mind-body problem, which is the question
of how the physical world relates to the mental (experienced) world, now
even appears to be the central question relating all problems concerning
the mind. Although the roots of this discipline can be found with the Greek
philosophers such as Plato and Aristotle, I start my introduction with the
modern day answers that have been given to the mind-body problem.

2.1.1 Dualism, Mentalism and Materialism

Descartes was the first modern day philosopher to answer this problem
with his theory of dualism [42, 14], where he supports the idea that the
physical world, including plants, animals and the human body, is gov-
erned purely by mechanical/physical laws, whereas human beings “con-
tain” some non-material mental substance. Although these two elements
of nature are distinct and disjoint, they interact through the human body:
sensations create thoughts, and thoughts drive actions such as bodily mo-
tion.

This view of the world has encountered many different problems over
the years, essentially over the nature of the interaction between such dif-
ferent objects as matter and thought stuff and has spurred two different
trends in philosophy that avoid this question. On one hand the mental-
ist approach that holds that all of nature is purely mental experience or
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thought stuff and on the other hand, the materialist (physicalist) approach,
more typical of occidental thinking, that holds that all of nature is made of
physical matter and that somehow, the mind emerges as a feature of the
complex interactions in the physical substance that forms the human body.

2.1.2 To Functionalism

The objective of providing a theory of the mind has lead philosophers
through various stages in materialism, starting with the behaviorist theory
[57] that is grounded on an epistemological position: that the only way to
observe mind properties is through the behaviors exhibited by the subjects
that experience them. The behaviorist theory has thereby also founded the
psychology paradigm of behaviorism, but has now lost some of its attrac-
tiveness since it fails to explain the mind in situations where there is the
need of more powerful observation tools than the strict study of behavioral
patterns. The typical thought experiments that have been used to contra-
dict behaviorism being those of super-actors: how is one to explain the
mental state of “pain” when someone could act as if he felt no pain when
he is indeed in pain or how can one distinguish real pain from the pain that
an actor simulates perfectly.

The identity theory [1] that followed reached into the human brain to
identify physical brain events with mental states. In this theory, mental
states or thoughts were explained in terms of neurophysiological states in
the brain and the theory introduced the notion that the meaning of words
for example must be stated in terms of brain configurations. Although this
theory remains the basis of today’s functionalism, it encountered problems
in that it presupposes that mental items or types of items can be character-
ized by neurophysiological states once for all subjects. This precludes the
possibility that different creatures from humans have minds and even that
humans beings are able to function with different brain processes. To solve
this problem, functionalism [47] introduces the idea that it is not a specific
physical component that characterizes a mental state, but the causal role
a physical component has in the organism that characterizes mental item
types such as “pain” or “pleasure”. This characterization differentiates
token-token identity, one individual being’s current pain state identified
with his current neurophysiological state, to type-type identity, identifying
pain with the more abstract functional role that some component may play
in an organism.

The functionalist theory of mind is thus focussed on three levels of de-
scription [38]:

� the physiological description of an entity at a given time, correspond-
ing to a physical state token;
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� the functional description of this state, relative to the entity’s organ-
ism;

� the eventual mental description of such a state if it instantiates a men-
tal item type.

2.1.3 Computers

With functionalism, the philosophy of mind introduces a theory that is
clearly meant to accommodate other types of minds than the human mind,
it generally demystifies the idea of minds and states that Mind is simply
brain stuff in (inter)action. The levels of description of the theory provide a
framework that leads from the physical world to the mental world in three
steps, independently of the realization of an entity in the physical world.
On the first level, the emphasis is given to a physical description of an en-
tity, that can potentially have any form and is independent of external in-
terpretation. On the second level, the functional description of the entity’s
current state that depends only on this entity’s internal organization. On
the third level, the qualitative description of the current state instantiated
by the entity as viewed by an observer in reference to himself. Of these
three levels, the first two are independent of the observer and the third im-
plies that an observer might not be able to ascribe a mental description to an
entity if he is not capable of similar mental states (or at least understanding
them), even though the entity might have such a mental description.

The obvious artificial candidate to validate this theory is the digital
computer. If it is possible to show that a computer with an adequate de-
sign (hardware) and internal state (software) that can be described physi-
cally and functionally can also be shown to possess some form of mental
description, then minds are purely emergent properties of some kinds of
material constructs.

In practice, computer science has for first objective the resolution of
problems with computers. The question of artificial minds is only raised
by the fact that some problems seem to require elaborate cognitive facul-
ties similar to those exhibited by humans if they are to be solved. In this
context, if computer science needs to reproduce certain mental processes
in order to solve some classes of problems that humans can solve, either,
how brains “do” minds must be understood and imitated on computers
or another method that is functionally equivalent but works on computers
must be found. The current trend is to attempt the synthesis of some form
of intelligence in the form of computational models that include processes
functionally equivalent to those occurring in the brain. I will show later
that computers are instances of physical symbol systems, but the essen-
tial comment that must be made here is that the underlying assumption of
the field of artificial intelligence is the physical symbol system hypothesis
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[44] (PSSH), which states that a physical symbol system has the necessary
and sufficient means for general intelligent action. That is, the PSSH (or an
equivalent) is generally accepted as a working hypothesis in the field and
not as a problem to be answered. Of course, if by practicing AI, strong ev-
idence for the correctness of this hypothesis can be exhibited, this will be
considered as encouraging results for the discipline.

2.2 Symbol Systems and Artificial Agents

Some additional assumptions are now deemed necessary for building in-
telligent machines and I will introduce them shortly with a few key points
at the end of this section, but before that, it is necessary to speak of the
abstract machines we consider when speaking about computers in general.

2.2.1 Abstract Machines

The notion of Physical Symbol System dates back to the origins of comput-
ing, with the work of A. Turing or J. Von Neumann. It is linked with the
introduction of Turing machines that are used to define the concept of al-
gorithm by simple operations on symbols. The first formalization of such
systems by Newell and Simon [44] was intended to provide a general cate-
gory of systems that are capable of intelligent behavior.

Turing Machines

To formally define algorithms, Turing reduced operations of the kind that
are intuitively used as steps in an algorithm to simple mechanical oper-
ations in an idealized machine. In his theory, the machines he considers
consist in a read/write head scanning the surface of a tape divided into
cells (see figure 2.1). The tape cells can hold symbols from a predefined
finite alphabet and extends to infinity at least in one direction. The head
can move along the tape in both directions (to the “right” or to the “left”),
reads symbols in the tape cells and can inscribe new symbols in these cells.
At any given time, the machine is in a state chosen from a finite set of states
and depending on this state and the symbol read on the tape, it can decide
to write a new symbol in the current cell and eventually move to the left or
the right on the tape.

Clearly, any Turing machine with its set of states, symbol alphabet and
current internal state instantiates an algorithm. The Church-Turing thesis,
on the other hand, states that any algorithm a human being would con-
sider can be represented as a Turing machine, thus giving the equivalence
between Turing machines and our intuitive understanding of algorithms.
To this day, this thesis holds and is generally accepted by the scientific com-
munity as the right definition of an algorithm.
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Figure 2.1: A Turing machine.

Symbol Systems

Since the definition of Turing machines, it has been shown that many for-
mal systems are equivalent to Turing machines and thus define the same
notion of algorithm. Moreover, the modern day computers built follow-
ing the model of von Neumann are instanciations of the formal Turing
machines, but where some restrictions have been introduced, such as a fi-
nite length tape. The theory applying to Turing machines can generally
be extended to other equivalent formal or physically realized systems and
Newell and Simon have called all these systems symbol systems. They then
postulate that physical symbol systems are a category of systems that are
capable of intelligent behavior in their “Physical Symbol System Hypoth-
esis” [44]. Their work then goes on to try and convince us that this hy-
pothesis is true and even that human beings are physical symbol systems.
Clarifying the work of Newell and Simon, Harnad [22] gives the following
definition for a symbol system.

A symbol system is:

� a set of arbitrary symbols called physical tokens manipulated on the
basis of explicit rules, as well as strings of tokens built on the atomic
tokens

� where manipulation is based solely on the “shape” of tokens (i.e. is
syntactic)

� manipulation consists in combining via rules the atomic or composite
symbol tokens

� the syntax can be systematically assigned a meaning, i.e. it is semanti-
cally interpretable

This description gives an intuitive view of what symbol systems can do,
although it must be said that there is nothing more here than what was
already in Turing machines. In fact, the foundational work in artificial in-
telligence led by Newell and Simon on symbol systems has even earned
these systems the status of a “symbolic model of mind” [18] for psychology,
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where symbol strings capture mental phenomena such as thoughts and be-
liefs. But it suffices to say that such systems make explicit what computers
can do and if we are to work with computers, a symbol system provides a
good abstraction of these machines.

2.2.2 The System and its Environment

The symbol system definition typically omits a vital component in the study
of artificial intelligence. It has long been assumed that a system can be con-
sidered as a closed system, but this can never hold in practice and I believe
it is important to be aware that the whole underlying assumptions made
about the systems under study are based on a conceptual shift of perspec-
tive that originates in the nineteen-thirties with Ludwig Von Bertalanffy’s
General Systems Theory (GST) [65] and the Cybernetics movement begun
at the Macy conferences from 1946 to 1956 [66]. The two fundamental asser-
tions that should be retained from this systemic enterprise are adequately
illustrated by the two following quotes:

When we try to pick-up anything by itself, we find it is attached
to everything in the universe. John Muir

The science of observed systems cannot be divorced from the
science of observing systems. Heinz Von Foerster

That is, contrary to the common methodology often used in the physical
sciences: 1) all systems must be considered open, there is no such thing as
a closed system, 2) since all systems are open, an observer is always part of
the system he is observing and plays a role that affects the objects under his
observation. This role of the environment in the development of an entity
is particularly important to artificial intelligence.

It should be noted that although the popularity of GST and Cybernetics
has steeply fallen from the original enthusiasm they had generated (fallen
in disrepute even). These theories are the seeds that allowed models such
as Maturana and Varela’s theory of Autopoiesis and Cognition [39] or the
general field of Cognitive Science to grow [17], and these now play a domi-
nant role in many areas of modern research, necessarily including artificial
intelligence, but also philosophy of mind, psychology, economics or man-
agement.

2.2.3 Enaction theory

Maturana and Varela present their biological theory of cognition in [39]. To
introduce their ideas, many concepts and terms are used, but essentially
they emphasize the fact that living organisms are structures able to sustain
their unity in an environment (via autopoı̈esis or self production) and sit-
uated in a physical space. These organisms are instances of a category of
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structures defined by their organization, with organization used in the sense
of internal relations and dynamics. It is by the maintenance of this organi-
zation that an organism preserves its autonomy with respect to the rest of
the environment.

When an organism evolves in an environment, the actual changes that
it experiences are controlled by its structure as a result of the coupling be-
tween the environment and the organism’s structure through senses. In re-
lating an entity to an environment or other entities, domains of interactions
can be defined such as the domain of relations (set of relations in which
an entity can be observed). In this context, Maturana and Varela state that
“Living systems are cognitive systems, and living as a process is a process
of cognition”. The necessary conditions for a system to be cognitive are
thus that the system exists within a physical space and is structurally cou-
pled to it (embodiment) and the cognition itself is the behavior of an entity
engaging in interaction with the environment. Much prominence is given
to the fact that the environment does not transform a living organism, but
that the structure of the organism controls the changes it can undergo when
subject to environmental perturbations. The notion of representation is also
refuted by the theory, as an organism does not engage in the construction
of a model of the world, but is presented with perturbations of its struc-
ture through its sensors, an experience that it can then actively rebuild as
needed. Note however, that I will continue using the term representation
even for such situations.

The influence this theory has over the field of computer science is in the
methodology as I will show in the chapter on agent systems. It is with the
concept of experiential enaction [63] that the relation between the mind and
the body is explained. In the enactive view, the only relation between the
mind and the body is to be found in the nature of the experience that is ac-
quired by engaging in worldly activity with this body and mind. Therefore,
to build artificial minds one requires bodies that exist and experience the
world. And so, a new requisite for artificial intelligence can be postulated
by stating that intelligence is contingent on being embodied in the world.

While this assumption appears essential to me, the restrictive view of-
ten taken that the world in which an agent must be embodied can only be
the real world seems unnecessary. I like to assume that any type of world
can be host to problems that may be solved by entities existing within them.
That environments require some high level of complexity and/or unpre-
dictability for cognitive level processes to evolve in the entities that inhabit
them is not excluded, but even in simpler spaces, there are many interesting
questions that remain to be answered.
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Chapter 3

Symbolic or Functional
Grounding

As I presented in my introduction to this thesis, the symbol grounding
problem is the problem encountered when trying to relate the symbols in a
physical symbol system to objects in the system’s environment. S. Harnad
[22] presents this as the inability of current agents to acquire an intrinsic
meaning for the features they encounter in their environment, opposing
this intrinsic meaning to the extrinsic meaning a human assigns to the com-
ponents of the system he is observing or building. His formulation of the
symbol grounding problem, focussed on meaning, is in fact inspired from
the attack, focussed on intentionality, led by Searle [53] against computer
intelligence and more precisely understanding in his well known Chinese
room argument. With this argument, Searle intends to demonstrate that
digital computers lack the causal power to do anything but produce a for-
mally predefined next stage in a programmed calculation. He then con-
cludes by saying that: formal symbol manipulations have no intentionality, they
are meaningless; they aren’t even symbol manipulations, since the symbols don’t
symbolize anything. In the linguistic jargon, they have only syntax but no seman-
tics. This part of the doubts of Searle regarding artificial intelligence appear
to be relevant since the production of meaning in symbol systems seems
out of reach for the current approaches to AI. I would suggest that actually,
the determinism that Searle reproaches to computers is not a true limita-
tion. The fact that it appears as such is related to the idea that programs
can always be simply interpreted by an observer. When this is not the case,
formally predefined next stages in a calculation can induce very interesting
(and unpredictable) behaviors in a program. I will now suggest a view of
meaning independent of the (anthropologically flavored) intentionality of
Searle which could allow further investigation into artificial intelligence.
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3.1 Solving Grounding

The search for a solution to the symbol grounding problem has followed
one main direction, namely that grounded systems need a tight relation
with their environment and that this relation must be established by the
sensory-motor equipment of an agent. A lot of research has thus gone into
the study of perception in situated symbol systems, both from a top-down
and from a bottom-up perspective, as described by Ziemke in [72].

To this end, the cognitivist approach embodied by classical AI attempts
to devise high level input systems responsible for mapping perception into
internal representations in a way that is coherent with this representation.
Its recent methodology developed in the context of the symbol ground-
ing problem generally consists in the extraction of perceptual features or
invariants that can be related to atomic components of the internal repre-
sentation. These components are then used to form the first “grounded”
layer in the agent’s representation of the world and from which the whole
world model is constructed. In the attempt to ground representations of
these components to categories of objects in the world, the cognitivist ap-
proach also often distinguishes between a symbolic and subsymbolic level
of representation. Perceptions are then analyzed on a subsymbolic level,
typically implemented with a connectionist method, to bring forth percep-
tual categorization at the symbolic level. Ziemke [72] classifies the main
proposals for symbol grounding in this framework into Harnad’s proposal
of iconic representations [22] and Regier’s perceptually grounded seman-
tics [48] to which I would add the work of L. Barsalou on perceptual symbol
systems [3].

The new AI (bottom-up) approach to symbol grounding, on the other
hand, is not only focussed on the agent’s perception, but on its active qual-
ities. Following Maturana and Varela’s autopoietic theory [39], agents are
characterized by their embodied situatedeness, emphasizing the fact that
an agent experiences the world through its active participation in it, called
experiential enaction. The enactive cognitive science that follows from this
theory [63] gives the theoretical framework for bottom-up grounding. In
fact, since bottom-up methodology boasts the absence of representation
[7] and the internal structure of the agent built here is grown from per-
ception, these agents should be immediately grounded in their environ-
ments. In practice, new AI is behavior based in that agents are usually
equipped with some elementary behaviors that are designed by the scien-
tist and then these behaviors are allowed to interact and combine to form
more complex behavioral patterns. It is these behaviors and their combi-
nation mechanisms that need now to be grounded and this proves to be of
comparable difficulty to the initial symbol/representation grounding. One
approach that has been used to this aim is the evolution of all behaviors
from perceptions by using a dynamically generated (evolved) connection-
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ist architecture to control an agent [33, 11]. I believe this method can gen-
erate grounded agents because the internal functionality of such systems
is evolved in conjunction with the problem domain and this is the funda-
mental point that I want to make in the following sections, unfortunately,
the approach suffers from the size of the space of solutions that must be
explored by the evolution mechanism.

3.2 Locating Meaning

The three components partaking in the grounding problem are the envi-
ronment, the agent and the sensory-motor equipment linking an agent to
its environment. In the various AI techniques described previously, the
environment has played the role of problem domain with the assumption
that in this domain, objects or object categories have an intrinsic meaning.
Since the human ability of reasoning appears to be based on the acquisition
of this meaning in the environment, attempts to transfer this meaning in a
similar way to symbol systems have recently been focussed on the agent-
environment interface. The various designs of agent control mechanisms
that are supposed to accommodate this meaning have of course remained
the main active area of the field of artificial intelligence, but generally with
a distinct emphasis, boosted by new AI and the statement of the symbol
grounding problem, on the action/perception properties of agents, since it
is their only access to the world.

When considering a human agent, the assumption made is that there
exists some form of meaning that he can acquire to relate objects and events
in the environment either independently or in relation to himself. This
meaning, whether intrinsically preexistent in the world or co-constructed
by his embodied situatedeness in the world then serves him to reason about
the environment and solve problems within it. If we are to build artificial
agents that can acquire a similar form of meaning in order to make deci-
sions, I believe the fundamental sense in which meaning must be under-
stood is, following a functionalist approach, as the causal role of elements
in their environment. In this sense, meaning becomes an intrinsic property
of these elements in the environment, or globally, in the agent-environment
system.

In the AI techniques described previously, it appears that attempts to
ground agents in their environment are focussed on the means of transfer-
ring external meaning into an agent’s internal mechanisms. The emphasis
is put on the internal mechanism an agent is fitted with to accommodate
this meaning and, more recently, on the transduction apparatus interfac-
ing an agent with his environment. I believe this approach is too intent
on “hooking” environment elements to agent internal symbols. Even in
the case of enaction approaches, eventually excluding the previously cited
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Figure 3.1: The functional structure in an agent.

evolutionary connectionist techniques, the intent lies in connecting sensory
information to internal processes, while these processes are partially pre-
defined and their dynamics not well understood. These methods give the
impression that what is attempted is a token-token identification between
world tokens and agent tokens. But within the functionalist theory of mind,
this form of identification has been shown not to hold the essence of men-
tal characterizations. What should be deemed most important in an agent
is the functional role of its internal components and since I have consid-
ered meaning in terms of the causal role of elements in the environment,
meaning in this sense also preexists in an agent, expressed in terms of the
functional role of its internal components. From this perspective, agents
own an intrinsic meaning for the symbols of their internal representation,
which is given as the functional role those symbols play for their own inter-
nal dynamics. Thus a situated agent is always grounded in its environment
through its interaction with it, but the current techniques of implementing
agents fail to provide these agents with the proper internal structure for
a coherent functional integration of these agents in their environment. In
other words, the intrinsic meaning an agent possesses cannot be correctly
related with that of the environment and fails to reach the higher levels of
integration that are visible in living creatures.

If one looks at the current architecture of an agent 3.1, one usually sees
some sort of functional structure linking components together and convey-
ing information from sensors to effectors. Without adaptation, this struc-
ture is fixed and the dynamics of the agent will remain identical, whatever
happens in the environment. With learning, the component links are usu-
ally malleable, being strengthened or weakened under the effect of external
events, but the potential dynamics remain limited to what the implementer
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has imposed as his semantics for learning. Using evolutionary techniques,
the components can then also be rearranged so as to adapt to the envi-
ronment what functionality was given to the agent. The general trend of
these methods is clearly to allow an increasingly functional grounding of
an agent in its environment, but the missing element of the study is an anal-
ysis of the types of functionalities that can be provided to an agent in its
components. These components are usually chosen because they express a
function that is deemed important for the problem the agent will be faced
with, but the question of what is important for the agent itself is rarely, if
ever, investigated. In an somewhat excessive manner of speaking, where
are the qualia1 components of these agents? And without delving into ab-
stract considerations such as those presented by Nagel in his article “What
is it like to be a bat?” [43], the question of what it is like to be a digital agent
surely requires of us a better understanding, without conceit for science, of
the properties of the languages used to implement agent architectures.

3.3 Languages, Information and Dynamics

The definition of algorithms given by Turing has brought the abstract con-
ception of machine or computer to science and served to build the cur-
rent computers. With the study of universal Turing machines, the under-
standing of what machines can and cannot compute has also been under-
stood and used, but the relation between program and data has always
been problematic and while one universal Turing machine can theoretically
compute what any other can, the information (under the form of symbol
strings) that has to be provided to different universal machines for solving
the same problem is also different. In fact, while it is at the heart of all of to-
day’s concerns, the simple notion of information has no unique definition
in computer science.

At the center of this problem lies the difficult program versus data rela-
tion that has recently been studied in the field of information theory with
various definitions of the information content of an object, an overview of
which can be found in [50]. The most appropriate definition, that I will use
here, is called the algorithmic information content or Kolmogorov-Chaitin
complexity of an object. But it is worthy to note that information prob-
lems are not restricted to computer science, but were originally adressed
by Shannon in the context of telecommunication [54] and also have impli-
cations that reach into biology [2] or physics [5, 36].

1Qualias have been introduced by some philosophers to describe the perceptive quality
of sensations that cannot be communicated to people lacking the appropriate senses, exam-
ples of qualias are the redness of red objects or the softness of things that can be touched. The
problem of qualia appears when for example one attempts to describe red to a blind person:
the person can never completely understand this property of objects. A lot of discussion has
centered on the actual existence of qualias, see for example [26, 13]
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Figure 3.2: Two patterns to be described.

3.3.1 Algorithmic Information

The definition of algorithmic information takes into account both structures
and dynamics by using descriptions and description languages. When we
need to measure the complexity of an object, a description of the object is
considered, intuitively, when this description can be short, the complexity
of the object is to be considered to be small and when this description is
necessarily long, the object is complex. The typical example of this is when
one is presented with two pictures as in 3.2. The first consists in an alternat-
ing distribution of gray and white bars and the second in a sequence gray
and white bars whose positions must each be specified independently. The
first figure can be easily described by giving the description of a gray and
white bar and specifying its repetition, for the other illustration, each start
and end position must be included in the description.

Algorithmic information theory [8, 9] formalizes this understanding by
measuring the information content of binary string descriptions (any string
description can be written as a binary string) and applying the language of
algorithms (Turing machines) to these strings. The algorithmic information
of a description is the shortest description of an object that can be made
using algorithms and strings. Formally, let s be a string that describes an
object. There exists a family of Turing machines fTig that when applied
to strings fuig will generate the string s, i.e. Ti�ui� � s for each i. Since
the machines Ti can be written as strings ti. One can form the strings di �
ti � ui by concatenation and these strings are descriptions of the original
object that are equivalent to s since they can be used to reconstruct s. The
algorithmic information of the object is the length of the shortest string
in the set fdig, written K�s�. Note that in the concatenation operation, a
constant length delimiter must be used to distinguish algorithm part and
string part. For a complete easy formal presentation of this theory, see [56].

In this definition, one uses Turing machines (programs) operating on
input strings (data) to measure the information content of the objects under
consideration. In practice, other types of description languages may be
used to define equivalent information measures and it has been shown that
for any given description language �, there exists a fixed constant k

�
such

that for any string s, K�s� � K��s� � k
�

. This indicates that whatever
the description language, the information of objects is of the same order as
their algorithmic information and is interpreted as an optimality property
for this information measure.
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3.3.2 Expressivity

The interesting point in this theory is the optimality interpretation given to
the previous result. I think that this is characteristic of the difference that
exists between theory and practice, for when two measures differ by “at
most” a constant term, in theory the measures are equivalent, but in prac-
tice such a constant term may make a big difference. Consider the follow-
ing situation: who hasn’t smiled when he heard the anecdote of Von Neu-
mann almost firing his assistants for wasting time in developing a higher
level language than assembly on the IAS computer. The importance of ex-
pressivity in programming languages today is evident, and most courses
on programming emphasize the choice of the right language for the right
problem. The fact that any program can be written in assembly language is
theoretically interesting, but in practice useless when one must implement
a specific “complex” program on a computer.

Admitting this intuition implies that the constant provided by the algo-
rithmic information theorem is actually large enough in some cases that in
practice the choice of language does have a role when implementing dis-
tinct problem solving algorithms. And, returning to the main discussion, in
particular when an artificial agent architecture is implemented. Addition-
ally, this theory gives a hint at what could be the functional features that
one is looking for when an agent must be designed for a specific environ-
ment.

3.4 Understanding as Information Compression

With the intrinsic meaning in an agent defined as the functional roles of
its various components (ie. the potential for self en environment trans-
formation they define), the environment elements that will most firmly be
grounded in an agent should be those that are closest to the agent’s inter-
nal representation dynamics. The measure of this proximity can easily be
seen as the algorithmic information of the description of the external events
or elements in the agent’s internal representational language. In this lan-
guage, the objects in the environment of an agent and the dynamics in the
environment can be described by using symbols and their functional role.
For each environment object or property, there exists a large number of
different equivalent descriptions in the agent language, each owning a dis-
tinct meaning and the search for the most efficient description in terms of
algorithmic information can be seen as the process of understanding for an
agent.

If this hypothesis is accepted, a new approach to implementing agents
is to search for a representational language that gives the shortest possi-
ble descriptions for the agent’s environment perceptions. If this approach
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is pushed further, one might even attempt to provide agents with mech-
anisms for the compression of perceived information, so as to allow the
agent to form sub-architectures that are specialized languages that deal
with certain perceptions and act as information compression components
in the agent that could parallel the process of understanding. Furthermore,
a study of the dynamics that algorithms are naturally adapted to express
can be made with experimentation on test cases. Of course, since the de-
scription languages instantiated by various agent algorithms have distinct
properties and none can be universally efficient, the goal must be to find
algorithms that can be applied to specific problem domains encountered in
practice. This last sentence can be summed up by the statement that gen-
eralization is impossible in general, but that the problems encountered in
practice can be generalized over.

3.4.1 Classification

A first step that I consider essential would be to make a classification of
the known algorithms with respect to their informational properties. By
classifying the known algorithms, an easier introduction to the very wide
number of different methods used in the field could be accessed by young
researchers. By providing categories of algorithms, the problem domains
addressed by artificial intelligence would also be clarified. To that aim,
I propose a benchmarking methodology, based on a collection of test case
experiments used to evaluate the characteristic features of algorithms. Such
benchmarking experiments can be devised based on the tests already used
by many of the schools of AI, such as “Santa Fe Trail” experiments used
in artificial life or obstacle avoidance problems used in mobile robotics. I
give an example of this type of experimentation in the application part of
this work by studying the use of classifier systems both in the representa-
tion perspective and the dynamic perspective provided by EMud environ-
ments.

3.4.2 Theoretical Approaches

In further refinements, the theoretical approach of formalizing the expres-
sivity properties of algorithms seen as Turing machines could be pursued.
Here, difficulties arise mainly from the lack of mathematical tools suited to
practical expressivity notions and the criteria for determining what prob-
lem domains are relevant to artificial intelligence problems when working
on abstract machines. A first course of action that I have used is to ap-
ply non-standard analysis techniques to Turing machines. By using non-
standard analysis, one can make an additional distinction in element sets,
dividing them into the class of standard elements and non-standard el-
ements. Intuitively, this distinction separates elements that can be con-
structed in practice from elements that have a theoretical existence, but
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cannot be produced. When the set of Turing machines is considered, the
standard Turing machines are those that can be realized as computers and
the non-standard ones are those that can serve in proofs for example, but
could never be constructed in practice. Using such a distinction allows
some basic problems to be understood, such as the fact that the famous
halting problem does not exist for standard Turing machines, but some
non-trivial results still need to be demonstrated in this theory.
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Chapter 4

Artificial Intelligence and
Agent Systems

A lot of work in the field of artificial intelligence has recently been devoted
to multi-agent systems. Since the AXE project of which this Ph.D. is part
has been focussed largely on the concepts of autonomy and coordination, I
will present in this chapter the position our group has taken towards these
issues.

4.1 Autonomous Agents

4.1.1 Agents and autonomous agents

The term agent is commonly used to describe a software or hardware com-
ponent of an open system that can be considered and studied in relation to
this system. This implies some separation from the system in question, so
that the agent can be considered as a distinct entity within the system, di-
viding the system into an agent part versus environment part (the agent
part being a symbol system). The term agent is usually used to empha-
size the fact that a component in a system has specific properties that have
an interest of their own. It is important to be aware that this definition is
not formal in that sense that any object in an object-oriented programming
language or any function in an imperative language “could” be called an
agent, but one relies on the fact that intuitively the word agent is used only
for components that have the look and feel of behavioral entities. Also,
there has already been much abuse of the term in precisely this sense.

Usually, some component in a system is thought of as an agent when
its interaction with this system can be interpreted as operated through
sensory-motor equipment (software or hardware). An artificial life entity
and a robot are the two typical examples of respectively software and hard-
ware agents. The artificial life entity is precisely studied for its seemingly
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independent behavior in a programmed environment and robots clearly
interact with the real world through sensors and effectors. The fact that
an agent is positioned in an environment with which it has direct contact
through its sensors is called situatedness in agent theory and emphasizes
the fact that the agent is placed in the context of its problem domain and
not in a representation of this problem. A term that is closely related to
situatedness and characterizes the fact that the agent receives direct feed-
back from its own actions in the environment is embodiment. Embodiment
highlights the structural coupling between the agent and its environment,
implying that the agent experiences changes in the environment and will
have its behavioral principles changed by the environment’s evolution.

Agent terminology is often used in conjunction with autonomy [19] as
an agent is deemed interesting for artificial intelligence only if it owns some
important feature of natural living systems. Under this criterion, the most
highly regarded attribute of living things is their ability to insure their own
survival in the world through constant adaptation of behavior. The term
autonomy is used to describe the status of an agent that is self-sufficient in
some way and sometimes autonomous agent is implicit in the term agent.
An extreme example of this is when Sloman defines agents as “behaving
systems with something like motives”, that is, to him, agents are things that
have some form of free will [58] and are thus necessarily autonomous. We
will see that autonomy can have a range of meanings in the next paragraph.

4.1.2 Behavior and Autonomy

Behavior describes the pattern of actions that an agent expresses when con-
fronted with its environment. For an autonomous agent, the behavior is the
means by which it achieves its objectives and which make it autonomous.
An agent may express a wide range of behaviors and these will give an in-
dication of its degree of autonomy. On the lowest level, I have described an
agent as being capable of interacting with its environment. For an agent to
be considered autonomous, it is commonly admitted that the agent must at
least be automatic, that is, the agent must be able to operate in its environment,
sense it and impact it in ways that are beneficial to the task it must accomplish
[59]. From there, an agent is considered as operationally autonomous when
it is independent of human intervention, the agent can accomplish its goals
on its own (in “normal” situations) [46]. The highest level of autonomy is
reached when the agent is behaviorally autonomous, when it is addition-
ally able to generate new behaviors originating in its own past experience
of interactions with the world [59]. Thus, a behaviorally autonomous agent
would be able to store past experience and interpret it in order to adapt its
behavior to recurring or new situations, thus aiming at an optimization of
its behavior in view of its goal.

Of course this description of autonomy is by no means exhaustive and
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could be further refined, but the steps of automaticity, operational auton-
omy and behavioral autonomy match the various types of agents that are
currently used or studied. Actually, automaticity is what is achieved in
many engineering solutions for assembly line robots. A very good exam-
ple of operational autonomy is found in the Mars Pathfinder Rover robotic
agent [60]. The rover is a robotic agent equipped with various sensors that
allow it to monitor power consumption, obstacle proximity, wheel posi-
tion, etc. Moving it around on the ground of Mars is achieved in a two
step process: a human operator views the Mars site around the rover from
a 3D reconstruction of what the robot has captured with its stereo imaging
system and he designates a “safe” path from the current robot position to
the goal position by defining a sequence of waypoints, the robot then pro-
ceeds to the goal without any further human interaction. In this process, the
agent is told where it has to go and which different intermediate positions
lead to that objective, thus the agent is not even automatic in this planning
procedure; then when the operator has finished this description, the robot
enters an operationally autonomous state where it deals with all the real-
time problems it encounters while transiting from one point to another on
the surface of Mars, such as bumper-rock contact and then avoidance.

In general, operational autonomy is what artificial intelligence can effi-
ciently achieve and behavioral autonomy is what is sought to be achieved
(and sometimes done in a limited manner). The category of behaviorally
autonomous agents is in fact open and contains human agents at its higher
levels. It is implicitly admitted here that the faculty of cognition is a prop-
erty of systems possessing the highest levels of behavioral autonomy that
can be achieved in agents.

4.1.3 Multi-agent Systems

A multi-agent system (MAS) is a system where multiple agents coexist in
a common environment. In comparison with our previously defined agent
system where a single agent is coupled to an environment through sensors
and effectors, in a MAS, a family of agents is considered and each agent of
the family is coupled with the environment that includes its fellow agents.
On the other hand, since the family of agents can itself be considered as a
single agent with all of the individually available perceptual equipment (or
effectors) brought together as a single sensor (resp. effector), multi-agent
systems can give rise to a recursive definition of an agent system [37] or can
be viewed as a refinement to agent systems (see figure 4.1).

The central idea of multi-agent systems is that agents within a system
may work together (cooperate) or against each other (compete), but as a
whole bring forth a collective behavior and it is this collective behavior
that will be the focus of research. This idea is simply advocated by Marvin
Minsky as agents are the members of a population that together produce a behav-
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For an agent system, let S be the system, A the agent and E the
environment. We have S � A � E, and this view is centered on
the agent A. When many agents can be distinguished in the sys-
tem, we have many individual perceptions for the same system,
that is: S � A� �E� � ��� � An �En. For each agent Ai, the envi-
ronment is made of the other agents Aj�j �� i� and the rest of the
environment E� � S n �

Sn
i��Ai�. A multi-agent system considers

the agents Ai (i � �� ���� n) as a single agent A� with respect to the
environment, so that we have S � A� � E� � �

Sn
i��Ai� � E�, but

focuses both on the interactions between A and E and between
the Ai themselves.

Figure 4.1: Formal description of a multi-agent system.

ing system with motives in [40]. What is attempted here is the application of a
reduction principle on the individual behaviors in the sense of the question
“what elemental behaviors can be brought together in interaction for some
interesting meta-level behavior to be generated?” and the inspiration of
this approach results from the observation of natural systems that rely on
some collective behavior to successfully achieve autonomy. Typical often
cited examples of such systems are anthills, beehives or termite colonies,
but could also be every multicellular lifeform.

Up until now, I have held a view that was directed at interaction as in-
formation exchange between an agent and an environment. Within multi-
agent systems, interaction between the various agents composing the sys-
tem is fundamental. This shift of interest is grounded on the basic as-
sumption that designing elementary behaviors for agents and hierarchi-
cally composing them is easier than hard coding intelligent behavior into
one entity. Another interesting possibility that is often explored is that col-
lective behavior will not be trivially derived from the singular behaviors
and might in fact be more than what the individual behaviors could ac-
complish, or as in the established formula: the whole is greater than the
sum of the parts, which brings us naturally to our next subsection.

4.1.4 Interaction and Emergence

Interaction is the history of transformations that have been effected by an
agent on its environment and by the environment on the agent trough its
sensors. Interaction is produced when a situated, embodied and behav-
ioral agent “lives” in an environment. An agent is thus said to be in in-
teraction with the environment when it is actively transforming and being
transformed by its surroundings.
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When the environment is composed of multiple agents, this definition
can be extended to agent interactions as in the following: interactions are
the behavioral patterns that form between agents coexisting within an en-
vironment. Knowing that agents may transform their surrounding envi-
ronment by exercising their manipulative abilities, they are able to modify
the information perceived by other agents in the same environment and
thereby change their future actions (an agent’s behavior depends on its per-
ceptions). Since this ability to modify the behavior of another agent works
both ways, interaction appears as a ping-pong process of behavior trans-
formation between two agents, an effect dubbed specularity by J.-P. Dupuy
in the context of human interaction [16]. When more than two agents coex-
ist in an environment, interaction between all the agents quickly becomes
difficult to apprehend (the number of interaction relations between agents
grows on the order of the square of the number of agents involved).

A designer or observer of a MAS may call a behavior emergent when
this behavior cannot easily be deduced from the individual properties of
the agents in the system, or when these properties are not readily accessible.
Emergence arises from the interactions of the agents in the system in the
same way as the chemical properties called viscosity or fluidity “emerge”
from the physical properties of the molecules composing the liquid. Once
again, it is vital to emphasize the role of the observer in this definition,
the notion of emergence is an epistemological one: a property of a collec-
tive emerges from the individual properties when the most adequate tools
used to study the individuals are not the same as those needed to study the
collective. Clearly, recalling my previous example, if quantum mechanics
were a perfect model of reality and we had access to perfect tools, viscosity
would be most adequately studied through quantum effects and elemen-
tary particles.

4.2 Agent Methodology

Artificial intelligence has tried to solve the problem of intelligence by at-
tempting to synthesize it in artifacts (more specifically, computers). Over
the years, its methods have evolved from reasoning over models of prob-
lem domains to emergence of behaviors in situated artifacts. I will here
motivate this evolution by going through the two major steps that led the
field to its current state and describe what can be done to build behavioral
agents.

4.2.1 Top-down Approach

The classical artificial intelligence perspective on intelligent behavior is that
of reasoning. That is, an intelligent agent trying to solve a problem is ex-
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pected to try and summarize its problem, make an abstraction of it (in the
form of symbols and expressions combining the symbols) and then apply
deduction and inference to extract a solution from the symbolic representa-
tion of the problem, again in the form of an expression. It is then supposed
to convert the answer back into the problem domain from the abstract rep-
resentation it has of this domain.

This approach reflects the methodology of the natural sciences as de-
scribed by Herbert Simon in [55]: The central task of a natural science is to
make the wonderful commonplace: to show that complexity, correctly viewed, is
only a mask for simplicity; to find pattern in apparent chaos. Here, intelligence
is equated to the ability of reasoning upon a (reduced) model of reality.
The hypothesis is then that a physical symbol system, a device that can
hold and manipulate symbols in a representation, is sufficiently general to
be able to produce intelligent action. This framework is called top-down
because its starting assumptions are about high level cognitive capacities
such as modeling, planning and reasoning. It is from these assumptions
that classical artificial intelligence expects to generate intelligence that will
deal even with the down to earth problems that a living being encounters
every day.

4.2.2 Bottom-up Approach

New AI on the other hand considers intelligence as emergent from a sys-
tems ability to deal with many simple problems that appear in its interac-
tion with an environment. For this bottom-up approach, the high level cog-
nitive abilities such as forming internal representations of the environment
and reasoning on these representations is a feature that an agent might de-
velop if faced with an environment of sufficient complexity, but is by no
means preexisting in an agent. The aim of new AI is to build agents that
can deal with their environment by reacting to changes in this environment
in a way that will ensure their continued integrity, usually this is accom-
plished by providing the agent with a set of basic abilities and bringing it
to arrange the use of these abilities in search of an efficient, self-sustaining
behavior. An agent may then be called intelligent if it is able to deal with
problems that seem to require intelligence, but there is no preliminary as-
sumption about what the internal processes of intelligence in an agent are
or should be.

4.2.3 Adaptation

The earliest methods used in artificial intelligence had the intention of pro-
gramming behavior in an agent by attempting to specify all the possible
situations the agent could encounter and providing it with means to cope
with such situations. Unfortunately, such techniques have proven not to be

32



scalable since the programmer is responsible for thinking of every possible
situation the agent might encounter and the number of such situations fol-
lows an explosively growing curve as the complexity of the environment
grows (this has been called the frame problem for classical artificial intelli-
gence). To counter this problem, the available solutions are either to use
generalization in problem recognition and thus give an agent some default
behavior to use when an unforeseen situation occurs, an unsatisfactory so-
lution in many cases, or to allow the agent to build new solutions for un-
foreseen situations through some adaptive algorithm.

I will use here the term adaptation for any internal mechanism that al-
lows an agent to modify its own behavior-generation processes depending
on the experience it acquires from the environment. Actually, almost all ar-
tificial intelligence research is now devoted to understanding adaptation.
This is due to the transfer of effort from the concept of intelligence as an
explicitly programmed feature in an agent, to the concept of intelligence as
an emergent property of agent interaction with the environment. Since we
are not able to write a definition of intelligence, we cannot make a model
of intelligence and implement it in an algorithm, rather, we expect to pro-
duce the appearance of properties akin to intelligence in a system where
interaction between components occurs.

The fundamental difference between adaptive agents and non-adaptive
agents is that for an adaptive agent, different environmental conditions will
produce different agents after some time, whereas a non-adaptive agent
will still behave in the same way after any period of time it is left in the
environment. It should be noted that most often, typically for agents that
are used to solve real problems, the agent is adapted in some preliminary
phase, but is then used as an non-adaptive agent in the state that was
reached through the adaptation phase. The reason for this is that an analy-
sis of the agent behavior can then be made on the adapted agent before it is
used on the real problem environment where failure could prove danger-
ous or costly to the user.

I identify only two basic techniques used today to induce adaptation
in agents at this time, these are learning and evolution which I will now
describe.

4.2.4 Learning

Learning is an internal (ontogenetic) adaptation mechanism, whereby an
agent sees its internal behavior generating algorithm modified by the effect
of external environmental conditions perceived through its sensors. There
are many specific learning techniques that can be used to this goal but es-
sentially the process is the same for all of these. We can assume that a
learning agent has a two layer internal algorithm, the first layer is the be-
havior generating algorithm component and the second acts as a critic of
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Figure 4.2: A learning agent.

the first layer. Whenever the first layer generates an action based on its
perceptions or internal state, the critic attempts to evaluate the quality of
the action with respect to the agent’s predefined objective. Based on this
evaluation, the critic may change the behavior generating algorithm layer.
To pursue its goal, the critic in a learning agent may have access to more in-
formation than the agent algorithm in some cases. For example, supervised
learning techniques use feedback from an external observer of the system
to provide the critic with an evaluation of the agent’s performance.
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Figure 4.3: Evolving a population of agents.

34



4.2.5 Evolution

Evolution is an external (phylogenetic) adaptation mechanism operating
on a population of agents, whereby successive generations of agents are
modified according to the relative success of previous agents operating in
the environment. Evolutionary techniques are inspired by the Darwinist
theory of natural selection, where environmental pressure is used to en-
sure the survival of fittest. In an evolutionary algorithm, a population of
agents is considered and an external critic belonging to the environment
evaluates the relative quality of individuals in the population of agents by
assigning to each of them a fitness value. New individuals are then occa-
sionally created by combining the properties of multiple individuals in the
population. The selection of which individuals will contribute to the cre-
ation of the new individuals is biased towards high fitness individuals. In
the illustration of this process 4.3, I show the critic as an agent that is exter-
nal to the evolving population. In fact, this is a representational abstraction:
the critic may very well be a distributed entity that is partially incorporated
in the evolving population through competition mechanisms as is the case
for evolution in the real world.
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Chapter 5

Games and Text-based Virtual
Reality

When the AXE project was formulated, the main idea was that the prob-
lems of global networking can be solved by using populations of agents
distributed in the network. This vision is based on the fact that agents liv-
ing in a virtual world made of interconnected computers should naturally
be able to solve questions of distributed problem solving, network mainte-
nance or load balancing by adapting them to perceive the properties of their
current location and learning how to move in the network, possibly picking
up data from one location and transferring it to another location. With this
goal in mind, an experimental platform that could support these ideas was
deemed necessary and it is this platform that was designed in the EMud
environment model. In order to think about distributed networks of com-
puters, a game metaphor was the first idea that occurred to me, inspired by
my role-playing background. It is this gaming environment concept that
I introduce in this chapter by showing the evolution of computer games
from their beginning to the current Mud games.

5.1 The Origins of Computer Games

The evolution of the use of computers for gaming purposes has basically
gone through three stages. At first, computers were used as a replacement
for a human partner or opponent in a classical game that was until then
played without computers. This is typical of the strategy genre of games,
which are usually of the board game type, but transposed to computers.

In the next stage, games were developed specifically for computers and
these cannot easily be played without a computer base. Two genres repre-
sent this evolution: action games, where the player must match his dexter-
ity against a series of challenges generated by the computer, and the adven-
ture kind of games where a player wanders around in a virtual setting de-
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scribed by the computer (textually or visually) and issues short command
sentences to try to solve enigmas. Early representatives of these game fam-
ilies are typically chess or Othello (Reversi) for strategy games, Pacman or
space invaders for action games and Advent or Zork (Dungeon) for adven-
ture games.

Although these categories can be further divided and are slightly min-
gled in more recent games such as wargames, simulators or computer role
playing games (CRPG) of which we will speak later, the last transition in
computer game concept was introduced in the late seventies with the use
of networking for online gaming. Technically, online games are not a new
genre, but are rather an extension from all other genres to human-human
interaction through the computer media.

Although online games have been available since the seventies, it is
only during the last few years that their success has been rising sharply.
Until recently, there were no commercial games of that type, which can be
explained by the limited popular impact of such a product in a world with-
out widespread Internet access. But today, it seems that the “multiplayer”
feature will be inescapable for any game in the near future. Indeed, a large
part of the success of games such as the shooting game called Quake is that
they can be played cooperatively or competitively with other players over
the Internet. Maybe one could consider this as one of the failures of ar-
tificial intelligence techniques used to generate ally/enemy behaviors for
games where the rules are more numerous than in classical board games,
but in any case, the challenge of comparing one’s skill to that of other hu-
man player will always remain.

5.2 Muds

5.2.1 From Fantasy Literature to Advent and Computer Role Play-
ing Games

The publication of “The Lord of the Rings” in 1937 [62] marks the begin-
ning of fantasy literature by using typical mythological and epic elements
in a modern fiction novel. A large community of fans gathered around this
book and its intricate description of the fantasy world in which the story
takes place. Much literature has since then been published with a simi-
lar setting, but the importance of the genre is also due to its propensity to
produce the attractive imaginary worlds that attract players of role playing
and adventure games.

In 1974, Gary Gygax releases his game system called Dungeons & Drag-
ons (D&D), Basic Set [21], which is the first role-playing game (RPG) to be
published. In D&D and role-playing games in general, players design a
character based on the game system’s rules and writes this description on
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a character sheet. A referee (the game master or GM) invents a story with
descriptions of puzzles, opponents, treasures all fitted in a world setting
that he has imagined. The players and the GM then meet around a table to
“live” through the scenario created by the game master, who acts as an om-
niscient and omnipotent entity ruling out the results of the behaviors of the
characters in his world. Role-playing games now come in a wide variety
of settings, from fantasy and modern times to science fiction worlds, but
D&D was distinctly based on Tolkien’s world of elves, dragons and other
mythological creatures.

Actually, this type of games is quite similar to role-playing experiments
in psychology [41] except that players do not act out their chosen behav-
ior, but explain it to the referee who then describes the results. (Which is
probably a good thing since role playing games often involve quite a lot of
hacking and slashing at monsters with swords!)

It is in this context that in 1976, Will Crowthers designed Advent (the six
character name restriction, that was then common place on computers, for
adventure), a computer refereed fantasy game inspired both by fantasy lit-
erature and his own (real) caving experience. The game was subsequently
greatly expanded and released by Don Woods and was the first adventure
game [25]. In Advent, the player explores a text-based description of a cave
system, populated with creatures and objects, where he must solve puzzles
to reach deeper into the cave system and score more points. Shortly after
the appearance of Advent, another game called Zork [34] (later called Dun-
geon for its Fortran version) was written along the same line by Tim An-
derson, Marc Blank, Bruce Daniels and Dave Lebling in a language called
MDL.

5.2.2 Playing Adventure Games

In a text-based adventure game like Advent, the player acts as if he was
a person in an imaginary world, this person is usually called his character
in the game. He is given textual descriptions of what that person can see
around the place he is standing in the adventure world such as:

You are standing at the end of a road before a small brick build-
ing. Around you is a forest. A small stream flows out of the
building and down a gully.

Which is the first screen of the Advent game. The player may then issue
various commands that his character will attempt to execute. A command
usually consists in an action verb followed by the object of that action. After
mucking about a little, the player might try to enter the described building:

� enter building

You are inside a building, a well house for a large spring.
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There are some keys on the ground here.
There is a shiny brass lamp nearby.
There is food here.
There is a bottle of water here.

And pick up the objects he sees:

� get everything

Sorry, I don’t know the word “EVERYTHING”.

� get lamp

OK

� get keys

OK

When commands are not understood, the game will inform the player and
ignore the attempts. Otherwise, various humorous or gruesome things can
happen to a character playing Dungeon, the player might encounter the
following situation:

You are in a dark and damp cellar with a narrow passageway
leading east, and a crawlway to the south. To the west is the
bottom of a steep metal ramp which is unclimbable.
The door crashes shut, and you hear someone barring it.
Your sword is glowing with a faint blue glow.

� inventory

You are carrying:
A sword.
A lamp.
A newspaper.
A leaflet.

� east

You are in a small room with passages off in all directions. Blood-
stains and deep scratches (perhaps made by an axe) mar the
walls. A nasty-looking troll, brandishing a bloody axe, blocks
all passages out of the room. Your sword has begun to glow
very brightly.

� hit troll with sword

The fatal blow strikes the troll square in the heart: he dies. Al-
most as soon as the troll breathes his last, a cloud of sinister
black smoke envelops him, and when the fog lifts, the carcass
has disappeared.
Your sword is no longer glowing.

40



Which is the happy outcome, the other would signal an end game...

You are in a small room with passages off in all directions. Blood-
stains and deep scratches (perhaps made by an axe) mar the
walls. A nasty-looking troll, brandishing a bloody axe, blocks
all passages out of the room.
The flat of the troll’s axe hits you delicately on the head, knock-
ing you out.
Conquering his fears, the troll puts you to death.
It appears that the last blow was too much for you. I’m afraid
that you are dead.
Do you wish me to try to patch you?

� no

What? You don’t trust me? Why, only last week I patched a
running RSX system and it survived for over thirty seconds.
Oh, well. Your score is 35 [total of 585 points], in 14 moves.
This gives you the rank of Amateur Adventurer.

The aim of these games is to collect the objects that are lying around the var-
ious places in the imaginary world, finding those that serve to solve riddles
allowing further progression and bringing home the treasure objects that
increase the character’s final score. Part of the fun is in discovering how to
solve the riddles or avoiding the evil monsters that lurk in the darkness and
part comes from exploring the world that the designer has written. In the
examples that I have given it is not immediately apparent, but the syntax of
these games is very restricted and a good deal of patience is also necessary
to find the right formulation for an action that the character must execute
but “doesn’t understand”.

5.2.3 The MUD and Muds

Inspired by Advent, Zork/Dungeon and in a lesser way by Hack (another
adventure game), Roy Trubshaw at Essex University decided to write a
multi-player adventure game in spring 1979. After writing a first basic as-
sembler version where people can move around rooms and chat together,
he rewrites it completely in a higher level language (BCPL). With Richard
Bartle now doing much of the game play oriented programming, they fin-
ished in 1980 what is now believed to be the first MUD [4]. The name MUD
is the acronym for Multi User Dungeon, where Dungeon comes from the
Fortran name of Zork that inspired the authors of MUD. Nowadays, MUD
is also sometimes taken to mean Multi User Dimensions since it is a more
accurate reflection of the variety of settings (dimensions) in which one can
play Muds.
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The two ideas that brought R. Trubshaw to write the MUD were his in-
terest in writing a database definition language and the making of a multi-
player adventure game. It is the latter aspect that became most important
over time and when he left Essex University, R. Bartle took over the project
and added most of its game oriented features, that is, puzzles to solve, at-
mosphere, etc.

Popularized by students throughout the UK, MUD quickly spreads to
Norway, Sweden, Australia and the USA. Since then, there have been many
programs written either over the original MUD code or strongly inspired
by it. These kernels form the basis of today’s Muds, examples of these are
typically LPmud or DikuMUD, and most current running Muds use these
as a code base.

5.2.4 Playing Muds

The player of a Mud is faced with the same environment as that of an ad-
venture game player. He receives textual descriptions of his immediate
surroundings, including the objects the he may pick up or the enemies he
can fight. There are also various simple riddles that he may solve in or-
der to progress in the game and the commands that can be executed take
the same form as in an adventure game. Where differences appear is in
the characters that are played and the scoring system. A Mud character
can choose among various professions and has a more detailed descrip-
tion. His skills can vary depending on the choices the player makes while
playing and may have access to commands that not all other players are
allowed to use, for example, thief-like characters might be allowed to steal
objects from creatures and wizard-like characters may have access to magic
spell casting. A multiplayer game character is in general very customizable,
allowing players to decide how they look like, what their name is and what
clothes they are wearing.

When exploring the world in a multiplayer game, the player’s character
encounters creatures in the same way as in an adventure game, but might
also come across other characters. He can then engage in conversation by
issuing the say command, followed by a sentence the he wants the other
player to hear (see, in fact), or even make his character act in various visual
ways by using the emote command to show the other player his emotions:

� east

You enter the central courtyard in Tintagel castle. Big double
pane doors lead to the round table room in the north. To the
south and west, secondary entrances lead inside the castle. In
the middle of the courtyard stands large podium where King
Arthur can address his people.
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A barrel of water is here
Some hay is lying here
A horse is standing here
You see Vania

� look Vania

You remember having seen Vania at the court once, she must
be a minor lord from the country. She is a mature woman of
forty years who clearly has seen rough times. Her clothing is
correct, but obviously designed for riding, and while her stance
is proud, she could easily pass for a commoner.

She is carrying:
a leather backpack
a sword
a suit of leather armor
black riding boots

� say Hello Vania

You say “Hello Vania”
Vania nods

� emote bow Vania

You bow before Vania

Depending on the Mud, mutual aggression may be possible or not, but
it is generally considered bad taste and most Muds have a board of internal
regulations to explain the behaviors that are allowed, tolerated or forbid-
den. These rules are enforced by special characters that are played by the
maintainers of the Mud or simply people that have been playing for a long
time and are deemed responsible. A lot of the reputation of various Muds
that can be played on the Internet comes from the general atmosphere that
is maintained for the players.

The scoring system in a Mud differs considerably from that of other
games and is the same as in role playing games. In a Mud, characters are
given an experience point score. When creating a new character, the score
starts at zero and it is by fighting creatures (killing them actually) or solv-
ing quests that the character can gather experience. These points are used
to calculate the level of advancement of the character in his profession and
by accumulating them, the character can increase this level. With higher
levels, character gain proficiencies in various areas dependent on their pro-
fession and the choices the player makes. All in all, more advanced charac-
ters become more powerful, allowing players to compare their characters
according to what each can do or which monsters they are able to beat.
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5.3 MUCK, MUSH and MOO

While early Muds emphasized competition, riddle solving, character de-
velopment and can be called adventure Muds, so-called social Muds have
since then been designed. These Muds emphasize creativity, programming
skills and communication in the sense that their worlds are not created
with populations of dangerous creatures, quests or generally hostile en-
vironments, but exist for the players to modify and enlarge by themselves.
Characters on social Muds are allowed to build new places and new objects
to interact with through the use of a programming language. Their aim is to
design places of their own, that other characters can visit, admire and/or
criticize. On such a Mud, the time not spent building is spent on com-
municating with other players or exploring their creations. The first deci-
sively socially oriented Mud, called TinyMUD, was written by Jim Aspnes
in 1989. It allowed players to create new object, places, etc. by spending
pennies (Mud cash) acquired on the Mud. All characters had equal powers
and the idea was that TinyMUD had to be a place where non-competitive
people were happy to be. Following TinyMUD came TinyMUCK (the pro-
gramming language used for creations involved less MUCKing about than
on TinyMUD), TinyMUSH and many others who inherited the MUCK or
MUSH nickname. Following the same basic concepts, MOOs were written
to implement socially oriented Muds where building is done through the
use of and object oriented programming language.

5.4 Text-Based Virtual Reality

Today, virtual reality is everywhere and the text-based virtual worlds of
early games appear like the poor fathers of their fully animated, three di-
mensional, sound enhanced children that can be bought in every super-
store. But, taking away the gore, every element that is truly entertaining
was already in these first games: incredibly large worlds to explore, the
challenge of tricky quests to solve, rewards for the (play) efforts involved
and mainly places to live out one’s imagination. These are even elements
that now are often overlooked by the entertainment industry in favor of
the thrill of new sensory experiences, even though their comeback can be
felt is some recent games. This additional sensory experience that appears
so important nowadays is a trend that appears in all computer-human in-
teractions in the attempt to interface man and machine. But if we consider
artificial agents (not interacting with humans, that is), this is probably the
element that can most safely be omitted from the environments designed
for them. Instead, an environment customized for an agent would more ap-
propriately be implemented as a discrete symbolic world, since this agent
will have a discrete symbolic internal mechanism.
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In an attempt to ground symbolic agents in an environment, I believe
that our first attempts should be concerned with environments that are in-
tuitively close to the representation mechanisms these agents possess, mak-
ing them feel at home in a sense. Once our methods enable such agents
to solve complex problems in these environments, the next step will be to
bring them to real world problems that anyhow must be converted to a dis-
crete description for the agent perceptions. The idea that only real world
problems can bring agents to integrate high level behavioral patterns, ap-
pears misguided to me. The real difficulty lies in an agent handling situ-
ations of a structural complexity level larger than its internal representa-
tional structure, whereby the agent must discover or be provided with ade-
quate generalization/compression capacities in order to solve the problems
he is faced with. I have chosen to use the EMud environments introduced
in the next chapter as experiment environments for this reason. An EMud
environment is a virtual text-based world designed from the principles of
Muds. In this world, places and objects are of a symbolic nature, the trans-
formations in this world are rule-based and so, the world can be directly
experienced by an agent placed in it. Additionally, since an EMud is a Mud,
human players can control an agent in the virtual world, allowing interac-
tion with artificial agents. For these reasons, both complexity and the basic
unpredictability of human actions can be introduced in the environment to
provide a sufficiently challenging problem space for agents.
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Chapter 6

EMuds, Aims and Methods

6.1 Aims

The objective of the model presented in this chapter is to provide an exper-
imental platform for multi-agent systems that can be used as an abstrac-
tion for a network of computers. The concepts used to define this model
are strongly inspired from the Internet games called Muds that were intro-
duced in the previous chapter. Designing the system was done by sepa-
rating structural elements such as space topologies and contents from the
dynamics of the environments considered.

The resulting model gives an abstract description of virtual universes
that can easily be implemented on computers [49]. These universes can ei-
ther be seen as purely virtual structures or as a representation of real world
problem domains. When used as an experimental testbed, an EMud envi-
ronment will be implemented as a representation of a problem that must
be solved by agents living in it. To the agents, on the other hand, the world
acts as a purely imaginary structure in which they can perceive local prop-
erties and change them, and where they must adapt their behavior.

6.2 EMud Environment Model

An EMud is an application that manages environments called Worlds. The
worlds define environmental structures and associated dynamics and thus
provide experiment testbeds. I will define here the model used to describe
a world.

Worlds can be described by separating structure and dynamics, struc-
ture consisting in the virtual physical components of the world and dynam-
ics in the virtual physical laws that the structure obeys.
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6.2.1 Structure

There are three main types of components in the world structure. These
components globally define the world’s topology and are called parts. The
various parts, with the most important features in their implementation
scheme, have been outlined on figure 6.1 at the end of this subsection.

Elements

Elements are the physical objects of the virtual world. The objects that have
a substance and thus can be manipulated by other elements possessing ad-
equate detector/effector (in a general sense) equipment. In comparison to
the real world, elements are the car you drive, the glass you drink from,
your cat and even yourself or other human beings. As seen from the pre-
ceding examples, elements encompass both the intuitively active and pas-
sive objects of the environment. Elements that can “contain” other elements
are called containers and are a specialisation of elements.

Spaces

Spaces are the places where parts dwell. They serve as a mean to regroup
subworlds into zones and they provide a location for elements to exist in
and sense their surroundings, as well as being the medium in which inter-
action can occur. Spaces come in two varieties: zones that allow to regroup
other spaces into areas and loci which may hold elements. Within a locus,
positions can also be defined when specification is necessary. A room is
a locus in a zone and an inventory is a locus within a container. An im-
portant feature to note is the recursive nature of spaces: spaces may exist
within spaces or elements. A typical real world example of this is the uni-
verse space containing our galaxy space or a room space containing crates
that have internal space for contents. The default top-level space is a zone
called the void that contains all other spaces.

Exits

Exits are the paths from locus to locus. The exits define the basic physical
neighborhood relation over spaces. Although the virtual physical laws of
an environment may define other neighborhood relations, the exits form
the basic topology for the set of structural components. It is essential for
any experiment to have at least this topological feature, even though some
active elements might not be perceptually equipped to be aware of it.
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description:Description

identifier:int

Part

size:int

contents:<Element>

positions:<Position>
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open:Boolean

from:Room

to:Room

Exit

perceptions:<Channel>

skills:<Skill>

location:Locus

control:ControlAlgorithm

Element

Container

content:Inventory

size:int

contents:<Space>

Zone

Space

exits:<Exit>

Inventory

location:Container

Room

location:Zone

Figure 6.1: Structural components of and EMud.
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6.2.2 Dynamics

Perceptions

Elements within a world are given a set of perceptions (a sometimes empty
set). These perceptions consist in information channels where events of
a specific physical type or nature are recorded. The various perceptible
events are propagated through the world’s structure following rules of
propagation defined by the actions that can cause them, these events are
only communicated to the elements if they possess adequate perceptual
channels, even if their position is “within range”. Thus, shouting at a ta-
ble (inactive, unperceptive virtual table of course) has no effect on the table
element. Generally speaking, if an element is not perceptive to a specific
type of physical event, that type of event can have no effect on the elemen-
t’s internal mechanisms (unless the event destroys the element, which then
has no further effect on the element...). Of course, the existence of trans-
lator elements (comparable to radio receptors, magnifying glasses, etc.) is
not excluded by this rule, but otherwise, such unperceived events can be
considered as an epiphenomenon to the element in question.

Actions

Actions are the transformations that can be effected on the world’s struc-
ture. They are considered as components of the world in the sense that
elements may produce them and they are then stored until execution time.
Typical actions are moving, picking up elements, emitting sound, etc. The
events in the world that such actions generate may be delayed or have
durable effect, depending on the action. To allow a variety of effects (such
as temporary effects), actions may generate other actions. A temporary
effect is obtained by an action that modifies the environment and then gen-
erates a new action (with appropriate delay) to set it back to its initial state.
The set of all possible actions, with their internal applicability rules, defines
the physical laws governing the virtual world. This can be understood by
the fact that any transformation of the world must result from the appli-
cation of an action. A component of the world that may generate actions
is said to possess skills, that is, a skill is the basic description of how an
action is to be generated. The set of skills of such a component is called its
proficiency.

Control Algorithms

Control algorithms are the means by which elements may make decisions
to commit actions in the world. As it was explained in the element section,
elements can be either active or passive. By default, an element is passive,
but it can be equipped with a control algorithm that allows it to interact
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Figure 6.2: Scheduling of an element’s actions.

with the world. Such an algorithm has access to both the perceptions and
the internal state of the element and from this information, may generate
actions to effect the environment. Any type of control algorithm may be
fitted to an element and in fact, a human player connected to an element
is considered as a control algorithm (whatever the connection method). A
typical experiment world could contain elements driven by neural nets,
genetic algorithms, expert systems and remote human players connected
via telnet ports.

Time

Time in the EMud is a global, discrete ordering of the occurrence of actions
in the world. Since actions are executed sequentially, the order of their ex-
ecution is well defined and can be divided into time slots. Every action has
a positive integer execution delay that allows it to be scheduled in world.
The temporal evolution of the environment is the sequence of environmen-
tal states taken before every time step. In this context, the scheduler is the
entity that coordinates all actions in the world, it is through the scheduler
that elements are prompted for action and in the scheduler that element
actions are stored before the time of their execution (see figure 6.2 for an
illustration of this mechanism).

6.2.3 The World

Together, the previous components form the EMud world, where elements
“live” in the structure formed by spaces connected through exits. In this
model, agents are implemented as elements with a control algorithm. These
agents, following our perception/action agent model (see the section on
autonomous agents), acquire information about the world through percep-
tion channels and use actions as effectors to modify this world.
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6.3 EMud environment definition

Environment definition is made by creating an appropriate set of structural
definition files and dynamics definition files that are then loaded into the
application at startup. A simple grammar based on name-value couples
is used for writing the files and each couple represents a parameter of the
environment in a hierarchical manner. The hierarchical decomposition is
done through the use of complex values for certain parameter names. Typ-
ically, an element is described as an ELEMENT name with complex value
consisting in the various parameters defining an element. Within this com-
plex value, a parameter named LOCATION would have a simple value that
is the integer identifier of the element’s location in the EMud environment.
Examples of complex values are those associated with part descriptions,
element attributes or element proficiencies. Examples of simple values are
those associated with description names, exit lengths or space sizes (see
figure 6.1).

An environment will usually consist in many such definition files, the
minimal environment having one each of the default space, element and
exit files. When creating a more complex environment, the configuration
files may be structured into any number of environment areas, with space,
element and exit files for each area, along with one area description file.
Since the world is structured into sub-spaces thanks to the use of the space
parts, building an extension to an environment is done by adding a new
space called a zone. The new rooms to be added are then situated in this
zone, delimiting the newly built area. Elements and exits added in rooms
of this zone are also marked with their current zone identifier. For each
zone, a separate set of definition files is used. When the EMud is running,
the current state of the mud can be saved into these environment defini-
tion files and when the mud shuts down, this operation is automatically
launched. Thus continuity of the world can be established by starting up
the mud from a previously saved state and a study of the world’s evolution
can access successive states of the world in these various files.

Control algorithm states are also stored in a similar fashion as environ-
ment description files, but the current implementation of the model does
not yet provide a way of defining new control algorithms for the EMud
without touching the code of the application. The EMud actions are also
only modifiable at this time by transforming the EMud application.

In an EMud, all parts are uniquely distinguished by a part identifier that
specifies their zone membership , their type identifier (whether the part is
a room, an exit, a player or another part type), and their personal identity
within these subsets of parts. This constraint of unicity limits the maximal
size of an EMud world to 254 zones, each containing a maximum of ���

parts of each type (about a million). Obviously, this limit is not too restric-
tive and I believe the processing power of current computers is more the
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limiting factor at the moment. I have currently implemented seven zones
for demonstration and experimental purposes, altogether containing about
300 parts among which twenty are active and controlled by elementary con-
trol algorithms. In this configuration, no delays at runtime are perceptible,
but the use of complex control algorithms, such as an XCS classifier system
with a population of classifiers over 1000, does slow down the environment
slightly. It should be noted that, since its complete rewriting in a project in
collaboration with A. Soupper, the application has become very stable, run-
ning for several weeks without interruption.

6.4 Conclusions for the Model

The EMud environment model provides support for multi-agent system
experimentation. Special attention has been devoted to allow adaptive
agents to evolve in incrementally complex environments. To fulfill this
goal, it is possible to build environments in steps of increasing complexity
along the three distinct directions described below; from pure simulation,
towards real-world modelling.

Rich Structures

The model uses high-level descriptions of environments through the use of
three basic building blocks: elements, spaces and exits. This allows virtual
environments such as those found in the typical artificial life experiments
to be built. For example the Santa Fe trail or the Woods experiments can be
reproduced by using sets of interconnected rooms containing pheromone
or food elements. On the other hand, abstractions of the real-world can be
achieved with the same building blocks, for example by mapping a build-
ing layout on the rooms/elements/exits framework, identifying offices to
rooms, doors and stairways to exits, interior equipment to elements. Since
the number of such components can be very large, a lot of detail can be
used for these descriptions.

Complex Dynamics

As the elements of an EMud can be given active properties and the ac-
tions available to elements can be customized, the laws of evolution of an
environment can be closely tailored to the desired simulation. Elements
reacting to specific environmental conditions can be used and even hidden
in the environment, so as to simulate atmospheric conditions for example.
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Basic Unpredictibility

With the possibility of linking elements of the EMud environments with
real-world objects (most often human actors), the basic unpredictibility of
the real-world can be introduced into environments and used to modify
them dynamically. This allows to build environments that might bridge
the gap between simulation and real world experimentation.
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Chapter 7

Learning Classifier Systems

Originally described by Holland in [24], learning classifier systems (LCS)
are learning systems, which exploit Darwinian processes of natural selec-
tion in order to explore a problem space. As such, LCS are among the few
AI techniques that integrate both an internal adaptation process (reinforce-
ment learning) and an external adaptation process (genetic algorithms) in
a single decision-making algorithm. While Goldberg used LCS in his book
about genetic algorithms [20] as an application of the theory presented,
learning classifier systems had remained relatively unexplored until Wil-
son successively simplified and improved some aspects of the original sys-
tems, dubbing the successors ZCS and XCS. The main transformations are
explained in detail in [69, 70, 30] and a summary of the state of research
in XCS systems can be found in [71]. The resulting system, XCS, which I
will describe in this chapter exhibits some very good learning and general-
ization abilities in the tested environments and has the advantage of being
well adapted to symbolic discrete environment problems.

7.1 Classifier Systems

A classifier system (CS) is a rule-based system for decision making, classi-
fier systems are a special kind of production system [12]. Each rule maps a
problem state into a solution or an intermediate new state, where the sys-
tem can be applied again. This sequence of deductions leads to the systems
answer to the problem. Rules in classifier systems are called “classifiers”
and are of the form if �condition� then �action�. When applied to a prob-
lem, a CS is usually presented with a message representing the current situ-
ation, the classifier system then attempts to match this message with one or
more classifier conditions. If some conditions match, then an action among
those advocated by the matched classifiers is selected and applied. The ba-
sic system is thus based on a set of classifiers, a matching process and an
action selection process.
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Figure 7.1: Learning classifier system architecture.

The learning classifier systems add adaptation to the basic CS through
two components. The first is a reinforcement learning algorithm similar
to Q-Learning [27] that operates on the action selection process and that
I introduce in section 7.4.3. The second is a rule discovery system imple-
mented as a genetic algorithm [23, 20] that operates on the classifiers as a
population to generate diversity in the classifier set, allowing exploration
of the problem space. This component is introduced in section 7.4.4. The
overall architecture of an LCS agent is illustrated in figure 7.1.

Within an agent system context, the classifier system is the agent’s con-
trol algorithm with the problem space being the environment and messages
the perceived current environment conditions. A learning classifier system
provides the agent with an adaptive mechanism to deal with varying en-
vironment situations and learn better action patterns through experience.
Depending on the type of environment, detectors and effectors have to be
customized for the agent to convert perceptions into messages and actions
into effector operations. I will present the basics of reinforcement learning
and genetic algorithms in the next two sections, before giving an analysis
of the XCS classifier system and its operation principles.

7.2 Reinforcement Learning

Reinforcement learning (RL) is a form of learning that is well suited for
unsupervised learning situations and is guided by the following principle
[61]:

If an action taken by a learning system is followed by a satisfac-
tory state of affairs, then the tendency of the system to produce
that particular action is strengthened or reinforced. Otherwise,
the tendency of the system to produce that action is weakened.
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Figure 7.2: The reinforcement learning model.

In reinforcement learning (associative reinforcement learning to be precise),
a system attempts to learn a mapping from inputs to outputs, guided by a
reinforcement signal that represents satisfaction in the sense of the preced-
ing principle. From the agent perspective, an agent, connected to an envi-
ronment by sensors and effectors, perceives states in the environment and
converts them to inputs describing such currently perceived states. The
agent then produces an output that is effected as an action in the environ-
ment. From the transformation operated in the environment, the agent then
receives as reward a scalar reinforcement signal. The behavior of the agent
is aimed at maximizing rewards received as reinforcement. The reinforce-
ment learning model (see figure 7.2) consists in:

� environment states s � S;

� possible actions a � A;

� reinforcement signals r � R described by a reward function R from
S �A into ��R�, a probability distribution of reward values;

� a state transition function T 	 S � A �� ��S� for the environment
that maps state-action pairs to probability distributions over the state
space;

� agent input signals i � I and output signals o � O.

The purpose of reinforcement learning theory is to find an “optimal” pol-
icy B for the mapping B 	 I � O. Optimality being defined in relation to
the reinforcement signals r received by the agent over time. Depending on

57



the context, many different algorithms can be applied in order to solve re-
inforcement learning problems, and actually, even evolutionary techniques
such as genetic algorithms could be considered as reinforcement learning
within the above framework. Traditionally, though, reinforcement learning
algorithms are based on statistical techniques and dynamic programming
used to estimate and improve behavior-generating algorithms.

7.2.1 RL Methodology

The main aspects that influence the choice of method are the following:

� Optimality criterion: defining what is an optimal behavior depends
on making the choice of an optimality criterion and is the first step
to finding a solution to a reinforcement learning problem. There are
basically three models of optimality. 1) Finite horizon, where the agent
has a predefined finite life span and has to maximize reinforcement
received during this time. 2) Receding horizon, where the agent’s life
time expectation is not known and it is asked of the agent that at each
time step, he maximizes the total expected reward for the next h steps.
3) Infinite horizon, where the agent takes all expected future rewards
into account for the maximization. This can be achieved for example
by using discounted sums of expected rewards.

� Environment stability: actions in the environment may or may not
influence future states of the environment, depending on this factor,
actions may change the future expected rewards and this should be
taken into account by the behavior. A similar case happens with de-
layed rewards, in some problems, reinforcement cannot be given im-
mediately following an agent’s action, it is only when certain specific
situations occur in the environment that the agent receives reinforce-
ment.

� Perceptive limits: when the agent perceives the environment, a de-
scriptive input signal i is built by the sensors observing the current
environment state s. This input signal may not be a complete or accu-
rate description of the current state of the environment and thus the
agent must be able to generalize its knowledge in the input-output
mapping so that the reinforcement predictions may remain accurate
even under uncertainty.

Given the problem specifics, Kaelbling et al. [27] introduce formally jus-
tified methods of reinforcement learning and ad-hoc methods. Unfortu-
nately, most demonstrated techniques suffer from scaling problems when
applied to the more complicated situations (in particular when the environ-
ment is not stable), also, algorithms used for calculation in these techniques
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can be relatively inefficient. The most commonly used methods in the field
of Artificial Intelligence are thus the ad-hoc methods, that are more easily
implemented to deal with generalization problems and delayed rewards.

7.2.2 A Mathematical Formulation of Optimality in RL

From the reinforcement learning model previously described and a dis-
counted infinite horizon optimality model, the problem of reinforcement
learning can be formulated mathematically in a Markovian decision pro-
cess perspective as follows [27].

The optimal value of a state s is the maximum over all action selection
policies � of the expected discounted sum of rewards over all stochastic
transitions (with � the discount factor and rt the reward at time t):

V ��s�
df
� max

�

E�

�X
t��

�trt��

It can be shown that this value is unique and is a solution of the equation:

V ��s� � max
a�A


R�s� a� � �
X
s��S

T �s� a� s��V ��s���

where T �s� a� s�� is the probability of making a transition from state s to
state s� through action a. From the previous definition and the formula for
V �, an optimal decision policy �� 	 S �� A is a policy that finds an action
a such that R�s� a���

P
s��S T �s� a� s

��V ��s�� � V ��s� in every given state s.
The objective of a reinforcement learning algorithm is thus to find a policy
� that minimizes the value

P
s�S j�

��s�� ��s�j.
Finding an exact solution for �� and V � is possible by using dynamic

programming methods, when T and R are known, the problem faced by
reinforcement learning methods is to find a solution when this knowledge
is not directly available, but must be sought in the environment through
trial and error.

7.2.3 Q-Learning

I present here a well-known algorithm developed by Watkins [67, 68], that
can be proved to converge to an optimal solution under certain conditions.
This algorithm forms the basis of the reinforcement learning algorithm
used in the XCS classifier system. In Q-Learning, a state value is defined
for a given policy �:

V ��s� � R�s� ��s�� � �
X
s��S

T �s� ��s�� s��V ��s���
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and then a Q value is defined for this policy and every pair �s� a�:

Q��s� a� � R�s� a� � �
X
s��S

T �s� a� s��V ��s��

indicating the expected discounted reward for executing action a at state
s and pursuing the same policy thereafter. For this definition, if �� is an
optimal policy, then V ��s� � maxa�A
Q

��s� a��, where maxa�A
Q
��s� a��

df
�

maxa�A
Q
��

�s� a�� and:

Q��s� a� � R�s� a� � �
X
s��S

T �s� a� s��max
a��A


Q��s�� a���

If this Q� value can be learned, then an optimal policy can be built from it
by finding one action that maximizes Q��s� a� for each state s.

The Q-Learning algorithm estimates this optimal Q value by building
a table of randomly initialized Q values for all state-action pairs and up-
dating these values with a Widrow-Hoff delta learning rule. The delta rule
adjusts a parameter x towards an estimate of its target value y by replacing
x with x���y�x�, (� � � � �), which is simply written x

�
	� y. The value

� being the learning rate. It is clear that when y is stationary, this forms a
sequence of x values that converge to y. In the algorithm, the delta rule is
expressed as:

Q�s� a�
�
	� r � �max

a��A

Q�s�� a���

With r the actual reinforcement received for executing action a in state s.
Each time a table state-action position is chosen to act, this rule is applied
to the position to update its value. Over time, the table positions are thus
alternatively updated and it can be shown that if all positions are updated
regularly enough as time goes on and the learning rate is appropriately
adapted at each step, this tabular representation of Q�s� a� will tend to
Q��s� a�.

7.3 Genetic Algorithms

The second component of a learning classifier system is a rule discovery
system that is implemented as a genetic algorithm (GA). A genetic algo-
rithm is a search and optimization algorithm based on the Darwinian prin-
ciples of natural selection observed in nature, but applied to a set of digi-
tal genotypes. These digital genotypes are then interpreted as the param-
eters that can be operated upon for solving the optimization problem at
hand. Traditionally, a genetic algorithm is used as a phylogenetic adapta-
tion mechanism that operates on a population of potential solutions to a
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problem and is based on a measure of the quality (called fitness) of each in-
dividual’s solution. Individuals are identified by an artificial genome that
describes their solution to the problem. The search for an optimal solution
works by randomly selecting individuals with a bias towards the fittest and
propagating their genetic material in new individuals, possibly through ge-
netic operators such as crossover and mutation. This process usually leads
to an increasing average fitness in a population since fitter individuals are
more likely to be selected for reproduction.

7.3.1 Implementation of a GA

In many genetic algorithms, an individual is represented by a bitstring (i.e.
a string of zeroes and ones) in the set Bl of bitstrings of a specified length
l, this string is both the genome of the individual and a coding of the so-
lution that it provides to the problem under study. The algorithm operates
on a population Pt � fsi�t� j si�t� � Bl� i � f�� ��� ngg of such individuals at
every time step t, the population having a predefined number n of individ-
uals. A mapping � 	 Bl �� R has to be provided that defines the fitness of
individuals in order to provide a selection criterion for the algorithm. The
search process then iteratively selects individuals with probability propor-
tional to their fitness and generates new individuals from their genome,
thereby forming new populations of individuals. There are a few different
methods that can be used to produce population updates either as in the
original genetic algorithm that was described as selecting individuals from
a population Pt at time t and generating n new individuals to form the next
population Pt��, or as in the variant of steady-state populations used in the
XCS where, at each step, a few (one or two) new individuals are created
from the current population’s fitter individuals and replace unfit individu-
als of the current population. The three genetic operators used to produce
new individuals are:

� simple replication: the selected individual is duplicated;

� mutation: the various sites in a duplicated individual’s code are swap-
ped to the opposite bit with probability �;

� crossover: two individuals are selected and one or more random po-
sitions in their genome are chosen randomly as crossover points. Two
new individuals are formed by alternating pieces of genetic code from
the two selected individuals, the lengths of these pieces being deli-
mited by the crossover points chosen.

The sequence of populations generated by the algorithm explores the solu-
tion space of the problem by accumulating individuals in regions of high
fitness value and converging to the (or one of the) global maximums of this
fitness landscape.
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The search procedure provided by a genetic algorithm is, in most cases,
provably better than a random search in the solution space of a problem,
although for a large search space the procedure can be slow. The conver-
gence of the algorithm has been proved in the Schemata Theorem [20] by
studying generalizations of bitstrings called schemata that represent fami-
lies of individual bitstrings. Schemata are generalizations of bitstrings and
are identical to the classifier conditions used by the XCS system that I in-
troduce in the next section.

7.4 XCS Design

The XCS classifier system is an improvement on the original design of clas-
sifier systems that was presented by S. W. Wilson in his 1995 article Classifier
Fitness Based on Accuracy; it promotes a different approach to the reinforce-
ment learning/genetic algorithm relation in the system adaptation process
that allows better generalization of knowledge stored in the form of classi-
fiers. Since much of the relevant work in the field of LCS is now based on
this system design, I introduce it here without presenting the original de-
signs of classifier systems. The following subsections describe the elements
used in a cycle of the classifier system life. The steps in a cycle are applied
repeatedly until the system is stopped by a user and consist in:

1. detecting an environment message and forming a set of classifiers
that match the message

2. forming action sets in the match set and selecting an action

3. applying the reinforcement algorithm to classifiers

4. applying the genetic algorithm to the classifier population

Along such a cycle, the learning/genetic algorithm is focussed on the eval-
uation and use of the three following parameters:

� prediction 	�
� of a classifier 
: the estimate of the reward gained by
the system when this classifier is matched and its action is selected.
This parameter is used by the action selection mechanism;

� predictive error ��
� of a classifier 
: an estimate of the difference
between prediction value and actual reward obtained by the system
when this classifier is matched and its action selected. This parameter
is used to calculate the accuracy of the classifier;

� classifier accuracy, used to update fitness ��
�: a function of classi-
fier error that attempts to estimate how good a classifier is at guess-
ing the reward the system would receive if its action was selected.
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This parameter is used by the genetic algorithm component to select
classifiers and by the action selection mechanism to weigh prediction
values of action sets.

7.4.1 Conditions, Messages and the Matching Process

When dealing with classifier systems, sensory stimuli are converted to mes-
sages which are conventionally formed of a bitstring of specified length. A
population C of classifiers forms the system, each classifier 
 consisting in a
condition string and an action string (c�,a�). The condition string is of the
same length as messages and holds three different types of elements: ze-
roes, ones or wildcard characters. I will therefore refer to these characters
as trits and the strings involved as tritstrings. When the matching process
is invoked, it uses the condition strings of the classifiers in the classifier
population to test whether a match has occurred by comparing successive
bits in the message with trits from the classifier. A position is matched in
both strings when either the message string holds a one and the condition
string a one or a wildcard character, or the message string holds a zero and
the condition string a zero or a wildcard character. The wildcard character
thereby acts as a don’t care symbol that I will hereafter note #. A classifier
matches a message if all positions of the classifier condition match corre-
sponding positions in the message. For example, the message 0010110111
is matched by the condition 0##011#11# since every specified bit in the con-
dition is the same as that of the message and we “don’t care” about the
other positions. A match set is created from the subset of classifiers that
match the current message before proceeding to the action selection stage.

7.4.2 Action Selection

The action string in a classifier is a bitstring that codes the associated action
identifier of that classifier and has a length depending on the number of
possible actions the agent may execute. Once a match set has been formed,
the system decides among the possible actions which one it will execute. To
this end, a prediction value is stored by each classifier, giving an estimate of
the reward the classifier usually receives when it is matched and its action
is chosen, along with an estimate of the accuracy of this prediction (these
parameters are calculated by the reinforcement learning mechanism which
we will study in the next subsection). For each action a � A, the setA�a� of
classifiers in the match set that advocate this action is formed. A prediction
array p is then formed by calculating a prediction value of each of these
sets. The prediction value of such a set is the average of the predictions of
the classifiers in the set, weighted by their accuracy:

p � fp�a�ga�A , with p�a� �

P
��A�a� 	�
���
�P

��A�a� ��
�
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One of these action sets is selected based on its prediction and named the
current action set A. For example, using deterministic action selection,
the action set with highest average prediction is selected. Another way to
choose the action would be by using a biased random selection mechanism
over the predictions of each set.

7.4.3 Reinforcement Learning Component

The reinforcement learning algorithm used in an XCS is applied to the pre-
diction, error and fitness parameters defined previously. The updates of
these parameters are usually applied in the following order: prediction er-
ror, prediction, fitness, but other orders also work.

Two types of problems are distinguished when calculating parameter
updates, single step problems and multi step problems. Single step prob-
lems are problems where reward depends only on the current state-action
pair and the transition function maps all pairs to the uniform probability
distribution over the state space (i.e. the state of the next step does not de-
pend on the current state and action). A multi step problem is the more
general situation, where the state transition function is not constant and
where the system must also learn it. Both situations are studied in the ex-
perimental chapter.

In a single step problem, the reinforcement is applied to all classifiers
of the current action set, using a reinforcement value of �t � rt. In a multi
step problem, the reinforcement is applied to the previous step’s action set,
using a discounted reinforcement value �t � rt�� � �maxa�A
pt�a��, the t
indicating to which time step the value belongs and pt�a� being the predic-
tion value of a’s action set at time t, as defined in the preceding subsection.
For each classifier 
 to update, the reinforcement rules are:

� 	�
�
�
	� �

� ��
�
�
	� j�� 	�
�j

� ��
�
�
	� ��
� , where � is the relative accuracy of the classifier cal-

culated from its accuracy  in the following way: if ��
� is larger than
a threshold ��, then �
� � �

�� �
������������ , otherwise, �
� � �. The

relative accuracy of 
 is then ��
� � �
��
P

���A
�
��.

In these learning rules, � controls the learning rate, �� is the limit from
which a classifier is not considered accurate anymore and � with � � � � �
is the accuracy value given to a classifier of error ���.

In practice, in XCS, the technique of the “moyenne adaptive modifiée”
(MAM) introduced by Venturini [64] is applied for the first ��� action cycles
of the system, to speed up the initial convergence of the system.
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7.4.4 Genetic Algorithm Component

The XCS system is made of a population of classifiers Ct 
 C that does not
usually hold all 
 � C. Since the action selection mechanism is applied to
this population Ct, it is essential that this set hold relevant classifiers for
all environment states encountered by the system. The genetic algorithm’s
role is to discover which classifier is relevant and must be part of the classi-
fier population and which can be safely omitted from this population. The
basis on which this is accomplished is described in the analysis of the XCS
section.

As was mentioned earlier, the genetic algorithm operates on the clas-
sifier population Ct. At every step, the genetic algorithm is applied to the
population with a probability ���. If it is applied, two individuals are se-
lected in the current action set proportionally to their fitness ��
� as cal-
culated by the reinforcement learning component. These individuals are
then either reproduced with a mutation factor of � at each of their sites or,
with probability �, they are crossed over at one random position along their
condition tritstring or action bitstring. The two new individuals are then
inserted in the population and if this population is larger than its prede-
fined maximum size, two unfit classifiers are deleted from the population.

7.5 An Analysis of the XCS

In this section, I give my mathematical understanding of an XCS classifier
system and show that under certain restrictive assumptions, the XCS actu-
ally implements the Q-Learning algorithm. I will then discuss the full XCS
implementation and the importance of its genetic accuracy based compo-
nent for generalization purposes. But first I start by making a summary of
the notations I will use, some of which were previously defined and used.

7.5.1 Notations

Mathematical notations:

� P�E� is the set of subsets of E

� ��E� is the set of probability distributions over E

� jEj is the number of elements in the set E

Reinforcement learning notations:

� � denotes optimality as in an optimal policy ��

� S is the set of environment states

� A is the set of actions
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� T is the state transition function T 	 S � A �� ��S�, and T �s� a� s��
denotes the probability of the environment reaching state s� when ac-
tion a is selected in state s.

� R is the reward function of the environment R 	 S � A �� R and rt
the actual reward received at a given time t

� � is a policy for choosing actions and �� an optimal policy

� V ��s� is the state value of s for the given policy �

� Q��s� a� is the Q value of state-action pair �s� a� for policy �

� �, � are the discount factor and the learning rate used in a learning
procedure

XCS notations:

� I and O are the input and output sets of the XCS, which I will for now
consider as isomorphic to S and A respectively

� 
 � �c�� a�� is a classifier with condition and action

� C is the set of all possible classifiers, Ct 
 C the population of classi-
fiers available in the system at time t, C� � C the set of specific classi-
fiers in C, that is, classifiers whose condition part have no wildcards

� 	 	 C �� R is the prediction function over the set of classifiers

� � 	 C �� R is the prediction error function over the set of classifiers

� � 	 C �� R is the fitness function over the set of classifiers

� Mt�s� 
 C is the match set for state s at time t

� At�a� 
Mt�s� is the action set for action a at time t

7.5.2 Simplified XCS is Q-Learning

In [15], Dorigo and Bersini present a comparison between the original LCS
of Holland and Goldberg; they show that by restricting the LCS to a subsys-
tem called the very simple classifier system with a modification to the learn-
ing rule, their system functions in a way that is identical to a Q-Learning
algorithm. I will show here that the XCS system can also be considered as
a Q-Learning algorithm given some restrictions.

For the XCS to become a Q-Learning implementation, one restriction is
necessary, although it is a major one, the removal of the genetic algorithm
component of the system. One assumes (enforces) that the population of
classifiers present in the system at every time-step consists in only and all
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the specific classifiers, that is Ct � C��t, so that these classifiers form a ta-
ble similar to that used in tabular Q-Learning. This implies that there is
no genetic algorithm component and only the prediction values of classi-
fiers need to be learned (accuracy is not needed since action sets hold only
one classifier, as we will see). The XCS algorithm then runs in three steps:
acquire the environment state s and form a match set M�s� for this state,
evaluate the prediction value of the action sets inM�s� and select an action,
obtain reward and reinforce the selected action set.

Since the classifier population consists in only the specific classifiers, the
match set will hold jAj classifiers, one for each action in A, and every action
set will hold only one classifier, the classifier whose condition is exactly the
current environment state. The prediction value of these action sets will
thus be the prediction value 	�
� of their only classifier (accuracies sim-
plify away in the weighted sum calculation) and action selection as well as
reinforcement can be considered to operate on the classifiers individually.
Note also that we have an isomorphism between the population of classi-
fiers and the set of state-action pairs: S � A �� C�, so that each classifier
actually represents a state-action pair �s� a� � �c�� a��.

Remembering that in Q-Learning, the Q value of an optimal policy is
estimated by the learning rule:

Q�s� a�
�
	� r � �max

a��A

Q�s�� a���

We find that in XCS, the learning rule for classifier prediction corresponds
to the Q-Learning rule since it is precisely:

	�
�
	� � � rt�� � �max

a��A

pt�a

���

� rt�� � � max
���M�s��


	�
���

� rt�� � � max
���M�s��


	��c�� � a�����

And so, the prediction value of classifiers learned in this form of XCS is the
same as the values found in the table formed by the Q-Learning algorithm,
	��
� � Q��c�� a��. Following the hypotheses necessary for the Q-Learning
convergence theorem, this simplified XCS thus learns an optimal policy as
long as every classifier prediction is updated sufficiently frequently over
time.

7.5.3 Generalization in XCS

As already mentioned for the Q-Learning algorithm, the main problem en-
countered in the simple XCS system is that maintaining a full population
of specific classifiers is impractical for most problems due to the size of
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the S � A space. This is precisely the object addressed by the discovery
component (genetic algorithm) of an accuracy based classifier system. To
achieve a reduction of the size of the space needed to maintain classifier
predictions, general classifiers are allowed in a classifier population. These
general classifiers, holding wildcard symbols in their condition part, can
be said to subsume a family of more specific classifiers. With subsumption
defined by the relation �:

� c � c�
df
� positions in c� are matched by the corresponding positions

in c, or both positions hold wildcards

� 
 � 
�
df
� a� � a�� and c� � c��

Since general classifiers represent a family of classifiers (in the same way as
schemata represent families of individuals in a genetic algorithm), as long
as all classifiers of the family have the same predictive value, the whole
family can be replaced by just one (general) classifier. Regularities in the
environment are thus compressed as the information of a single classifier.

To observe what happens to the action selection mechanism when gen-
eralization is used, it is necessary to see that for a general classifier 
, the
prediction is the average expected prediction of the classifiers it subsumes:

	�
� �
X
��	

	����j�j� where � � f� � Cj
 � �g

�
X
��	

	����j�j� where � � f� � C�j
 � �g

For specific classifiers 
, the relation still holds since � � f
g and one
can easily convince oneself of the second equality by listing the family of
classifiers a general classifier subsumes and writing down their respective
prediction values. Now, the action selection mechanism of the classifier
system operates on action sets A�a� that will contain one or more classi-
fiers, both general and specific, by evaluating the mean prediction value of
classifiers in A�a�, weighted by their accuracy and it is expected that the
action finally chosen is that which would have been chosen in the simple
XCS case. It could seem unnecessary to use the accuracy-based selection,
thereby simplifying action selection, but by observing the following simple
example, the importance of accuracy in generalization becomes clear.

Action Selection in a Sample Classifier without Accuracy

The immediate generalization of action set prediction value from the sim-
ple classifier example would be to take p�a� as the mean of the prediction
values of classifiers in the set A�a�, that is, p�a� �

P
��A�a� 	�
��jA�a�j.

Unfortunately, this will usually not give satisfactory results because the
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Figure 7.3: Generalization of 	 values, a prediction landscape.

regularities in the environment (reward landscape) will most often not be
compatible with the generalization mechanism of the classifier system.

Suppose that the state space is S � f��� ��� ��� ��g and the action space
A � f�� �g. The current state of the environment is detected as ��. If the
current classifier population is made of all possible classifiers, match set
and action sets will be given by:

M���� � f���� ��� ��� ��� ��� ��� �� ��� ���� ��� ��� ��� ��� ��� �� ��g

A��� � f���� ��� ��� ��� ��� ��� �� ��g

A��� � f���� ��� ��� ��� ��� ��� �� ��g

If the prediction landscape is as illustrated on figure 7.3, we can evaluate
the prediction values of both action sets.

p��� �
�

�

	���� �� � 	��� �� � 	��� �� � 	�� ���

�
�

�

	���� �� �

�

�
�	���� �� � 	���� ��� � � � � � �

�

�

p��� �
�

�

	���� �� � 	��� �� � 	��� �� � 	�� ���

�
�

�

	���� �� �

�

�
�	���� �� � 	���� ��� � � � � � �

�

�

And so, even with full knowledge of the predictive values of all classifiers,
the selected action is not the most beneficial one. Clearly, from the predic-
tion values given, the action that should be selected if we were relying on
specific classifiers is the action �, but here, using deterministic action selec-
tion, the selected action will be � because of the high prediction value of
classifier ���� �� that is reflected in the prediction value of classifier ��� ��
and enters the prediction value calculation of action set A���. Therefore,
with generalization comes the need of an accuracy criterion that allows
the action selection mechanism to distinguish between accurate general-
izations and inaccurate generalizations.
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7.5.4 The Role of Accuracy in XCS

As shown in the above example, when a general classifier subsumes a fam-
ily of classifiers that have contradicting prediction values, the action selec-
tion mechanism of the XCS might drift away from the mechanism applied
in Q-Learning (which will intuitively lead to bad performance). The factor
that influences this drift is that general classifiers will obtain various re-
wards in any non-trivial environment. Given that their prediction value is
the expectation of reward, what becomes important here is the variance in
rewards received, intuitively, by how much these rewards differ over the
set of state-action pairs they match.

In the simple classifier system with only specialized classifiers, this vari-
ance will be zero for a single-step environment, where a state-action pair is
always equally rewarded. This variance will remain small with delayed
rewards as long as the discount factor used is small and the environment
sufficiently regular. This remains true when considering general classifiers
whose subsumed family of specialized classifiers has consistent predic-
tions. In essence, there are “good” accurate general classifiers (marked by
small predictive variance) and “bad” inaccurate general classifiers (charac-
terized by a high predictive variance) and if the XCS system is to generalize
efficiently, it has to be able to distinguish between these accurate and inac-
curate classifiers. The role of the prediction error and fitness functions in
the reinforcement learning component of the XCS is to learn this distinc-
tion and provide a criterion to both exclude some general classifiers from
the population and minimize the effects of existing inaccurate classifiers on
action selection. The actual search for accurate classifiers is handled by the
genetic algorithm component which is applied to the classifier population.

Since the learning rule for the � function updates �t�
� with �t���
� �
��j�t � 	t�
�j � �t���
��, ��
� is an estimate of the average difference in
the prediction of 
 and the rewards received when applying 
. � thus has
a similar role to that played by variance in statistics. If the GA was op-
erating on a population of classifiers for which we had full information
about prediction values and prediction errors, and fitness was taken as the
inverse function of prediction error, the classifier population would tend
to a population made of an ever greater proportion of accurate classifiers,
due to the schemata theorem for genetic algorithms. In this more general
situation, these values must simultaneously be learned by exploration in
the environment and so, due to incomplete information, a fitness function
must be estimated from the prediction error by the reinforcement learning
component of the system, allowing an error tolerance to be introduced in
the selection of “good” and “bad” classifiers.

Overall, the XCS system uses two cooperating algorithms to provide
the action-selection mechanism with the best information acquired in the
environment at the time a decision must be made. The RL component at-
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tempts to derive information about the utility of making a particular deci-
sion and the GA selects the classifiers that accurately describe the problem
domain in which this decision process occurs. The most interesting result
remaining to discover is now a convergence result for the joint RL and GA.
It seems that although such a result is difficult to obtain, it is not impos-
sible with the right constraining assumptions. Some typical assumptions
I believe necessary would be based on: population size requirements, rate
of application of the genetic algorithm, number of explorations by the re-
inforcement algorithm before the selection or deletion of a classifier by the
GA. These parameters are all controllable in the classical XCS. There are
also some problems that I have not discussed here that can have a great in-
fluence on the classifier system, such as the relation between environment
states and representation of such states (input function) or the possible re-
liance of the environment state transition function on hidden parameters.
These problems are typical of the current artificial intelligence algorithms
and linked to the functional grounding problem that I introduced in the
theoretical part of this thesis.

7.6 Test Case: The 6-multiplexer Problem

The multiplexer problems have often been used in conjunction with learn-
ing classifier systems to show their adaptation capabilities. These prob-
lems are considered interesting because the function that must be learned
to solve the problem is irregular but does allow generalizations to be made
in its standard representation and this representation is easily used as in-
put to a classifier system. With my implementation of the XCS classifier
system, I have been able to reproduce the results that were presented in
[70] and [30] and I will give a short presentation of these results here. For a
complete presentation, the two preceding documents can be referred to.

7.6.1 Multiplexer Problems

A multiplexer is a logical functionm that maps a tuple of n��n boolean val-
ues to a boolean result. If one considers the input string of boolean values
as an ordered bit string, this functionmmaps signals from the set f�� �gn��

n

to the set f�� �g. It uses the first n bits in the bit string as an address in the
remaining �n bits and returns the value at that address as a result, i.e. if
the value of the first n bits considered as a number is x, the value of bit x
in the second part of the bit string is returned. The figure 7.4 describes this
mechanism.

Since the number of possible addresses depends on the n chosen, there
are multiplexer problems for each n � N, that is, 3-multiplexers, 6-multi-
plexers, 11-multiplexers, etc. Results have been published on the 6, 11 and
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Figure 7.4: Multiplexers, a) general case, b) evaluation of the function.

20 multiplexer problems for the XCS system, but the tuning is usually done
on the 6-multiplexer case.

7.6.2 The 6-multiplexer

A 6-multiplexer has an input string consisting in 2 address bits and four
value bits. The m function maps each of the 64 possible input strings to
a zero or one value. Given that in this representation, each input string
has only 3 significant bits: the 2 address bits and the bit at that address,
the function landscape has regularities that could be learned by a classifier
system. For example, the strings 010010, 011010 or 011110 are all mapped
on 1 because they have the same 01**1* pattern. Since the XCS generalizes
by using conditions that are patterns of this form, it be able to adapt to the
problem by generating classifiers with this type of general conditions.

One can see in table 7.5 that there are 8 (�
) general patterns that sum
up the multiplexer function. Optimally, the classifier system should thus

input result input result
00***0 0 00***1 1
01**0* 0 01**1* 1
10*0** 0 10*1** 1
110*** 0 111*** 1

Figure 7.5: Regularities of the 6-multiplexer function.
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Figure 7.6: 6-multiplexer results over 100 experiments (10k and 30k steps).

explore the space of classifiers until it discovers these 8 general conditions
and then limit its population to the classifiers that map these conditions to
the correct actions. Unfortunately, these general patterns are not the only
ones, since *0*1*1 or 1*00** are other equivalent ways of expressing regu-
larities in the function graph and this will affect an XCS classifier system.

7.6.3 Applying XCS to the 6-multiplexer

In order to learn the 6-multiplexer problem, a reward function must be
provided to the system for its decisions. The immediate choice, that is used
here, is to reward the system with a value when it correctly maps an in-
put to an output and provide no reward for incorrect answers. With this
reward scheme, the classifier must discover classifiers that accurately pre-
dict the reward, and use these classifiers take decisions about the result of
an input. Since in this problem, the regularities of the reward function are
symmetric with respect to the two possible action choices (given an input
that is rewarded when action 1 is chosen implies no reward for the choice
of action 0 in the same situation), the accurate population of classifiers in-
cludes both correct general classifiers and their incorrect counterparts. The
expected optimal population for the XCS will thus include at least 16 gen-
eral classifiers.

Experimenting with the classifier system that I have implemented pro-
vides the learning curves illustrated on figure 7.6. In this illustration, the
curves plotted represent the averaged results of one hundred different ex-
periments. In each experiment, every decision step was alternated with an
exploration step. On exploration, an input is used by the system to test its
answer. Reward is distributed to the classifier for this answer. On a deci-
sion step (exploitation), the result given by the system is used for the plot
data, but no reward is distributed and no reinforcement or discovery pro-
cess takes place in the system. The dashed line plot on the figure represents
the percentage of correct answers returned by the system in the last fifty de-
cision steps. The dotted line represents the overall error in prediction over
the last fifty decision steps and the continuous curve is the number of dif-
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ferent types of classifiers existing in the population (the value is divided by
one thousand for scaling purposes).

The results obtained here are equivalent to those presented in [70, 30].
One observes that the predictions of the system become almost perfect af-
ter 2000 exploration cycles (4000 steps), the error prediction simultaneously
decreases, with a slight delay. The system is initialized without any classi-
fiers at first and one sees that while the population has not reached its max-
imum number of classifiers (which happens around step 1200), the new
classifiers that were generated by the genetic algorithm to fill in the popu-
lation are very diverse. Maximal diversity is reached around step 1900 with
about 180 different types of classifiers. This variety then decreases until it
reaches the number of 40-60 different types in the process of elimination of
inaccurate classifiers.

7.7 Conclusions

In order to experiment the theoretical ideas that I presented in the first part
of this thesis, I have chosen the XCS algorithm. With this chapter, I have in-
troduced the basic theory of this type of algorithm, including reinforcement
learning and genetic algorithms. Based on this theory, I have explained the
practical considerations necessary to implement the XCS system according
to Wilson’s design. In the next step, I have taken a personal stance towards
XCS in order to give a better understanding the XCS adaptation princi-
ples. This understanding will then help in the next chapter when we come
to studying the structural and dynamic properties of such systems. Three
essential points are made here. Firstly, since the simple version of XCS
is equivalent to Q-Learning, we can reasonably expect some of the good
convergence properties of Q-Learning to be inherited by XCS systems. Sec-
ondly, the advantage of an XCS system with respect to Q-Learning is that it
can generalise. A property that is equivalent to the ability of compressing
information and allows an adaptive algorithm to acquire information for
overall problem regularities. Thirdly, the accuracy parameter of the XCS
system gives it the ability to distinguish appropriate/relevent generalisa-
tions of problem spaces from the inadequate/irrelevent ones.

A final experiment is led to reproduce the results of Wilson and others
in the case of multiplexers, so as to show that the system I have imple-
mented is identical to the previously implemented systems, and that re-
sults obtained here can be compared with other results obtained on XCS
classifier systems.
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Chapter 8

Experimentation

8.1 Multiplexer Representation Test

In the preceding chapter, I have shown how the XCS system learns the 6-
multiplexer problem. I want to show here that this learning ability is a
property that holds for this problem because of the regularities that are
compatible with the XCS system’s representation and generalization func-
tionality (that I associate with information compression). In the general
case of a problem that is not well understood and that must be solved, ap-
plying a particular algorithm will help to understand the functionality and
limits of the algorithm, as well as the properties of the problem. I intend
to show by a trivial example that the representation of a problem plays a
fundamental role for adaptive behaviors and will relate this to the question
of information compression.

8.1.1 The Multiplexer Description

I have described previously why the multiplexer is used as a test case for
the XCS system. The multiplexer function is a boolean function, which is
naturally suited for learning by the use of classifiers; its standard descrip-
tion is based on the use of an address set indexing a value set that allows
generalization to occur on individual bits as patterns of zeroes and ones
with wildcards. The term “description” that I use here should be under-
stood as the symbolic representation of input signals. The internal symbols
used by classifier systems as messages are strings of bits and the natural
symbol associated with an input signal is the bit string of the signal itself,
but other problems do not necessarily have such a “natural” mapping of
inputs onto internal symbols.

For the multiplexer problems, the natural description is based on the
use that is made of the function by humans, but actually, the description
depends on perception of the problem by the system. And the actual prob-
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lem to solve is of distinguishing inputs into two categories, those that are
mapped to a one and those that are mapped to a zero. The regularities of
the function are simply regularities of the description of this function. In
the multiplexer case, we use a description that is known to be expressive
simply because it is the one we use as humans to understand the problem
and associate an additional meaning to the order of the bits and their sig-
nification. This proves to be a good description for a classifier system to
learn.

In the general case of a misunderstood problem, there is no guaran-
tee that the classifier system would obtain descriptions that are compatible
with its internal adaptation mechanisms. Imagine, for example, that the
multiplexer problem is described as a random permutation of the input
signals and that the XCS must learn this new mapping. There will be no
reason for it to be able to make good generalizations if these permutations
do not offer some degree of compatible regularities (i.e. regularities over
single bits in the description).

8.1.2 Regularities in the Description Space

By looking more attentively at the XCS classifier system applied to this
problem, there being only two levels of reward implied by the input mes-
sages, the information content of an input message is only one bit of infor-
mation, distinguishing the reward options available to the system when it
chooses an action. The role of the algorithm is thus to extract this informa-
tion and use it to make a decision about the amount of reward it has been
programmed to choose. To this aim, the generalization mechanism of the
XCS system finds a minimum of sixteen general classifiers that resume this
decision policy, the classifiers shown on table 8.1. For each general condi-
tion, the classifiers that advocate actions zero or one are accurate. Obvi-
ously, this representation of the problem used is suboptimal, since the only
information content of an input string is one bit, but it still is very close to
an optimal representation.

description action description action
00***0 0 or 1 00***1 0 or 1
01**0* 0 or 1 01**1* 0 or 1
10*0** 0 or 1 10*1** 0 or 1
110*** 0 or 1 111*** 0 or 1

Figure 8.1: Complete family of 16 accurate maximally general classifiers.

To illustrate the generalization capability of the XCS system, I have used
various permutations of the natural representation of the problem and ap-
plied the classifier system to these new problems. In order to give a quanti-
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tative measure of the distance between the original description and the per-
mutation over this basic description, five types of permutations have been
used. The permutations are of order 2 to 6, meaning that in permutations
of order n, n interactions between bits of the original description can be
introduced (interactions in a sense that can be related to the epistatic inter-
actions as studied by Kaufmann in [28]). The permutations are constructed
in the following way: n bits of the original representation are swapped,
then a random permutation over the n-dimensional space of the selected
bits is operated. As a result, the larger the n, the further the descriptions
provided to the classifier system are from the original. When n � �, any
function of f�� �g� �� f�� �g can be reached. Additionally, the permutation
leading to an optimal representation for the classifier system has been used
as a reference for the learning curves of the system. This permutation can
be obtained by mapping subspaces of the input space onto a permuted de-
scription as described on table 8.2. The inputs that match input patterns on

input description input description
00***0 00***0 00***1 00***1
01**0* 01***0 01**1* 01***1
10*0** 10***0 10*1** 10***1
110*** 11***0 111*** 11***1

Figure 8.2: An optimal permutation of the input signal.

the table are mapped to the description patterns in the following column
of the table. The unspecified bits can be mapped to any other unspecified
bit position. For this permutation, all the information content of the input
that must be used to obtain a reward or not is contained in the last bit of
the description strings, so that the classifier system can build a complete
and accurate family of classifiers with only four general classifiers in its
population, those with conditions *****0 or *****1 and actions 0 or 1. Other
descriptions are optimal in this sense, but due to the genetic search algo-
rithm used to find new classifiers, classifiers with longer defining lengths
are slightly suboptimal for crossover operations (defining length is the dis-
tance between two specified positions in a pattern, for example the pattern
01*00* has a defining length of 4 and the pattern *0100* a defining length of
3).

For the experiments, one must be aware of the fact that the space of all
possible inputs to a function over f�� �g� has �� � �� different elements.
Learning to map all the inputs correctly for a reward function with just
two levels requires twice that number of specific classifiers or ���, when no
generalization is used (cf. tabular Q-Learning). For this problem, there are
�� � � � ���� different classifiers (including the general classifiers) avail-

77



able to the system and, depending on the regularities in the function to
be learned, the minimal amount of classifiers needed to accurately learn
the function range between ��� in the worst case and � in the best case.
Therefore, whichever function the XCS must learn, if it is allowed to have
a population of more than ��� classifiers, it could learn the function by us-
ing only specific classifiers. On the other hand, if less that ��� classifiers
are allowed in its population, the function must have regularities that are
compatible with the generalization mechanism of the classifiers system, if
the system is to learn it correctly.

8.1.3 Result Plots

In the figures 8.3 to 8.5, I illustrate the learning curves obtained for each
order of permutation, when the classifier population size allowed in the
system is ���. The various curves show that with more interactions in be-
tween the bits of the problem description, the learning ability of the clas-
sifier system is reduced. In the optimal case where only one bit sums up
all the information about the function, the classifier system quickly reaches
���% performance. The population diversity then slowly reduces down
to 25 individuals as the unnecessary classifiers are eliminated by the ge-
netic algorithm. The normal case is then only slightly better than the learn-
ing of functions with order two permutations from the normal description
and we can see that each increased permutation level introduces a degra-
dation of the learning ability of the system. Although this degradation is
apparent, the system still exhibits a good learning ability for these prob-
lems and the prediction curves are still on a slight increase at the ��� ���th
step. On the population curves, one sees that in each case, the classifier
system first generates a wide variety of classifiers, until the ��� individ-
uals limit is reached at ���� steps. These individuals are then evaluated
and after the initial evaluation phase, the inaccurate classifiers start to be
eliminated from the population and the overall population diversity grad-
ually reduces to a minimal amount of distinct types of classifiers. Except
for the optimal description case, the increase in population continues until
about the ����th step, where it reaches its peak (the overall population is
now 400). In the optimal case, the elimination process is intense enough to
compensate the increase in population very early in the experiment.

In the figures 8.6 to 8.8, I illustrate the learning curves obtained for each
order of permutation, when the classifier population size allowed in the
system is ���. The number of steps considered here are ��� ���. The op-
timal problem description produces a function that can still be learned
perfectly by the system after about ���� steps, allowing the population to
be compressed to about �� individual types. In the other experiment, one
can see that having only ��� individuals in the population is problematic,
although learning still occurs.
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Figure 8.3: Prediction results of permutation experiments (pop. 400).
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Figure 8.4: Error results of permutation experiments (pop. 400).
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Figure 8.5: Population results of permutation experiments (pop. 400).
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Figure 8.6: Prediction results of permutation experiments (pop. 100).
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Figure 8.7: Error results of permutation experiments (pop. 100).
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Figure 8.8: Population results of permutation experiments (pop. 100).
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To explain this phenomenon, two reasons can be postulated. First of
all, the classifier system cannot rely on a complete population of specific
classifiers, this is a problem that will always occur in more complex ex-
periments and must be coped with. The second reason is that although
generalization would be possible, the system would need more working
space to hold various classifiers as a genetic resource pool in addition to
the accurate classifiers useful for action selection. We see for example that
the number of different types of classifiers initially present in the system is
around ��, that is, the genetic algorithm produces an average number of
�� different classifiers in a population of ��� before the accuracy of these
classifiers starts becoming differentiated. In the different permutation ex-
periments, this variety is barely sufficient to differentiate the accuracies of
the classifiers in order for the system to start eliminating classifiers. With
the normal multiplexer problem and order two permutation problems, this
compression of the population can engage and will eventually produce sat-
isfactory results for learning the function, but with permutations of a higher
order, the population compression stabilizes too fast for satisfactory learn-
ing of the function. Still it is remarkable that even in the case of completely
random functions (order 6 permutations), the system is capable of making
correct decisions ��% of the time on average.

8.1.4 Information Content

An optimal permutation that leaves the input information that is relevant
to the classifier system in the rightmost bit is shown in table 8.2. Each one
of the value bits that is addressed by a particular configuration of the first
two bits is simply swapped with the rightmost bit (whatever its value). In
this situation, the XCS can learn only the position of this bit and generalize
away all the other bits, a situation for which I have plotted the learning
curves on figure 8.10. One notices here that the number of steps until the
system correctly predicts the choices that must be made is much shorter
since the number of general classifiers that accurately describe the problem
is reduced to a minimum of four. From the step 1500 onwards, the classi-
fier system always makes the correct decision to maximize its reward and
prediction error vanishes completely from step 2000 on. The diversity of
classifiers in the population also reduces and stabilizes to 20 different types
of classifiers after 15 thousand steps.

The objection that might be raised by this example is that by finding an
optimal description of the classifier inputs, one is in fact solving the prob-
lem for the system and that there is no point in further experimentation.
This is precisely the point I am making, the compression of information in
the inputs to provide the system with a description that is compatible with
the functionality of the system is the missing feature of this system and this
feature is also missing from most other adaptation algorithms that are used

81



2000 4000 6000 8000 10000

0.2

0.4

0.6

0.8

1

% correct results

average error

population size

5000 10000 15000 20000 25000 30000

0.2

0.4

0.6

0.8

1

% correct results

average error

population size

Figure 8.9: Results of the normal multiplexer: 10k and 30k steps.
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Figure 8.10: Results of the optimal description problem: 10k and 30k steps.

in AI. The regularities of the environment have to be written in the terms
of an adaptation algorithm, here of the reward levels. In this problem, the
environment that is the space of input strings in standard form has regu-
larities that are not entirely detectable in terms of the classifier system. But
to the system, there are only two important situations in the environment:
those that provide a reward and those that don’t. Usually, the complexity
of an environment is much larger that what can be represented in a symbol
system, but the situations that are important to the system can be expressed
much more simply in the terms of that system. An algorithm that must deal
with such environments should be able to extract this information itself in
order to learn intelligent behaviors.

8.1.5 Experiment Parameters

The preceding results have been produced by generating a number of dif-
ferent test runs from random XCS system initializations. In the simple ex-
periments, the standard description of the multiplexer problem and the
optimal description of the multiplexer problem, 100 test runs were used
to generate the averages plotted on the curves for correct results, error in
prediction and populations. In the permutation experiments, 100 random
permutations were generated for each order of permutation and in each
case 20 runs of the XCS system were used to average the data, the overall
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averages are thus calculated from 2000 test runs.
The number of classifiers allowed in the system were respectively 400

and 50 for the two different sets of experiments. With four hundred indi-
viduals, the classifier system has sufficient resources to build a complete
representation of the problem space with specific classifiers, although this
will not usually happen since the classifier system is driven towards gen-
eralization by its internal mechanisms. With a population of 50 classifiers,
the resources of the system are not sufficient to cover all the problem space
and the system must be able to generalize in order to solve the problem.

The system parameters are the same as those given by Wilson in [70],
with his more recent clarifications about implementation issues introduced:
(available on the Internet at http://world.std.com/�sw/imp-notes.html)

� rewards distributed for correct or incorrect answers of the system are
1000 or 0 respectively

� the reinforcement parameters are: � � ���, � � ����, �� � ��, � � ���,
� � ���

� the genetic algorithm based parameters are: � � ��, � � ����, 
 � ���,
� � ���, P� � ����

� initialization parameter for new classifiers were: strength � ��, error
� �, fitness � ����, experience � �, covering experience � � and
match set size estimation � �

8.2 EMud Dynamic Test

Even though an XCS classifier system is seriously challenged when hav-
ing to learn the dynamics in an environment, a simple experiment can be
made, that shows the functional ability of the classifier system to adapt to
an environment where the causal role of actions chosen is important. It
was shown in the preceding experiment that the generalization capabilities
of the XCS system depend largely on the coding of the information per-
ceived, but that overall, the system is able to generalize in a satisfactory
manner (at least when the information perceived is not too large). In this
experiment, I want to show that assuming the perceptions of the environ-
ment can be generalized over, the system’s ability to adapt to the dynamics
of an environment is not influenced very much by the description of this
environment.

8.2.1 The Switch Test

The experiment that I have used to show this is of learning a simple switch
in the environment. Let me use the following informal terminology for the
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description of the problem, the system used in the experiment consists in:

� an agent: the (virtual) rat

� an agent: the cheesemaker

� a set of three connected rooms

� pieces of cheese

� rat “traps”

In this system, the rat is the XCS agent that must learn to find and eat pieces
of cheese. The three rooms are aligned with a western room, a central room
and an eastern room each connected to its neighbor(s) by one exit. The
cheese maker is an automatic agent that starts in the western room which
is then empty. If the rat appears, he drops a piece of cheese and a “trap”,
moves to the east, drops a “trap” and moves to the east again, waiting in
this eastern room until the rat appears. If the rat enters the room, he drops a
piece of cheese and moves to the westernmost room, collecting the “traps”
on his way. The cycle then starts over. In the experiment, the “traps” have
no role other that to act as markers in the environment.

The rat agent must find a decision policy among four actions: moving
east, moving west, eating cheese, being inactive for a turn. The sensory in-
formation he is provided with to make decisions consist in a string of five
true/false statements: is there an exit to the west, is there an exit to the
east, is there a trap here, is there a cheese maker here and is there cheese
here. His goal is to accurately and generally associate each of the percep-
tion signals to one action. The perceptions thus form a space of �� different
possibilities and the possible classifiers in the system number ���. This
problem, although simple, requires the system to break out of the typical
looping behavior it is prone to enter when in a dynamic environment, in-
deed, a classifier system has the tendency to enter two step oscillations in
such environments, since usually, one classifier starts having maximal pre-
diction value and accuracy in one room, and then when moving to the next,
another classifier will take over to bring it back to the first room, creating a
regular two step pattern.

Here, the system must adapt internally to an optimal chain of more that
two classifier choices, since the optimal behavior is to eat cheese if some
is available, move west when no trap is present and a west exit exists or
move east when an east exit is present and a trap is present. This forces a
set of a minimum of three general classifiers to be found and maintained in
the system. An XCS classifier system has no memory (in the sense of inter-
nal memory states), the way this problem must be learned by the system
is through the multi-step reinforcement procedure of the algorithm. This
multi-step reinforcement algorithm works by rewarding the classifiers that
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Figure 8.11: Results of the “rat” experiment (averages over 200 cases).

advocated an action on a preceding step with the immediate reward of that
step and the discounted predictive value of the current situation. Here, re-
ward was given for eating food and no other action was rewarded. The
predictive value of moving or doing nothing is thus only derived from the
probability of finding cheese and eating it on the next step, which leads to
high levels of error value for the movement or inaction classifiers.

8.2.2 Result Plots

The results plotted here are those obtained by the situation described above,
with the same parameter values as in the multiplexer problems. Since the
goal of this experiment is not to find a perfect (but maybe unstable solu-
tion), no parameter adjustment was used, even though one can obtain al-
most perfect results by so doing. The result curves are plotted on figure
8.11, with the number of action cycles on the horizontal axis. Curve (1) is
the normalized number of distinct types of classifiers in the XCS system,
where a maximum population of ��� was allowed (�� means ���� �� � ���
classifier types). Curves (2) to (5) are then respectively the number of move-
ments executed, the number of pieces of cheese eaten, the failed attempts to
act and the inactive steps of the rat over the last hundred action cycles. In
order to initialize the system with an exploration phase, a function is used
to probabilistically allocate exploration and exploitation for each step. The
function used has decreasing values between zero and one in the first two
thousand steps and then stabilizes so that an average of one action cycle in
twenty is an exploration cycle. In order to satisfy these criteria, the (some-
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Figure 8.12: Results of the “rat” permutation experiments.

what arbitrary) function I have used is:

f�x�
df
�

�
� x
��� �


���

�� if � � x � ����
��� otherwise

As can be seen on the graph 8.11, the population diversity in classifier types
exhibits a similar behavior as in the multiplexer experiments, sharply rising
at first and then reducing as accurate general classifiers are progressively
found for the problem. This population stabilizes at around �� distinct
varieties of classifiers which is quite a large amount, given the maximum
of ��� possibilities and the fact that only � should suffice to sum up the
solution to the problem. The curves numbered (3) to (5) then represent the
total actions of each type that the system uses to solve the problem (move,
eat, do nothing). Since each action is equally likely to occur at the beginning
of the experiment, there are about double the amount of moves as eat or
“noop” actions. The initial differences reside in the fact that choosing to be
inactive never fails, whereas choosing to eat will fail every time there is no
food in the current locus. The last curve (4) is the number of failed attempts
to do something, such as moving east when there is no east exit or eating
when there is no food. Curves (2) to (5) sum up to � at each stage.

As illustrated, the system is able to find an equilibrium between the
number of moves at each stage and the number of pieces of cheese eaten,
the fact that the moves stabilize to about double the amount of pieces of
cheese eaten indicate that the algorithm never oscillates between two neigh-
bor locations, moving to the extremities of the environment at each passage.
The failed attempts can then be accounted for by the fact that the agent then
pushes on, trying to move further until the failed attempts (there is no east
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exit to move through in the eastern room) bring the predictive value of
moving in that direction lower than that of moving in the other direction.
Overall, this behavior is a good attempt at modeling the switching function
of the problem, without the expressive ability to have a better approxima-
tion of the problem solution. With some changes in the parameters of the
algorithm, it should be possible to minimize the failed attempts phase of
this solution, but I have not investigated the matter in detail. The point
that I want to make is that we can see here the way in which the classifier
system attempts to express the dynamics of the environment within its own
limited expressive capability.

8.2.3 Information in the Problem Dynamics

In the multiplexer experiments, the full information about the problem
could be stored in terms of stable classifier predictions, with accuracy indi-
cating whether a classifier was a good description of an environment reg-
ularity or not. Here, the information that must be acquired by the system
is not static and each classifier does not have a definitive predictive value.
Instead, predictive values will change over time for some classifiers, de-
pending on the current situation of the agent: the full information for the
problem resides in multiple step evaluations. For an XCS to capture this,
it must still store the information in the classifiers, but most of this infor-
mation is now held by the prediction, error and accuracy values of these
classifiers, since the predictions now have a continuous range of possible
values that dynamically vary from situation to situation. The characteriza-
tion of the system’s functionality now depends much less on its ability to
generalize over the input perceptions of the system, than on its ability to
express the dynamics of the problem in the predictive values of the classi-
fiers.

To highlight this, I have reproduced the same experiment, but with
other perceptual descriptions of the environment. As in the multiplexer
problems, I have coded the perceptual inputs from the environment by us-
ing random permutations of the input space. When this is done, the XCS
system must generalize its representation of the world in terms of classi-
fiers, but without the same regularities in the inputs. The data for these ex-
periments (averaged over ��� sample random permutations) show that al-
though the diversity of classifiers in the population is affected (it increases),
the solution to the problem that is found by the algorithm gives the same
results. The global results are shown on figure 8.12, while the compara-
tive results are shown on figures 8.13 and 8.14. Clearly, the perception of
the environment affects the classifier system in its operation, but this effect
is limited to the representational ability of the system and not the way in
which it can learn the dynamics of the environment.
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Figure 8.13: Comparative results, moves and eating.
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Figure 8.14: Comparative results, population, failed actions and “noops”.
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8.3 Discussion

The two experiments described in this chapter show that information com-
pression (in the sense of generalization for a classifier system) is an essential
feature of an agent algorithm that must learn in rich environments. Every
algorithm developed in the field of AI for such agents is capable of some
form of generalization, be it implicit or explicit. What differs from system
to system is the internal structure and functions in which this information
compression is expressed. It is this language of representation that charac-
terizes an algorithm. As we have seen in the preceding experiments, there
is a range of problems that can naturally be addressed by a classifier sys-
tem, and others that simply are not adapted to such systems. This expres-
sivity factor is fundamental when choosing an algorithm to solve a problem
and is already intuitively understood by most scientists, but has not been
formalized as I find necessary: when attempting to solve real world prob-
lems, a connectionist approach is often chosen for its “continuity” prop-
erties and when a modern expert system is implemented a symbolic ap-
proach is preferred, but no precise characterization of the relevant proper-
ties of each system has been attempted. Since every problem has a distinct
type of regularities that must be integrated by agents programmed to solve
them, I would like to propose that it is now time for AI researchers to focus
on a classification of algorithms, based on their generalization capabilities
and internal dynamics.
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Chapter 9

Conclusion

The work presented in this thesis originates in a global effort to under-
stand and implement multi-agent systems in the context of open computer
networks as a solution for distributed process optimization and manage-
ment. In the current work, the element of this objective that is addressed
is the modeling of a virtual environment that can be mapped over a net-
work and allows agents to be embodied in the network. It is in the course
of this realization that philosophical questions about the nature of agents
and their relation to an environment were approached. The ensuing study
of the symbol grounding problem has then served as a general context for
the overall work. The results that can be drawn from the thesis are thus
twofold: on the practical side with the realization of an environment model
for distributed agent systems and on the conceptual side with an attempt
at formulating an operational theory of meaning.

9.1 Practical Aspects

Using a computer game metaphor, the realization of a general environment
model was designed and implemented. In this model, agents are situated
in places of a virtual physical space that forms a virtual topology. The
nodes of the topology may contain both active and passive elements corre-
sponding to processes and data. Virtual physical laws govern the evolution
of the environment, as agents move or in act on features of the environment
structure.

9.1.1 Design

The environment model is designed as a collection of interconnected worlds
in which agents act in the pursuit of their individual tasks. With the lo-
cus/exit notion, network topologies can be implemented with loci as com-
puter nodes and exits as the network connections linking computers. In
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this artificial physical space, elements can be situated to represent data ob-
jects or processes. The agents in this type of environment are elements
imbued with control algorithms that allow them to operate in the environ-
ment. Perception channels associated to agents let them detect the local
environment features and sense changes in the environment.

Taking inspiration from games, the notion of human actors in the envi-
ronment is also included in the model by allowing humans to take control
of agents in the environment via remote connections. With this feature,
human-computer interaction can also be studied in view of future work on
human-agent interfacing.

In the future, taking advantage of the available features of the model, a
further step that needs to be taken into account is the observation methods
available for the study of dynamics in such an environment. In this direc-
tion, observation tools and a formalization of the observer situation should
be added. Typically, degrees of visibility of elements in the environment
were considered an important future extension in the preliminary phase of
the project. This concept would allow observation of systems with minimal
perturbation. In the prototype application, this had been implemented as
two different skills, first, the possibility for an human to connect to a preex-
istent agent by a “snoop” command. In effect, snooping allowed a person
to perceive the world from the perspective of the agent (entering the body
of the agent and experiencing the same perceptions), but without allowing
him to act. The second characteristic that had been implemented to that
effect was that of allowing elements to be invisible to others. In the current
model, this ability has been partially replaced by the notion of perception
channels, but has not yet been implemented.

Another important missing feature is that of grouping or splitting ele-
ments into subcomponents. Initially, this was not considered fundamental,
but with the work of my collegue P. Lerena on Bio-machines in the context
of the AXE project [35] this has become an important notion. The study he
is leading with Bio-machines is focussed on the evolution of populations
of agents that are allowed to reproduce both sexually and asexually and
combine into multicellular entities. With this last possibility, the combina-
tion notion becomes essential in EMuds if he is to use the environments for
future experimentation.

9.1.2 Implementation

The implementation of the previous model takes the form of the EMud
application, which is a simulation of the model on a single computer. In
EMuds, the whole world in which agents may evolve is built by writing
definition files for the environment state and population of elements. The
dynamics of the environment are then simulated as if the environment was
distributed over a network of computers. Human actors can also connect
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to the application with the telnet utility, as on a Mud, and interact with
the agents evolving in the environment. Through the definition of skills,
the virtual physical laws of the environment can be set up and creation or
destruction of objects in the environment regulated. Some sample environ-
ments in which multiple agents coexist have been written and the current
demonstration of the EMud runs on one of the computers at the Fribourg
University, allowing anyone to connect and explore the current demonstra-
tion world.

In future work, the features of the model that must be introduced in the
application are the generalized perception channels concept (only one per-
ception channel now exists for all agents), interlinking of zones, many more
skills and dynamic environment generation. Other aspects from which the
application would benefit if they were implemented are an inline control al-
gorithm scripting language, a character generation scheme (a gaming and
agent specification feature), and a graphical interface for environment cre-
ation. If the model then proves to be relevant, a distributed implementation
should be written.

9.2 Theoretical Aspects

The writing of this Ph.D. has brought me to realize that unlike many other
scientific disciplines, artificial intelligence is faced with difficulties even in
defining the problems it has to solve. Much work in the field is devoted to
finding better algorithms for specific problems that are either invented for
a particular algorithm or type of algorithm, or found in a real world envi-
ronment. The reasons for this situation are multiple, but two reasons that
stand out are, on the one hand, related to philosophical problems about the
nature of intelligence and of the mind, on the other hand, with the scien-
tific limits of understanding questions about complexity, information and
algorithm dynamics.

9.2.1 Philosophical Problems

I begin this thesis with a short discussion about the philosophical perspec-
tive on artificial intelligence and introduce the symbol grounding problem,
which is considered, at least by philosophers, to be the main obstacle to
machine intelligence. In discussing this problem, I show that if intelligence
is an emergent property of the functioning brain, one can reduce the sym-
bol grounding problem to a problem of discovering equivalent functional
properties in computer algorithms, which is an implicit assumption most
AI researchers make.

Reducing the problem in this sense brings me to consider the concepts
of meaning and understanding in terms of the causal role of components
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(symbols) in an algorithm and, respectively, compression of information
within the description language that constitutes this algorithm. Although
this view can be further discussed from a philosophical point of view, it has
the advantage (when used as a working hypothesis) of giving a scientific
base on which a theory can be built.

9.2.2 The Information Problem

Unfortunately, even reducing the philosophical question in such a way
does not produce an immediate solution to the problems of artificial in-
telligence. Our knowledge about the nature of information is very limited.
What is currently known is a good definition of an algorithm and from
this definition, a measure of algorithmic information can be created. Even
if this notion of algorithmic information allows the demonstration of very
interesting mathematical results (typically about randomness), it has prac-
tical limitations related to the fact that it is built as a theoretical universal
measure that attempts to capture a unique information content value in a
description. I do not believe this is possible because the information con-
tent of a description must relate to an observer of this description. With
algorithmic information, this dependence on an observer is evacuated by
accepting that information is defined up to a finite constant value that de-
pends on the language used for calculating the information content of a
description, which is theoretically satisfactory. My objection is that arti-
ficial intelligence is not only a theoretical problem, but also essentially a
practical problem, that is, finding implementations of algorithms that ex-
hibit high level autonomous behaviors. Here, the agent that must extract
the information from the environment is an observer and if, in his terms,
the information content of what is perceived differs by a “finite constan-
t” value from what another agent can extract from the environment, this
might make a great difference.

9.2.3 Dealing with these Questions

I suggest two courses of action for future research in artificial intelligence,
based on the preceding observations. The first method I feel would greatly
improve research in the field is a unification of the many results that have
already been published in the discipline. To do this, a categorization of the
properties of all the algorithms that have been studied should be attempted
by first designing a set of problems that are considered important on the
path to machine intelligence. Based on this set of problems, some bench-
marking experiments can be devised to evaluate the functional properties
of each type of algorithm, allowing comparisons to be made between meth-
ods. Most potential test experiments have in fact already been invented
since every school of AI has used some method of evaluating the results
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of their algorithms. The experimental part of the thesis provides an idea
of how this classification may be initiated and gives a basic environment
model in which benchmarking can be done for a wide variety of problems.

A theoretical approach to the information problem is to study the “prac-
tical” properties of Turing machines, since even the so-called universal Tur-
ing machines differ greatly in practice. The difficulties underlying this
approach are twofold. First, the set of Turing machines is infinite and it
might not be possible to give a categorization of these machines into gen-
eral classes of machines, with some classes relevant to the problems found
in AI and others not. Second, the mathematical tools available for this in-
vestigation are not well suited for distinguishing practical cases and theo-
retical cases. One attempt I put forward is by applying non-standard analy-
sis to the theory of Turing machines. In this mathematical theory, the term
standard allows a distinction to be made between standard objects (those
that can be observed in practice) and non-standard objects (the theoreti-
cal objects). This permits a distinction to be made between standard and
non-standard Turing machines. It remains to be seen whether fundamental
properties of these two classes of Turing machines can be exhibited with
this theory.
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