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Angular Gaussian and Cauchy estimation
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Abstract

This paper proposes a unified treatment of maximum likelihood estimates of angular
Gaussian and multivariate Cauchy distributions in both the real and the complex case. The
complex case is relevant in shape analysis. We describe in full generality the set of maxima of
the corresponding log-likelihood functions with respect to an arbitrary probability measure.
Our tools are the convexity of log-likelihood functions and their behaviour at infinity.
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1. Introduction

Real angular Gaussian distributions are studied in directional analysis (cf.
[11,16,15, section 3.4.7, section 3.6]), while real multivariate Cauchy distributions
can be viewed as z-distributions with one degree of freedom (see e.g. [8]). In fact, as
observed by Knight and Meyer [10], these two apparently unrelated statistical
models are essentially identical. On the other hand, complex angular Gaussian
distributions are used in shape analysis (see e.g. [7] or [13]); they provide an
interesting alternative to the Bingham distribution since their densities do not
contain involved parameter-dependent normalization (see [6] or [2]). They relate, in a

*Corresponding author.
E-mail addresses: claude.auderset@unifr.ch (C. Auderset), christian.mazza@math.unige.ch
(C. Mazza), ernst.ruh@unifr.ch (E.A. Ruh).
'Supported by Swiss National Science Foundation Grant 20-05811.99 and 20-67619.02

0047-259X
doi:10.1016/j.jmva.2004.01.007



C. Auderset et al. | Journal of Multivariate Analysis 93 (2005) 180-197

similar way as in the real case, to complex multivariate Cauchy distributions, which
can be viewed as ¢-distributions with two degrees of freedom.

Existence and uniquess of angular Gaussian and Cauchy maximum likelihood
estimates (MLE’s) have been intensively studied, at least in the real case. Tyler [15]
has shown that the g-variate angular Gaussian MLE is almost surely well-defined for
an 1.1.d. random sample of size n>¢ + 1. Kent and Tyler [8] and Kent et al. [9] study
MLE’s of the more general f-distributions. Arslan and Kent (1998) [1] show that the
maxima of the g-variate Cauchy likelihood function of a sample of size g+ 1 in
general position form a manifold of dimension ¢. Corresponding results for the
complex case appear not to have been published yet, notwithstanding their
importance in shape analysis (see e.g. [12,13]).

We give a necessary and sufficient condition for existence and uniquess of angular
Gaussian and Cauchy MLE’s in both the real and complex case. More precisely, our
main result (Theorem 1, Section 3) describes in full generality the set of maxima of
the corresponding log-likelihood function for an arbitrary probability distribution,
in particular for the empirical distribution of a sample.

Before presenting it, we recall in Section 2 how these various models can be unified
by reducing them to normal laws. Section 4 is on the convexity of log-likelihood
functions and Section 6 on their behaviour at infinity. We present the angular
Gaussian maximum likelihood equation in Section 5 and prove our main result in
Sections 7 and 8. Appendix A is for readers interested in groups and differential
geometry and Appendix B describes projective subspaces of plane shapes.

2. Reduction of angular Gaussian and Cauchy models to normal laws

Let X = (X, ...,XqH)/ be a random vector of central normal law .47(0,0). In
order to treat the real and the complex case in parallel, let us assume that X e F9+!
where F = R or C. Up to a constant factor, the density of X is exp(—x*0"'x/2),
where x* denotes the adjoint of x, i.e. the transpose x’ of x in the real case, and the
conjugate of X’ in the complex case. The covariance matrix 0 of X is self-adjoint, i.e.
symmetric when F =R, and Hermitian when F = C. The complex normal
distribution .47(0,0) in CY"' can be viewed as the usual normal distribution

A7(0,0g) in R*“D with the real covariance matrix 0 = (9(‘)2 ’0(?2> of order 2(g + 1),

where 6 = 0| + i, with real matrices 6, and 6, of order ¢ + 1.

The angular Gaussian model is obtained from the normal vector X by retaining
only its axis (or unoriented direction) [X] = {AX|AeF} and forgetting anything else.
The law of [X] is called the (real or complex) g-variate angular Gaussian distribution of
parameter 0. We denote it by %y.

The sample space of the angular Gaussian model is the set of axes in F/*!. It is, in
fact, the projective space FP? = {[x]|xeF4*! x#0} of dimension ¢. A data point in
FP? can also be viewed as a pair of opposite unit vectors +xeR?"! in the real case,
and a one-dimensional family ¢’?xe C?*! (p € R) of unit vectors in the complex case.
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The complex case has gained much interest after an important discovery by Kendall

[5]: the manifold Zg+2 of similarity shapes of configurations of ¢ 4+ 2 non-identical
points in the plane can be identified with the complex projective space CP?. For more
information concerning shape analysis and the relevance of the complex angular
Gaussian distribution, see e.g. [7,13].

As [AX] = [X] for AeF, 2#0, the covariance matrix 0 of the central normal vector
X is determined up to a positive constant only. We remove this indeterminacy by
requiring that det § = 1. So, we parametrize the angular Gaussian distributions %y
by the space @g of positive definite self-adjoint matrices of order ¢+ 1 and

determinant 1. In the special case of the unit matrix 0 = I e@g, we get the uniform

distribution %; on FPY.
A computation shows that the density of the unit vector X/||X|| with respect to

the uniform probability distribution of the unit sphere in F¢*! is (x*(?‘lx)fﬂq+1>
(|x|| = 1), where ir =1 and ic = 1. Thus, the density of the angular Gaussian

distribution %, with respect to the uniform distribution %, of FP? is
S () = () /(07" D (020, [x]eFPY), (1)

since the uniform distribution ¥; of FP? is the image measure of the uniform
distribution on the unit sphere in F/™' under the projection x> [x] (||x|| = 1)
onto FPY.

We arrive at the Cauchy model by observing that the axis [X]eFP? of the .47(0, 0)
distributed random vector X = (X7, ...,Xq+1)' is determined by the vector Y =
(X1, ...,X,)'/X,01€F, at least in the almost sure case where X, #0. A
computation shows that the density of Y with respect to the Lebesgue measure
of 9 is

) = cﬁi(detz)’” (yeF9) 2)
YRS O

where cg is a constant and

0= (detZ)_l/("+1)(Z+”u* M)e@[F. (3)
,I.L* 1 q

Here, uelF? and X is a positive definite self-adjoint matrix of order ¢. The law of the
random vector Y elF? is called the (real or complex) g-variate Cauchy distribution
€(u,2) of location-scatter parameters u, X.

Let us imbed, as usual, the affine space F? into the projective space FP? by
identifying the point y = (y1, ...,»,) €F to the axis [(y1, ..., Vq, 1) ]€FPY. Then, by
definition, restricting the angular Gaussian distribution % to F¢ yields the Cauchy
distribution % (i, X), where the parameters 0, u and X are related by Eq. (3). So, these
two statistical models are essentially identical. However, the sample space of Cauchy
distributions is slightly smaller than the sample space of angular Gaussian
distributions since the affine space F? does not encompass the so-called points at
infinity [(x1, ..., X,,0)'] of the projective space FPY.




C. Auderset et al. | Journal of Multivariate Analysis 93 (2005) 180-197
3. Maximum likelihood estimates, main result

Let P be an arbitrary Borel probability distribution on [FPY, typically (but
not necessarily) the empirical distribution of a sample. Recall that f denotes
the density of the angular Gaussian distribution %, with respect to the
uniform distribution ¥4; (cf. Eq. (1)). The angular Gaussian log-likelihood function
for P is the expectation of the logarithm of f;* evaluated at a random point [x] e FP?
of law P:

(40 = [ oe(f7 () aP(lx) (0< ). @

The angular Gaussian maximum likelihood estimate of P is the maximum of /7 (if it
exists and is unique). We denote it by MLE?(P) e@g.

The Cauchy analogue of the density f of %, with respect to the uniform
distribution %, is not g, », which is the density (2) of %(u,2) with respect to the
Lebesgue measure, but

Jux ) = 9ux(0)/900(y)  (veF), (5)

which is the density of %(u,2) with respect to the standard Cauchy distribution
%(0,1). So, given an arbitrary Borel probability distribution P on F?, we define the
Cauchy log-likelihood function /;f(u, 2) for P as the expectation of the logarithm of
the density f; evaluated at a random vector yeF? of law P

(o) = [ Towf550) P (©

The Cauchy maximum likelihood estimate of P is the maximum of /;6; (if it exists and
is unique). We denote it by MLE?(P).

Of course, if u, X and 0 are related by Eq. (3), then /%(u,X) = /7(0), thus
MLE?(P) = (i, %) if and only if MLE?(P) = 0.

Remark 1. The usual Cauchy log-likelihood function is
ZP(:uvz) = /[R{" log gu,Z(y) dP(y)
We prefer Definition (6) because it applies to all probability measures, while the

integral /p(pt, ) does not always exist. Anyhow, when log g s is P-integrable, the two
log-likelihood functions differ by a constant only since

1o0.2) = (5. 2) + [ Togg0s0) dP()
in view of Eq. (5).

After these preliminaries, we come to our existence and uniqueness criterion for
MLE’s. We need some definitions to formulate it.
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A projective subspace of dimension k of the projective space FP? is the set of axes
[x] € FP? of the non-zero vectors x lying in a linear subspace of dimension k + 1 of
F¢*!. Given a Borel probability measure P on FPY, call for short a non-trivial
projective subspace V of FP? (V #0, V #[FP7)

P-elliptic <
. dim V + 1
P-parabolic if P(V) = ——
p (V) ST
P-hyperbolic >

A P-parabolic projective subspace is minimal if it contains no proper P-parabolic
projective subspaces.

Let Fit' = E, @ --- @ E, be a direct sum decomposition of the linear space Fa+!
into linear subspaces Ej and let Vi = {[x]|]xe Ei,x#0} be the corresponding
projective subspaces of FP?. We say that V1, ..., Vi is a direct sum decomposition of
the projective space FP?. For example, FP? decomposes into the direct sum of two
skew lines, and FPY into the direct sum of ¢+ 1 points not lying in a proper
projective subspace of FPY.

Theorem 1. Let P be an arbitrary Borel probability measure on the (real or complex)
projective space FP4.

(1) If every non-trivial projective subspace of FP? is P-elliptic, then the log-likelihood
function /}“’f has a unique maximum: MLE? (P) is well-defined.
(2) If FP? contains a P-hyperbolic projective subspace, then SUPgecof /%(0) = co:
MLECY(P) does not exist.
(3) If FP? contains no P-hyperbolic subspaces and at least one P-parabolic projective
subspace, then
(a) if FP? decomposes into the direct sum of minimal P-parabolic projective
subspaces V1, ..., Vs, then the maxima of {;{ form a submanifold of dimension
s—1of @5: MLEC(P) is not well-defined;

(b) otherwise (' admits no maximum: MLE? (P) does not exist.

Section 8 presents an explicit description of the set of maxima of /ﬁ in case 3 (a),
by means of the MLE’s of the restrictions of P to the parabolic subspaces V7, ..., V
of the decomposition of FPY.

Some special cases are worth mentioning

e [f the distribution P is absolutely continuous with respect to the uniform
distribution on FP?, then MLE?(P) is well-defined.

® If the P-probability of some point [x]eFP? is larger than 1/(¢+ 1), then
MLE?(P) does not exist. In particular, consider the level o contamination P, =
(1 = )P + ady of an arbitrary distribution P and let «* be the breakdown point
of MLE?(P,). Then oa*<1/(q + 1).
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® Let Py = (O, + -+ + J|x,))/n be the empirical measure of a sample [x1], ..., [x,]
in [FPY.

Suppose that n>¢ + 1 and that the sample is in general position, i.e., that any
non-trivial projective subspace of dimension k of FPY contains at most k + 1
points of the sample. Then MLE?(P,) is well-defined (see Kent and Tyler [8] for
the real case).

If n<q+ 1, then MLE?(P,) does not exist.

If n = ¢ + 1 and the sample is in general position, then the maxima of t’f,” form
a submanifold of dimension ¢ of @5 (see Olcay and Kent (1998) for the real case).

If ¢ =3, n>6is even and all (distinct) data lie on two skew lines of FP? with
half of them on each line, then the maxima of /g’l form a one-dimensional

submanifold of @5.

Theorem 1 also holds with slight changes for real or complex Cauchy distributions.
In this case, P is a Borel probability distribution on F? and projective subspaces of
[FP? should be replaced by affine subspaces of [, i.e. translates of linear subspaces.

In the case of the shape space 2‘2‘”2 ~(CPY, the complex field F = C is relevant. To
apply Theorem 1, we need a convenient description of projective subspaces of CP? in
terms of shapes. We propose a construction of such subspaces by means of
barycentres in Appendix B.

4. Convexity of log-likelihood

Every parameter Qe@g of the angular Gaussian model (), or defines a scalar
q

product and a norm

(x[)g =x"0""y and ||x|ly = \/(x]x), (0€©y,x, yeF*) (7)
on the linear space F/"!. Given a probability distribution P on FP?, we put

00 = [ pg(@dP(is), (06} g
where

P (0) = log(|[x[[3/IIxI1*)  ([x]eFP)

In view of Eqgs. (1) and (4), pp is the angular Gaussian log-likelihood function {ﬁ up
to a constant negative factor.

We study the minima of pp, i.e. the maxima of /ﬁ, by restricting the function pp to
certain curves y: R— @E, which should be sufficiently general for catching all minima
of the function pp.

Given a square matrix v of order ¢ + 1 with coefficients in F, we call a curve
Y R—»@E a geodesic of velocity v if it satisfies the differential equation y(¢) = vy(r).
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The solution y(#) = (exp tv)y(0) must lie in @5, i.e., the matrices () must be self-
adjoint of determinant 1 for all ze R. This imposes some conditions on the matrix v,
besides the obvious condition y(0) e @5 on the starting point.

Given He@g, call a matrix 4 of order ¢ + 1 self-0-adjoint if (Ax|y), = (x|4y), for
all x,yeF?™! ie., if it coincides with its 0-adjoint 04*0~". Denote by Sy the linear
space of self-0-adjoint matrices of order ¢ + 1 and trace 0. Then, the condition on v
we are looking for is

(exp tv)@e@g for all teR <= 06@5 and veSy.

In fact, if the matrix y(¢) = (exp tv)0 is self-adjoint for all e R, then its derivative
(0) = v must be self-adjoint too, so Ov*0~' = v, i.e., v is self--adjoint. Conversely,
if 00*0~" = v, then O(v%)*0~" = v for all non-negative integers k, so 0(exp ) 0~" =
exp v, hence y(1)* = y(r). Moreover, the determinant of the matrix y(r)0~' = exp tv
is 1 for all reR if and only if the trace of v is 0.

Remark 2. As will be shown in Appendix A, the curves y(¢) = (exp tv)0 (1€ R) with
Oe @g and ve Sy are exactly the geodesics—in the sense of differential geometry—of

the parameter space @g endowed with its symmetric space structure.

A real-valued function f on @5 is called convex if its restriction f(y(¢)) (teR) to
any geodesic y is convex in the usual sense (see e.g. [3, 1.6.4 p.24]).

Theorem 2. For any Borel probability measure P on the (real or complex) projective
space FPY, the angular Gaussian log-likelihood pp is a convex function on the
parameter space @g‘ More precisely, its restriction to a geodesic of velocity v is strictly

convex if the measure P does not concentrate on the eigenaxes of the matrix v, and
affine linear otherwise.

Proof. In view of Egs. (8) the restriction of the log-likelihood function p, along a
geodesic y of velocity v is

P = pp0) = [ ol 0 aP(). (reR) )

pl(0) = (1)) = log(|[x|y /I1xI*)  ([x]eFPY)
In order to compute the derivatives of pf;, put g(r) = ||x||§(,). Then

.y . g(t) ) o
P[x](t) = W and P[x](t) =

g(t)g(t) — 9'(1)2_
g(t)’



C. Auderset et al. | Journal of Multivariate Analysis 93 (2005) 180-197

Given arbitrary vectors x and yeF/*!,

@ (xg = 0 (900719 = 07 500y = 0

= — (x[oy), -

Thus ¢(1) = —(x[vx),,) = —(vx|x),, and §(¢) = (vx[vx), ), hence

7 (X|Ux)y(;)
pla() = — =10 (10)
b (x1x), 0
and
2
vx|ox), (x|x), .y — (x|vx):
ﬁ%;](l):( |03)., 5 (x]%),) — (x] )m (an

(xlx)3,

By the Cauchy-Schwarz inequality, ﬁfx](t) >0 for all te R. Moreover, ﬁfx](t) =0 for

some 7€ R if and only if vx is a multiple of x, i.e., iff [x] is an eigenaxis of v.
Let [[v]|, be the spectral norm of the matrix v, i.e. the largest eigenvalue of v in

absolute value. Then ||vx|

-y ) 2
o <I1ell gl x] 1, hence (67, (1) <1l and 57 () <]lel,
for all [x]eFPY and reR. So, by Lebesgue’s dominated convergence theorem, the
order of integration and differentiation may be interchanged:

7o) = [ (0 dp(is) and o) = |

FPY

71, (1) dP(x]). (12)
This shows that §’%(¢) >0 for all 7€ R and that () = 0 for some teR if and only if
the measure P concentrates on the eigenaxes of v, hence the theorem. [

5. Maximum likelihood equation

Theorem 3. Let P be a Borel probability measure on FP?. A parameter He@g is a
MLE of P, i.e. minimizes pp, if and only if

|(a]x)y| )2 1
——2 ) dP([x]) =—— for all [a]eFPY, (13)
fo (i) 4200 =5 “
or, equivalently, if and only if 0 solves the equation
0 xx*
— = ———dP([x]). 14
= [ i) (14)

In the real case, (14) gives Eq. (2) obtained by Tyler [15, p. 580], in the case
of the empirical measure of a sample. We need the following basic property of
geodesics.
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Proposition 1. Given 0,0, € @5, there is a unique geodesic y: R— @5 such that y(0) =
0o and y(1) = 0,. In other words, the geodesic exponential map Expy, : Sgoﬁ@g,
defined by Expy, h = (exp h)0y, is one-to-one and onto.

A direct verification is not difficult. In fact, this result holds for any Hadamard
manifold, i.e. any simply connected complete Riemannian manifold of non-positive
sectional curvature (see e.g. [3, 1.1.4, p. 19]).

The proof of Theorem 3 uses another ingredient.

Lemma 1. Every matrix veSy (€ @g) is a linear combination

q+1

v= Z Mwe, (A eR),
k=1

where ay, ...,a,41 are non-zero vectors of FP? and w, €Sy is defined by
(alx), 1 1
WaX = a— x (a,xeFr a#0). 15
T APES R 0 13

Being self-0-adjoint, the matrix ve Sy is diagonalizable and its eigenvalues are real.
Let ay, ..., a4 eF7*! be eigenvectors of v with (ailaj)g = 0 for i#j, and A1, ..., Ag41
the corresponding eigenvalues.

Let ©, denote the #-orthogonal projector onto an axis [¢]eFP?. It is given by

X = (a|a);1(a|x)9a (xeF ) ie. m, = (a*H_la)_laa*H_1 in matrix notation. As v is
diagonal with respect to the §-orthogonal base ay, ...,a,.1, we can write it as v =
I Jkma,. But 390 24 = 0 since the trace of v is 0. So, v = 2971 Jyw,,, where

we =1, — (q+ 1)711685.

Proof of Theorem 3. If p, has a minimum at 0 e @g then p7(0) = 0 for all geodesics y
with y(0) = 0. We observe that the converse also holds. In fact, given any 0, € 6)5, let
y be the unique geodesic with y(0) = 0 and y(1) = 0; (Proposition 1). By hypothesis,
0%(0) = 0. Thus, by convexity of p} (Theorem 2), pp(0) = ph(0)<ph(1) = pp(6y),
which shows that 0 is a minimum of pp.

On the other hand, by Egs. (10) and (12), the condition p%(0) = 0 means

(x]vx) B
/W, (x|x): dP([x]) =0 for all veSy.

According to Lemma 1, this amounts to

/ MdP([x])=0 for all ae F¥™"\{0},
pe (X[x)g
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which is condition (13) by taking account of Definition 15. Eq. (14) is just a rewriting
of (13): (a|x)§ = a0~ 'xx*0"'a, and (13) becomes

xn—1 *
a0 a_ g / X _ap([x)) |0'a for all [a)eFPY,
q+1 e (x]x);

giving the result. [

6. Behaviour of log-likelihood at infinity

Let y(7) = (exp tv)0 (1€ R) be the geodesic of non-zero velocity veSy issuing from
0 = 7(0). We are interested in the limit of the log-likelihood p’(#) along y, or rather
of its derivative p}(¢), as t— oo. The result depends on the spectral decomposition of
the matrix v.

As the matrix v is self-0-adjoint, its eigenvalues are real. We also call them the
eigenvalues Ay >y >--->A; of the geodesic y. The corresponding eigenspaces
E,, ...,E, are pairwise 0-orthogonal, i.e., (xi|x;), =0 for x,€E;, x;€E; and i#j.
Moreover, FI™!' = E,@® --- ® E,. Let 7, be the 0-orthogonal projector onto Ej, i.e.
the unique self-0-adjoint matrix with range Ej, such that m;m; = mx. Note that m;m; =
0 for i#j and that = + --- + 7wy = 1. According to the spectral theorem, v =
Jmy + -+ Ay and exptv = eMiny + - +eM'n,. Given [x]eFP?, it follows
according to Definition 7 that

(x[x), ) = (x](exp = 10)x)g = e " ||mixl[§ + -+ + | |mex]lj
and

(x[vx), ) = (xl(exp — tw)vx)g = Aae™ ! mix|[ + - + Ave™"!||mox][5.
Thus, by Eq. (10),
dae M |mx|fp + e Ae M [g

el + -+ e A x|l

pEiX](Z) =
Putting m([x]) = max{k =1, ..., s|mx#0}, we get
. o
Jim g () = —n(r)-

This is a simple function of [x]. So we may interchange limit and integration with
respect to the probability measure P. Taking Eq. (12) into account, we obtain

zlig-n pjp(t) = —/ /lqu]) dP([x])
In order to put this result into a neater form, consider the projective subspaces
Fi ={[x] € FPY|mp1 X = pj2x = -+ = mex = 0}

={[x]eFP!xeE| +Er+ - + E} (k=1,...,5—1).
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The sequence F; < --- — Fy_; is an important characteristic of the geodesic y, called its
flag (see [3, 2.12.8] for the real case). As m([x]) = k if and only if [x]e = Fy\Fy_;
(where Fj is defined as FPY),

e j-m([x]) dP([X])
= WP(F1) + L P(F\F1) + -+ 4 As 1 P(F_1\Fy_2) + A P(FPI\F;_y)
= (41 = )P(F\) + =+ + (-1 — 45) P(Fs-1) + 4s-

With the eigenvalue differences o = A — Agr1 (k=1,...,5 — 1),

Jm, 9pl) =~ —Z“k (-

But the trace of the matrix veSy is zero, so A; dim E; + --- + A, dim E; = 0. Taking
the equalities dim Fj, + 1 = dim E| + --- + dim E} into account, we find

;szf

1 . .
I [ (dim Fy 4+ 1) + -+ + o1 (dim Fy_y + 1)]. (16)
Replacing this value of /A into the previous equation yields

AL ia(dlmF"“ P(Fk)>. (17)

— — q+1

From this equation and Theorem 2, some conclusions can be drawn on the global
behaviour of the functions p’, which we sum up in the following theorem. We denote
by V1, ..., Vs the projective subspaces of FP? corresponding to the eigenspaces
E\, ..., E; of the velocity v and call them projective eigenspaces of the geodesic 7y.

Theorem 4. Let y be a non-constant geodesic in @g of flag Fy < --- = Fy_ and projective
eigenspaces Vi, ..., V.

(1) If no Fy is P-hyperbolic and at least one is P-elliptic, then lim,_, o, p(1) = 4+ 0.

(2) If no Fy is P-elliptic and at least one is P-hyperbolic, then p', is strictly decreasing
from +o0 to — o0

(3) If every Fy is P-parabolic and P(Vy U --- O Vi) <1, then ph, is strictly decreasing.

(4) The function p’, is constant if and only if every Vi is P-parabolic.

Proof. Suppose that no Fj is P-hyperbolic and at least one is P-elliptic. Then
lim,, o p7(¢)>0 in view of Eq. (17), thus lim,, 4, pp(7) = +c0.

If no Fy is P-elliptic and at least one is P-hyperbolic, then lim,_, 1o, p7%(¢)<0 in
view of Eq. (17). As the function p} is convex by Theorem 2, it must be strictly
decreasing from +o0 to — 0.

If every Fj; is P-parabolic, then tligloo pp(t) =0 by Eq.(17). Moreover, if

P(Viu---uV;)<l1, the measure P does not concentrate on the eigenaxes of the
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velocity of y. By Theorem 2, the function p) is strictly convex, thus strictly
decreasing.

If every V) is P-parabolic, then P(Viu---uV)=P(V))+ - +P(Vy) =
[(dim Vi + 1)+ --- 4 (dim ¥+ 1)]/(¢ + 1) = 1. Thus the function p, is affine linear
by Theorem 2. On the other hand, ViU -V, SF, and Fyn (Vi w Vi) =0, so
P(F)=PV1)+ - +P(Vy)=[dim ¥V + 1)+ - + (dim Vi + 1)]/(¢g+ 1) =
(dim Fi, + 1)/(g + 1). By Eq. (17), lim,_, o, p’(¢) = 0, thus the function p, must be
constant.

Suppose conversely that the function p’, is constant. Then P(Viu--- U Vy) = 1 by
Theorem 2 and each Fj; is P-parabolic by Eq.(17). From the relations
P(FuVigu--uV)=1land Fyn (Vi -0 Vy) =0 follows P(Fy) + P(Vii1 +
-+ + P(Vy)) = 1. By recursion on k=s,5s—1,...,1, we find that each Vj is P-
parabolic. [

7. Existence and uniqueness of MLE’s

This section and the next one are devoted to the proof of Theorem 1. We need the
following property of geodesics:

Proposition 2. Let Fyc--- = F, | be distinct non-trivial projective subspaces of FP4
and oy, ..., 0,1 >0 positive real numbers (s=?2). For every parameter 0 € @g, there is a
unique geodesic 7y issuing from y(0) =0, of flag Fic---<F,_\ and eigenvalue
differences o, ..., 051 (ie., 0 = Ax — A1 wWhere Ay > --- > A, are the eigenvalues of
the velocity of y).

Proof. Consider the linear subspaces G| < --- = G,_| corresponding to Fy < --- = F_
(Fr = {[x]eFP!|xe Gy, x#0}) and put G, = F/™!. Let E; = G and define recursively
Eri1 = {yeGrii|(x]y)y =0 for all xeE}. Then E = E; @ --- @ E,. Let ni be the 0-
orthogonal projector onto Ej; and define A, by equation (16) and Ay = Agyq + ox
(k=s5—1,...,1). The geodesic we are looking for is y(f) = e*''n; + --- + e*'m,. It is
unique because the last equation must be the spectral decomposition of p. [

Proof of Theorem 1. Part 1: Suppose that every non-trivial projective subspace of
FPY is P-elliptic. We show that the log-likelihood function p, admits a unique
minimum.

For the existence proof, choose an arbitrary parameter (90685 and consider the
composite function f: Sg — R given by f(h) = pp(Expy,(h)), where Expy, is the
geodesic exponential defined in Proposition 1. For any geodesic y(t) = Expy, tv
(veSp, v#0), lim,—, o pp(7) = lim,_, ;o f(tv) = + 00 according to the first part of
Theorem 3. This ensures the existence of a minimum of f, hence of pp.

For the uniqueness of the minimum 0 of pp, consider a parameter 0; # 0, and let y
be the geodesic with y(0) = 0y and y(1) = 0; (Proposition 1). Let Vi, ..., V; be the
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projective  eigenspaces  of 7. Then  P(Viu---uV)=P(Vi)+ - +
P(Vy)<[(dim Vi + 1)+ --- + (dim Vs +1)]/(¢+ 1) = 1 according to the P-ellipti-
city condition. By Theorem 2, p’, is strictly convex. So, pp(0y) = p(0)<ph(l) =
pp(01).

Part 2: Suppose that FP? contains a P-hyperbolic projective subspace V. Let y be a
geodesic of flag reduced to V (cf. Proposition 2). According to the second point of
Theorem 4, p}, decreases from 400 to —o0. So infeegg pp(0) = —oo and pp has no

minimum.

Part 3: Suppose that FP? contains a P-parabolic projective subspace. We first
prove the alternative: either pp, has no minimum or FPY decomposes into the direct
sum of minimal P-parabolic projective subspaces. This requires a preparation.

Lemma 2. Let F be a P-parabolic projective subspace of FPI. If FP? does not

decompose into the direct sum of F and another projective subspace F, then pp has no
minimum.

Proof. Let 0 be an arbitrary parameter and let y be a geodesic issuing from y(0) = 0
of flag reduced to F (cf. Proposition 2). The eigenaxes of the velocity matrix ve Sy lie
either in F or in the complemetary subspace

F={[y|eFP!|(x[y), = 0 for all [x]eF}.

By hypothesis, F is not P-parabolic, hence P(FUF) = P(F) + P(F)<1. According
to the third part of Theorem 4, the function p', is strictly monotone decreasing. Thus
the parameter 0 does not minimize pp. O

Now, let V7 = F; be a minimal P-parabolic subspace of FPY. Suppose that FPY
decomposes into the direct sum of F; and some projective subspace Fj. In the
opposite case, pp has no minimum according to Lemma 2. Let ¥, be a minimal P-
parabolic subspace of F>. If V5 = F>, then FP? is the direct sum of the minimal P-
parabolic subspaces V| and V. Otherwise, we apply the same process to the smallest
projective subspace F> containing V; and V>, and so on. At the end, either we find
that pp has no minimum or we get a direct sum decomposition of FP? into minimal
P-parabolic projective subspaces Vi, ..., V,. O

8. The decomposable case

In this section, we make precise and prove part 3(a) of Theorem 1. It is our
purpose to describe the set of all angular Gaussian maximum likelihood estimates of
P, ie. of all minima of pp. Perhaps the neatest way to achieve this goal is to work
directly with positive definite quadratic forms on linear spaces, rather than
representing them by positive definite matrices.
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Let E be a linear space over F. A quadratic form p: E—R can be written in a
unique way as p(x) = (x|x), (xe E), where (x|y), €l (x,y€E) is a symmetric bilinear
form in the real case, and a Hermitian form in the complex case. Let PD(E) be the
set of positive definite quadratic forms on E.

We denote by O(E) = {[p]lpePD(E)} ([p] = {Ap|.>0}) the space of positive
quadratic forms on E, up to a positive factor. The parameter space @g can be

identified with @(F!™!) by associating to the positive definite self-adjoint matrix
0e O, the class [p] e ®(F™!) of the quadratic form p(x) = 07 x (xeFrt.

Let 0 = [p]e O(E). Given a linear subspace E; of E, we call 0; = [p;]€e O(E,) the
restriction of 0 to E) if p1(x) = p(x) for all xe E;. We say that two linear subspaces
E; and E, of E are 0-orthogonal if (x; |x2)p =0 for all x;eE;| and x, € E).

Theorem 5. Let P be a Borel probability measure on FPY and suppose that FP? contains

no P-hyperbolic projective subspaces. Let Fi'*' = E\@---@®E; be a direct sum
decomposition into linear subspaces and let Vi = {[x]|x€ Ex,x#0} be the projective
space corresponding to Ej. Suppose that all Vi, are minimal P-parabolic. Let Py be the
Borel probability measure on Vy, defined by

qg+1 ,
P (A)=——P(4 B A . 1
v (A) dm 7,11 (A) for every Borel subset A of Vi (18)

Then, every Py has a unique angular Gaussian maximum likelihood estimate 0) =
[px] = MLE? (Py)e O(Ey).
Moreover, a parameter 96@([Fq“)g@g is an angular Gaussian maximum

likelihood estimate of P if and only if E\, ..., E; are pairwise 0-orthogonal and the
restriction of 0 to Ey is O for k=1, ... s.

Corollary 1. Under the hypotheses of the preceding theorem, put 6y = |pi]. Then, the
set of angular Gaussian maximum likelihood estimates of P, i.e. the set of minima of

pp, consists of those 0 = Me@([F’”])g@g that can be represented by a positive
definite quadratic form p on E defined by

p(xi+ o+ xg) = Api(xn) + - 4 Aps(xs)  Sfor all xi e Eg, (19)
where 1, ..., As are positive real numbers. It is a submanifold of dimension s — 1 of @g
since we can choose A =¢e* for k=1,....s—1 and i, =1 with arbitrary
(o1 oney ocs,l)e[RiS_l.

Proof of Corollary 1. Suppose, as in the conclusion of Theorem 5, that 0, = [py] is
the restriction of 6 = [p] to Ej and that (x;|xi), = 0 for all x; € Ej, x; € Ex and j#k.
Then, there is a positive real number /J; such that p(x;) = Aipi(xx) for any x; € Ex
and

p(x1+ o xg) = (X1 4 e R xxn e X)), = (X)), e A (X)),

:p(xl) + - +p(x5) = }vlpl(xl) + +/1sps(xx)'
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Suppose conversely that condition (19) holds. In particular, p(xi) = Axpr(xx) for any
Xy € Ei. Thus [Axpr] = [pk] = Ok is the restriction of [p] = 0 to Ej. Condition (19) also
implies p(x; + xx) = 4pj(x;) + Apr(xi) = p(xj) + p(xk) for x;€ Ej, x, € Ey and j#k.
Then

(xj|xj)p + (xklxk)p = (Xj + Xk|Xj + Xk)p
= (x71x7), + ekl + (1), + (i)

hence (xj|xk), + (xk|x;), = 0. In the real case, (xx|x;), = (xj|xk), so (xj|xk), = 0. In
the complex case (xk|x;), is the conjugate of (x;|xy),, thus the real part of (x;|xx), is
zero. The imaginary part of (x;[xi), is also zero since it is the real part of (ix;|xy)

(i=+—1). In both cases, the linear subspaces FE|,...,E; are pairwise 0-
orthogonal. [

Proof of Theorem 5. By hypothesis, ¥V} contains neither P-hyperbolic nor P-
parabolic proper projective subspaces. In other words, taking Eq. (18) into account,
all non-trivial projective subspaces of Vj are Pj-elliptic. Thus, by the first point of
Theorem 1, 6, = MLEg(Pk) €O (V%) is well-defined.

We come to the main part of Theorem 5. Suppose first that the restriction of
0eO(F7*") to Ey is 0y for k = 1,...,s and that (ailay), = 0 for all a;e E;, aj€ E; and
i#j. We prove that 0 = [p] satisfies the maximum likelihood equation of Theorem 3.
As P(Viu---0Vy) =1,

\(alx), 2 |(alx),
@) [ rar() =Y ) [ S ()
FP? (x|x)p ; Vi (x|x)p
K 2
alx
= (dika+1)/ (@),
k=1 Vi (X|X)p
for any aeFi*'. We can write a =a; + - +a, with apeE; since FI*' =

E @ - ®E,. As the restriction 0; of 0 = [p] to Ej is the MLE of Py, it satisfies
the maximum likelihood equation (13)

2
(dim Vk+1)/V %dpk([x]):(aﬂéﬁr)p

dPy ([x])

of Theorem 3. In this equation, (ax|x), = (a|x), since x€ Ey, hence

2 s 2
e [ ap = 3 @imven [ S0 apy )

(x]x), £ (x]x),,

= (ak|ak),, = (a|a)p~
k=1

So, by Theorem 3, 6 is a MLE of P. This proves the ‘if’ implication of Theorem 5.
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Conversely, let Oe @5 be an arbitrary angular Gaussian maximum likelihood
estimate of P. Choose a parameter 06@([F‘1“) ~ @g such that E, ..., E; are pairwise
0-orthogonal and the restriction of 0 to Ej is 0 for k = 1, ..., s. Let y be the geodesic
with 7(0) =60 and y(1) = 0 (Proposition 1). As both 0 and 0 minimize pp, the
function p’ has a minimum at 0 and 1. According to Theorem 2, p}, is convex, thus
p»(2) is constant for 0<7<1. But p}, is either strictly convex or affine linear, so it
must be constant.

Let E,...,E. be the ecigenspaces of the velocity veSy of 7y and let Vj be
the projective subspace corresponding to Ei. As pp is constant, the
projective eigenspaces Vi, ...,V, are P-parabolic by the fourth point of
Theorem 4. The projective space FP? has two direct sum decompositions
Vi,...,Vs and Vi, ..., V, into P-parabolic subspaces. As each ¥} is minimal P-
parabolic, it can be proven that each Ej is a sum of some E;’s. In other words,
the velocity of y can be written as v = ;| + -+ + Ay, where 7y, is the 6-orthogonal
projector onto Ej and Ay, ..., Ay are (non-necessarily distinct) real numbers such
that > Ak dimE, =0. It follows that y(¢)=[e"'n + - +ebn0, in
particular 0 = y(1) = [¢*'m; + -~ +e~n,])0. Given x;eE; and x;eE; with i#j,
(xilx;)5 = (xille™ @ + - + e#m]x;)y = 0 since mx; = 0 for i#,. This proves that
the subspaces E|, ..., E, are O-orthogonal.

It remains to show that the restriction of 0 = [5]e @(F’*") to Ej is the maximum
likelihood estimate 0; = MLE?(P;)e @(E;). By Theorem 3,

(CI+1)/ alx )ﬁ| ([x]): y (dim V, / Pr(x]) = 1

j:1

for all ae F*™'. In particular, for a = a; € Ey and [x]e V; with j#k, (ax|x); = 0 since

Ey and E; are §-orthogonal. Thus

|(ar|x ),sl
plai)p(x)
for all a; € Ej.. So, by Theorem 3, the restriction of 0 to Ej is a MLE of P.. As 0 is

the unique MLE of Py, the restriction of 0 to E; must be 0. This completes the proof
of Theorem 5. [

(dim Vi + 1) / APy([) = 1
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Appendix A. Equivariance and symmetric spaces

Let geSL(¢+ 1,F) be a square matrix of order ¢+ 1 and determinant 1,
and XeF’*! a random vector of law .47(0,0). The law of the image vector
gX eF*! under ¢ is .47(0,90g%). So, letting g act on axes [x]eFP! by
glx] = [gx]eFPY, we find that the image measure of the angular Gaussian
distribution %, under g¢ is

9% = Gy (9eSL(g+ 1,F), 0€0,). (A.1)

As a consequence, the maximum likelihood estimator is equivariant under the action
of SL(g + 1, F): given a probability distribution P on FP?,

MLE?(gP) = gMLE?(P)g* (9eSL(q+ 1,F)), (A.2)
where gP is the image measure of P under g. Equivariance has been exploited by
McCullagh [14] in the real case of dimension 1.

The isotropy group of the uniform distribution %; is the special orthogonal
group SO(¢+ 1) ={geSL(¢+ 1,R)|gg’ =1} in the real case, and the special
unitary group SU(g¢+ 1) ={geSL(¢+1,C)|gg"* =1} in the complex case.
Moreover, the group SL(¢+ 1,F) acts transitively on @g since any matrix

96@5 can be decomposed as 0 = gg*, where geSL(¢ + 1,F) is e.g. a triangular
matrix (Cholesky decomposition). It follows that the parameter space @E[ is the
homogeneous space
R~ .
0,=SL(¢+1,R)/SO(g+1) in the real case (A.3)
and

C ~ .
©,=SL(¢+1,C)/SU(¢+1) in the complex case.

These are, in fact, symmetric spaces of non-compact type (see [4, Chapters IV, VI]).
More details on SL(g + 1, R)/SO(g + 1) can be found in [3].

Appendix B. Barycentric combinations of shapes

Let (x(V),...,x(") be a configuration of n>2 labelled points in the plane R>~C,
not degenerating into a single point. A plane n-shape is given by such a configuration,
up to an orientation preserving similarity. By a translation, we can represent a shape

by a central configuration (xV, ..., x") with x( 4 ... + x( =0,
Consider the hyperplane H, = {(xV), ...,x")eC"|x) + ... + x(" =0}. The
shape manifold is the complex projective space X% = {[x]|xe H,,x#0}=~CP" 2

Here, [x] = {Ax|]1eC}€X] denotes the shape of a central configuration x =
(x, ..., x")e H,\{0} of n points in the plane.

Let 7 be the projective span of given shapes [x{], ..., [x,]€2}, i.e. the smallest
projective subspace of 2 =~ CP"~? containing them. It consists of the shapes [x] of all
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non-zero linear combinations x = A1 x; + --- + 4,.x, with 4y, ..., 4,€C. We can also
represent the shapes [xx] by the configurations y; = rigx, (if some y is zero, then
cross it). Then x = (y1 + --- + »,)/r. We call the configuration x the barycentre of the
central configurations yy, ..., ;.

Let us say that a shape [x]eX} is a barycentric combination of a set S of
shapes if the central configuration x can be obtained as the barycentre of a
finite set of central configurations yi,...,», with [y],...,[»]€S. With this
terminology,

Proposition 3. The projective span of a set of shapes in X consists of their
barycentric combinations. Consequently, a set of shapes is a projective subspace
of the shape manifold X% if and only if it is closed under barycentric
combinations.
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