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Angular Gaussian and Cauchy estimation
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Abstract

This paper proposes a unified treatment of maximum likelihood estimates of angular

Gaussian and multivariate Cauchy distributions in both the real and the complex case. The

complex case is relevant in shape analysis. We describe in full generality the set of maxima of

the corresponding log-likelihood functions with respect to an arbitrary probability measure.

Our tools are the convexity of log-likelihood functions and their behaviour at infinity.
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1. Introduction

Real angular Gaussian distributions are studied in directional analysis (cf.
[11,16,15, section 3.4.7, section 3.6]), while real multivariate Cauchy distributions
can be viewed as t-distributions with one degree of freedom (see e.g. [8]). In fact, as
observed by Knight and Meyer [10], these two apparently unrelated statistical
models are essentially identical. On the other hand, complex angular Gaussian
distributions are used in shape analysis (see e.g. [7] or [13]); they provide an
interesting alternative to the Bingham distribution since their densities do not
contain involved parameter-dependent normalization (see [6] or [2]). They relate, in a
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similar way as in the real case, to complex multivariate Cauchy distributions, which
can be viewed as t-distributions with two degrees of freedom.

Existence and uniquess of angular Gaussian and Cauchy maximum likelihood
estimates (MLE’s) have been intensively studied, at least in the real case. Tyler [15]
has shown that the q-variate angular Gaussian MLE is almost surely well-defined for
an i.i.d. random sample of size n4q þ 1: Kent and Tyler [8] and Kent et al. [9] study
MLE’s of the more general t-distributions. Arslan and Kent (1998) [1] show that the
maxima of the q-variate Cauchy likelihood function of a sample of size q þ 1 in
general position form a manifold of dimension q: Corresponding results for the
complex case appear not to have been published yet, notwithstanding their
importance in shape analysis (see e.g. [12,13]).

We give a necessary and sufficient condition for existence and uniquess of angular
Gaussian and Cauchy MLE’s in both the real and complex case. More precisely, our
main result (Theorem 1, Section 3) describes in full generality the set of maxima of
the corresponding log-likelihood function for an arbitrary probability distribution,
in particular for the empirical distribution of a sample.

Before presenting it, we recall in Section 2 how these various models can be unified
by reducing them to normal laws. Section 4 is on the convexity of log-likelihood
functions and Section 6 on their behaviour at infinity. We present the angular
Gaussian maximum likelihood equation in Section 5 and prove our main result in
Sections 7 and 8. Appendix A is for readers interested in groups and differential
geometry and Appendix B describes projective subspaces of plane shapes.

2. Reduction of angular Gaussian and Cauchy models to normal laws

Let X ¼ ðX1;y;Xqþ1Þ0 be a random vector of central normal law Nð0; yÞ: In

order to treat the real and the complex case in parallel, let us assume that XAFqþ1;

where F ¼ R or C: Up to a constant factor, the density of X is expð�x�y�1x=2Þ;
where x� denotes the adjoint of x; i.e. the transpose x0 of x in the real case, and the
conjugate of x0 in the complex case. The covariance matrix y of X is self-adjoint, i.e.
symmetric when F ¼ R; and Hermitian when F ¼ C: The complex normal

distribution Nð0; yÞ in Cqþ1 can be viewed as the usual normal distribution

Nð0; yRÞ in R2ðqþ1Þ with the real covariance matrix yR ¼ y1 �y2
y2 y1

� �
of order 2ðq þ 1Þ;

where y ¼ y1 þ iy2 with real matrices y1 and y2 of order q þ 1:
The angular Gaussian model is obtained from the normal vector X by retaining

only its axis (or unoriented direction) ½X 	 ¼ flX jlAFg and forgetting anything else.
The law of ½X 	 is called the (real or complex) q-variate angular Gaussian distribution of

parameter y: We denote it by Gy:

The sample space of the angular Gaussian model is the set of axes in Fqþ1: It is, in

fact, the projective space FPq ¼ f½x	jxAFqþ1; xa0g of dimension q: A data point in

FPq can also be viewed as a pair of opposite unit vectors 7xARqþ1 in the real case,

and a one-dimensional family eijxACqþ1 (jAR) of unit vectors in the complex case.

ARTICLE IN PRESS
C. Auderset et al. / Journal of Multivariate Analysis 93 (2005) 180–197



The complex case has gained much interest after an important discovery by Kendall

[5]: the manifold Sqþ2
2 of similarity shapes of configurations of q þ 2 non-identical

points in the plane can be identified with the complex projective space CPq: For more
information concerning shape analysis and the relevance of the complex angular
Gaussian distribution, see e.g. [7,13].

As ½lX 	 ¼ ½X 	 for lAF; la0; the covariance matrix y of the central normal vector
X is determined up to a positive constant only. We remove this indeterminacy by
requiring that det y ¼ 1: So, we parametrize the angular Gaussian distributions Gy

by the space YF
q of positive definite self-adjoint matrices of order q þ 1 and

determinant 1. In the special case of the unit matrix y ¼ IAYF
q ; we get the uniform

distribution GI on FPq:
A computation shows that the density of the unit vector X=jjX jj with respect to

the uniform probability distribution of the unit sphere in Fqþ1 is ðx�y�1xÞ�iFðqþ1Þ

(jjxjj ¼ 1), where iR ¼ 1
2

and iC ¼ 1: Thus, the density of the angular Gaussian

distribution Gy with respect to the uniform distribution GI of FPq is

f G
y ð½x	Þ ¼ ½ðx�xÞ=ðx�y�1xÞ	iFðqþ1Þ ðyAYF

q ; ½x	AFPqÞ; ð1Þ

since the uniform distribution GI of FPq is the image measure of the uniform

distribution on the unit sphere in Fqþ1 under the projection x/½x	 (jjxjj ¼ 1)
onto FPq:

We arrive at the Cauchy model by observing that the axis ½X 	AFPq of the Nð0; yÞ
distributed random vector X ¼ ðX1;y;Xqþ1Þ0 is determined by the vector Y ¼
ðX1;y;XqÞ0=Xqþ1AFq; at least in the almost sure case where Xqþ1a0: A

computation shows that the density of Y with respect to the Lebesgue measure
of Fq is

gm;SðyÞ ¼
cFqðdet SÞ

�iF

½1þ ðy � mÞ�S�1ðy � mÞ	iFðqþ1Þ ðyAFqÞ; ð2Þ

where cFq is a constant and

y ¼ ðdet SÞ�1=ðqþ1Þ Sþ mm� m

m� 1

� �
AYF

q : ð3Þ

Here, mAFq and S is a positive definite self-adjoint matrix of order q: The law of the
random vector YAFq is called the (real or complex) q-variate Cauchy distribution

Cðm;SÞ of location-scatter parameters m;S:
Let us imbed, as usual, the affine space Fq into the projective space FPq by

identifying the point y ¼ ðy1;y; yqÞ0AFq to the axis ½ðy1;y; yq; 1Þ0	AFPq: Then, by

definition, restricting the angular Gaussian distribution Gy to Fq yields the Cauchy
distribution Cðm;SÞ; where the parameters y; m and S are related by Eq. (3). So, these
two statistical models are essentially identical. However, the sample space of Cauchy
distributions is slightly smaller than the sample space of angular Gaussian
distributions since the affine space Fq does not encompass the so-called points at

infinity ½ðx1;y; xq; 0Þ0	 of the projective space FPq:
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3. Maximum likelihood estimates, main result

Let P be an arbitrary Borel probability distribution on FPq; typically (but

not necessarily) the empirical distribution of a sample. Recall that f G
y denotes

the density of the angular Gaussian distribution Gy with respect to the
uniform distribution GI (cf. Eq. (1)). The angular Gaussian log-likelihood function

for P is the expectation of the logarithm of f G
y evaluated at a random point ½x	AFPq

of law P:

cGPðyÞ ¼
Z
FPq

logð f G
y ð½x	Þ dPð½x	Þ ðyAYF

qÞ: ð4Þ

The angular Gaussian maximum likelihood estimate of P is the maximum of cGP (if it

exists and is unique). We denote it by MLEGðPÞAYF
q :

The Cauchy analogue of the density f G
y of Gy with respect to the uniform

distribution GI is not gm;S; which is the density (2) of Cðm;SÞ with respect to the

Lebesgue measure, but

f C
m;SðyÞ ¼ gm;SðyÞ=g0;IðyÞ ðyAFqÞ; ð5Þ

which is the density of Cðm;SÞ with respect to the standard Cauchy distribution

Cð0; IÞ: So, given an arbitrary Borel probability distribution P on Fq; we define the

Cauchy log-likelihood function cCPðm;SÞ for P as the expectation of the logarithm of

the density f C
m;S evaluated at a random vector yAFq of law P

cCPðm;SÞ ¼
Z
Rq

log f C
m;SðyÞ dPðyÞ: ð6Þ

The Cauchy maximum likelihood estimate of P is the maximum of cCP (if it exists and

is unique). We denote it by MLECðPÞ:
Of course, if m; S and y are related by Eq. (3), then cCPðm;SÞ ¼ cGPðyÞ; thus

MLECðPÞ ¼ ðm;SÞ if and only if MLEGðPÞ ¼ y:

Remark 1. The usual Cauchy log-likelihood function is

lPðm;SÞ ¼
Z
Rq

log gm;SðyÞ dPðyÞ:

We prefer Definition (6) because it applies to all probability measures, while the
integral lPðm;SÞ does not always exist. Anyhow, when log g0;I is P-integrable, the two

log-likelihood functions differ by a constant only since

lPðm;SÞ ¼ cCPðm;SÞ þ
Z
Rq

log g0;I ðyÞ dPðyÞ

in view of Eq. (5).

After these preliminaries, we come to our existence and uniqueness criterion for
MLE’s. We need some definitions to formulate it.
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A projective subspace of dimension k of the projective space FPq is the set of axes
½x	AFPq of the non-zero vectors x lying in a linear subspace of dimension k þ 1 of

Fqþ1: Given a Borel probability measure P on FPq; call for short a non-trivial

projective subspace V of FPq (Va|; VaFPq)

P-elliptic o

P-parabolic if PðVÞ ¼ dim V þ 1

q þ 1
:

P-hyperbolic 4

A P-parabolic projective subspace is minimal if it contains no proper P-parabolic
projective subspaces.

Let Fqþ1 ¼ E1"?"Es be a direct sum decomposition of the linear space Fqþ1

into linear subspaces Ek and let Vk ¼ f½x	jxA Ek; xa0g be the corresponding
projective subspaces of FPq: We say that V1;y;Vs is a direct sum decomposition of

the projective space FPq: For example, FP3 decomposes into the direct sum of two
skew lines, and FPq into the direct sum of q þ 1 points not lying in a proper
projective subspace of FPq:

Theorem 1. Let P be an arbitrary Borel probability measure on the (real or complex)
projective space FPq:

(1) If every non-trivial projective subspace of FPq is P-elliptic, then the log-likelihood

function cGP has a unique maximum: MLEGðPÞ is well-defined.

(2) If FPq contains a P-hyperbolic projective subspace, then supyAYF
q
cGPðyÞ ¼ N:

MLEGðPÞ does not exist.
(3) If FPq contains no P-hyperbolic subspaces and at least one P-parabolic projective

subspace, then

(a) if FPq decomposes into the direct sum of minimal P-parabolic projective

subspaces V1;y;Vs; then the maxima of cGP form a submanifold of dimension

s � 1 of YF
q : MLEGðPÞ is not well-defined;

(b) otherwise cGP admits no maximum: MLEGðPÞ does not exist.

Section 8 presents an explicit description of the set of maxima of cGP in case 3 (a),

by means of the MLE’s of the restrictions of P to the parabolic subspaces V1;y;Vs

of the decomposition of FPq:
Some special cases are worth mentioning

* If the distribution P is absolutely continuous with respect to the uniform

distribution on FPq; then MLEGðPÞ is well-defined.
* If the P-probability of some point ½x	AFPq is larger than 1=ðq þ 1Þ; then

MLEGðPÞ does not exist. In particular, consider the level a contamination Pa ¼
ð1� aÞP þ ad½x	 of an arbitrary distribution P and let a� be the breakdown point

of MLEGðPaÞ: Then a�p1=ðq þ 1Þ:
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* Let Pn ¼ ðd½x1	 þ?þ d½xn	Þ=n be the empirical measure of a sample ½x1	;y; ½xn	
in FPq:

Suppose that n4q þ 1 and that the sample is in general position, i.e., that any
non-trivial projective subspace of dimension k of FPq contains at most k þ 1

points of the sample. Then MLEGðPnÞ is well-defined (see Kent and Tyler [8] for
the real case).

If noq þ 1; then MLEGðPnÞ does not exist.

If n ¼ q þ 1 and the sample is in general position, then the maxima of cGPn
form

a submanifold of dimension q of YF
q (see Olcay and Kent (1998) for the real case).

If q ¼ 3; nX6 is even and all (distinct) data lie on two skew lines of FP3 with

half of them on each line, then the maxima of cG
Pn

form a one-dimensional

submanifold of YF
q :

Theorem 1 also holds with slight changes for real or complex Cauchy distributions.
In this case, P is a Borel probability distribution on Fq and projective subspaces of
FPq should be replaced by affine subspaces of Fq; i.e. translates of linear subspaces.

In the case of the shape space Sqþ2
2 DCPq; the complex field F ¼ C is relevant. To

apply Theorem 1, we need a convenient description of projective subspaces of CPq in
terms of shapes. We propose a construction of such subspaces by means of
barycentres in Appendix B.

4. Convexity of log-likelihood

Every parameter yAYF
q of the angular Gaussian model ðGyÞyAYF

q
defines a scalar

product and a norm

ðxjyÞy ¼ x�y�1y and jjxjjy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxjxÞy

q
ðyAYF

q ; x; yAFqþ1Þ ð7Þ

on the linear space Fqþ1: Given a probability distribution P on FPq; we put

rPðyÞ ¼
Z
FPq

r½x	ðyÞ dPð½x	Þ; ðyAYF
qÞ: ð8Þ

where

r½x	ðyÞ ¼ logðjjxjj2y=jjxjj
2Þ ð½x	AFPqÞ

In view of Eqs. (1) and (4), rP is the angular Gaussian log-likelihood function cGP up

to a constant negative factor.

We study the minima of rP; i.e. the maxima of cGP ; by restricting the function rP to

certain curves g :R-YF
q ; which should be sufficiently general for catching all minima

of the function rP:
Given a square matrix v of order q þ 1 with coefficients in F; we call a curve

g :R-YF
q a geodesic of velocity v if it satisfies the differential equation ’gðtÞ ¼ vgðtÞ:
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The solution gðtÞ ¼ ðexp tvÞgð0Þ must lie in YF
q ; i.e., the matrices gðtÞ must be self-

adjoint of determinant 1 for all tAR: This imposes some conditions on the matrix v;

besides the obvious condition gð0ÞAYF
q on the starting point.

Given yAYF
q ; call a matrix A of order q þ 1 self-y-adjoint if ðAxjyÞy ¼ ðxjAyÞy for

all x; yAFqþ1; i.e., if it coincides with its y-adjoint yA�y�1: Denote by Sy the linear
space of self-y-adjoint matrices of order q þ 1 and trace 0. Then, the condition on v

we are looking for is

ðexp tvÞyAYF
q for all tAR 3 yAYF

q and vASy:

In fact, if the matrix gðtÞ ¼ ðexp tvÞy is self-adjoint for all tAR; then its derivative

’gð0Þ ¼ vy must be self-adjoint too, so yv�y�1 ¼ v; i.e., v is self-y-adjoint. Conversely,

if yv�y�1 ¼ v; then yðvkÞ�y�1 ¼ vk for all non-negative integers k; so yðexp tvÞ�y�1 ¼
exp tv; hence gðtÞ� ¼ gðtÞ: Moreover, the determinant of the matrix gðtÞy�1 ¼ exp tv

is 1 for all tAR if and only if the trace of v is 0.

Remark 2. As will be shown in Appendix A, the curves gðtÞ ¼ ðexp tvÞy (tAR) with

yAYF
q and vASy are exactly the geodesics—in the sense of differential geometry—of

the parameter space YF
q endowed with its symmetric space structure.

A real-valued function f on YF
q is called convex if its restriction f ðgðtÞÞ (tAR) to

any geodesic g is convex in the usual sense (see e.g. [3, 1.6.4 p.24]).

Theorem 2. For any Borel probability measure P on the (real or complex) projective

space FPq; the angular Gaussian log-likelihood rP is a convex function on the

parameter space YF
q : More precisely, its restriction to a geodesic of velocity v is strictly

convex if the measure P does not concentrate on the eigenaxes of the matrix v, and

affine linear otherwise.

Proof. In view of Eqs. (8) the restriction of the log-likelihood function rP along a
geodesic g of velocity v is

rgPðtÞ ¼ rPðgðtÞÞ ¼
Z
FPq

rg½x	ðtÞ dPð½x	Þ; ðtARÞ: ð9Þ

where

rg½x	ðtÞ ¼ r½x	ðgðtÞÞ ¼ logðjjxjj2gðtÞ=jjxjj
2Þ ð½x	AFPqÞ

In order to compute the derivatives of rg½x	; put gðtÞ ¼ jjxjj2gðtÞ: Then

’rg½x	ðtÞ ¼
’gðtÞ
gðtÞ and .rg½x	ðtÞ ¼

g̈ðtÞgðtÞ � ’gðtÞ2

gðtÞ2
:
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Given arbitrary vectors x and yAFqþ1;

d

dt
ðxjyÞgðtÞ ¼

d

dt
ðx�gðtÞ�1

yÞ ¼ �x�gðtÞ�1
’gðtÞgðtÞ�1

y ¼ �x�gðtÞ�1
vy

¼ � ðxjvyÞgðtÞ:

Thus ’gðtÞ ¼ �ðxjvxÞgðtÞ ¼ �ðvxjxÞgðtÞ and g̈ðtÞ ¼ ðvxjvxÞgðtÞ; hence

’rg½x	ðtÞ ¼ �
ðxjvxÞgðtÞ
ðxjxÞgðtÞ

ð10Þ

and

.rg½x	ðtÞ ¼
ðvxjvxÞgðtÞðxjxÞgðtÞ � ðxjvxÞ2gðtÞ

ðxjxÞ2gðtÞ
: ð11Þ

By the Cauchy–Schwarz inequality, .rg½x	ðtÞX0 for all tAR: Moreover, .rg½x	ðtÞ ¼ 0 for

some tAR if and only if vx is a multiple of x; i.e., iff ½x	 is an eigenaxis of v:
Let jjvjjsp be the spectral norm of the matrix v; i.e. the largest eigenvalue of v in

absolute value. Then jjvxjjgðtÞpjjvjjspjjxjjgðtÞ; hence j ’r
g
½x	ðtÞjpjjvjjsp and j .rg½x	ðtÞjpjjvjj2sp

for all ½x	AFPq and tAR: So, by Lebesgue’s dominated convergence theorem, the
order of integration and differentiation may be interchanged:

’rgPðtÞ ¼
Z
FPq

’rg½x	ðtÞ dPð½x	Þ and .rgPðtÞ ¼
Z
FPq

.rg½x	ðtÞ dPð½x	Þ: ð12Þ

This shows that .rgPðtÞX0 for all tAR and that .rgPðtÞ ¼ 0 for some tAR if and only if

the measure P concentrates on the eigenaxes of v; hence the theorem. &

5. Maximum likelihood equation

Theorem 3. Let P be a Borel probability measure on FPq: A parameter yAYF
q is a

MLE of P, i.e. minimizes rP; if and only ifZ
FPq

jðajxÞyj
jjajjyjjxjjy

� �2

dPð½x	Þ ¼ 1

q þ 1
for all ½a	AFPq; ð13Þ

or, equivalently, if and only if y solves the equation

y
q þ 1

¼
Z
FPq

xx�

x�y�1x
dPð½x	Þ: ð14Þ

In the real case, (14) gives Eq. (2) obtained by Tyler [15, p. 580], in the case
of the empirical measure of a sample. We need the following basic property of
geodesics.
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Proposition 1. Given y0; y1AYF
q ; there is a unique geodesic g :R-YF

q such that gð0Þ ¼
y0 and gð1Þ ¼ y1: In other words, the geodesic exponential map Expy0 : Sy0-YF

q ;

defined by Expy0 h ¼ ðexp hÞy0; is one-to-one and onto.

A direct verification is not difficult. In fact, this result holds for any Hadamard
manifold, i.e. any simply connected complete Riemannian manifold of non-positive
sectional curvature (see e.g. [3, 1.1.4, p. 19]).

The proof of Theorem 3 uses another ingredient.

Lemma 1. Every matrix vASy (yAYF
q) is a linear combination

v ¼
Xqþ1

k¼1

lkwak
ðlkARÞ;

where a1;y; aqþ1 are non-zero vectors of FPq and waASy is defined by

wax ¼ ðajxÞy
ðajaÞy

a � 1

q þ 1
x ða; xAFqþ1; aa0Þ: ð15Þ

Being self-y-adjoint, the matrix vASy is diagonalizable and its eigenvalues are real.

Let a1;y; aqþ1AFqþ1 be eigenvectors of v with ðaijajÞy ¼ 0 for iaj; and l1;y; lqþ1

the corresponding eigenvalues.
Let pa denote the y-orthogonal projector onto an axis ½a	AFPq: It is given by

pax ¼ ðajaÞ�1
y ðajxÞya (xAFqþ1Þ i.e. pa ¼ ða�y�1aÞ�1

aa�y�1 in matrix notation. As v is

diagonal with respect to the y-orthogonal base a1;y; aqþ1; we can write it as v ¼Pqþ1
k¼1 lkpak

: But
Pqþ1

k¼1 lk ¼ 0 since the trace of v is 0. So, v ¼
Pqþ1

k¼1 lkwak
; where

wa ¼ pa � ðq þ 1Þ�1
IASy:

Proof of Theorem 3. If rP has a minimum at yAYF
q then ’rgPð0Þ ¼ 0 for all geodesics g

with gð0Þ ¼ y: We observe that the converse also holds. In fact, given any y1AYF
q ; let

g be the unique geodesic with gð0Þ ¼ y and gð1Þ ¼ y1 (Proposition 1). By hypothesis,

’rgPð0Þ ¼ 0: Thus, by convexity of rgP (Theorem 2), rPðyÞ ¼ rgPð0ÞprgPð1Þ ¼ rPðy1Þ;
which shows that y is a minimum of rP:

On the other hand, by Eqs. (10) and (12), the condition ’rgPð0Þ ¼ 0 means

Z
FPq

ðxjvxÞy
ðxjxÞy

dPð½x	Þ ¼ 0 for all vASy:

According to Lemma 1, this amounts to

Z
FPq

ðxjwaxÞy
ðxjxÞy

dPð½x	Þ ¼ 0 for all aAFqþ1
\f0g;
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which is condition (13) by taking account of Definition 15. Eq. (14) is just a rewriting

of (13): ðajxÞ2y ¼ a�y�1xx�y�1a; and (13) becomes

a�y�1a

q þ 1
¼ a�y�1

Z
FPq

xx�

ðxjxÞ2y
dPð½x	Þ

 !
y�1a for all ½a	AFPq;

giving the result. &

6. Behaviour of log-likelihood at infinity

Let gðtÞ ¼ ðexp tvÞy (tAR) be the geodesic of non-zero velocity vASy issuing from

y ¼ gð0Þ: We are interested in the limit of the log-likelihood rgPðtÞ along g; or rather

of its derivative ’rgPðtÞ; as t-N: The result depends on the spectral decomposition of

the matrix v:
As the matrix v is self-y-adjoint, its eigenvalues are real. We also call them the

eigenvalues l14l24?4ls of the geodesic g: The corresponding eigenspaces
E1;y;Es are pairwise y-orthogonal, i.e., ðxijxjÞy ¼ 0 for xiAEi; xjAEj and iaj:

Moreover, Fqþ1 ¼ E1"?"Es: Let pk be the y-orthogonal projector onto Ek; i.e.
the unique self-y-adjoint matrix with range Ek; such that pkpk ¼ pk: Note that pipj ¼
0 for iaj and that p1 þ?þ ps ¼ I : According to the spectral theorem, v ¼
l1p1 þ?þ lsps and exp tv ¼ el1tp1 þ?þ elstps: Given ½x	AFPq; it follows
according to Definition 7 that

ðxjxÞgðtÞ ¼ ðxjðexp� tvÞxÞy ¼ e�l1tjjp1xjj2y þ?þ e�lstjjpsxjj2y
and

ðxjvxÞgðtÞ ¼ ðxjðexp� tvÞvxÞy ¼ l1e�l1tjjp1xjj2y þ?þ lse
�lstjjpsxjj2y:

Thus, by Eq. (10),

’rg½x	ðtÞ ¼ � l1e�l1tjjp1xjj2y þ?þ lse
�lstjjpsxjj2y

e�l1tjjp1xjj2y þ?þ e�lstjjpsxjj2y
:

Putting mð½x	Þ ¼ maxfk ¼ 1;y; sjpkxa0g; we get

lim
t-þN

’rg½x	ðtÞ ¼ �lmð½x	Þ:

This is a simple function of ½x	: So we may interchange limit and integration with
respect to the probability measure P: Taking Eq. (12) into account, we obtain

lim
t-þN

’rgPðtÞ ¼ �
Z
FPq

lmð½x	Þ dPð½x	Þ:

In order to put this result into a neater form, consider the projective subspaces

Fk ¼f½x	AFPqjpkþ1x ¼ pkþ2x ¼ ? ¼ psx ¼ 0g

¼f½x	AFPqjxAE1 þ E2 þ?þ Ekg ðk ¼ 1;y; s � 1Þ:
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The sequence F1C?CFs�1 is an important characteristic of the geodesic g; called its
flag (see [3, 2.12.8] for the real case). As mð½x	Þ ¼ k if and only if ½x	A ¼ Fk\Fk�1

(where Fs is defined as FPq),Z
FPq

lmð½x	Þ dPð½x	Þ

¼ l1PðF1Þ þ l2PðF2\F1Þ þ?þ ls�1PðFs�1\Fs�2Þ þ lsPðFPq
\Fs�1Þ

¼ ðl1 � l2ÞPðF1Þ þ?þ ðls�1 � lsÞPðFs�1Þ þ ls:

With the eigenvalue differences ak ¼ lk � lkþ1 (k ¼ 1;y; s � 1),

lim
t-þN

’rgPðtÞ ¼ �ls �
Xs�1

k¼1

akPðFkÞ:

But the trace of the matrix vASy is zero, so l1 dim E1 þ?þ ls dim Es ¼ 0: Taking
the equalities dim Fk þ 1 ¼ dim E1 þ?þ dim Ek into account, we find

ls ¼ � 1

q þ 1
½a1ðdim F1 þ 1Þ þ?þ as�1ðdim Fs�1 þ 1Þ	: ð16Þ

Replacing this value of ls into the previous equation yields

lim
t-þN

’rgPðtÞ ¼
Xs�1

k¼1

ak

dim Fk þ 1

q þ 1
� PðFkÞ

� �
: ð17Þ

From this equation and Theorem 2, some conclusions can be drawn on the global

behaviour of the functions rgP; which we sum up in the following theorem. We denote

by V1;y;Vs the projective subspaces of FPq corresponding to the eigenspaces
E1;y;Es of the velocity v and call them projective eigenspaces of the geodesic g:

Theorem 4. Let g be a non-constant geodesic in YF
q of flag F1C?CFs�1 and projective

eigenspaces V1;y;Vs:

(1) If no Fk is P-hyperbolic and at least one is P-elliptic, then limt-N rgPðtÞ ¼ þN:
(2) If no Fk is P-elliptic and at least one is P-hyperbolic, then rgP is strictly decreasing

from þN to �N:
(3) If every Fk is P-parabolic and PðV1,?,VsÞo1; then rgP is strictly decreasing.

(4) The function rgP is constant if and only if every Vk is P-parabolic.

Proof. Suppose that no Fk is P-hyperbolic and at least one is P-elliptic. Then

limt-þN ’rgPðtÞ40 in view of Eq. (17), thus limt-þN rgPðtÞ ¼ þN:

If no Fk is P-elliptic and at least one is P-hyperbolic, then limt-þN ’rgPðtÞo0 in

view of Eq. (17). As the function rgP is convex by Theorem 2, it must be strictly

decreasing from þN to �N:

If every Fk is P-parabolic, then lim
t-þN

’rgPðtÞ ¼ 0 by Eq. (17). Moreover, if

PðV1,?,VsÞo1; the measure P does not concentrate on the eigenaxes of the
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velocity of g: By Theorem 2, the function rgP is strictly convex, thus strictly

decreasing.
If every Vk is P-parabolic, then PðV1,?,VsÞ ¼ PðV1Þ þ?þ PðVsÞ ¼

½ðdim Vk þ 1Þ þ?þ ðdim Vs þ 1Þ	=ðq þ 1Þ ¼ 1: Thus the function rgP is affine linear

by Theorem 2. On the other hand, V1,?VkDFk and Fk-ðVkþ1,?VsÞ ¼ |; so
PðFkÞ ¼ PðV1Þ þ?þ PðVkÞ ¼ ½ðdim V1 þ 1Þ þ?þ ðdim Vk þ 1Þ	=ðq þ 1Þ ¼
ðdim Fk þ 1Þ=ðq þ 1Þ: By Eq. (17), limt-þN ’rgPðtÞ ¼ 0; thus the function rgP must be

constant.

Suppose conversely that the function rgP is constant. Then PðV1,?,VsÞ ¼ 1 by

Theorem 2 and each Fk is P-parabolic by Eq. (17). From the relations

PðFk,Vkþ1,?,VsÞ ¼ 1 and Fk-ðVkþ1,?,VsÞ ¼ | follows PðFkÞ þ PðVkþ1 þ
?þ PðVsÞÞ ¼ 1: By recursion on k ¼ s; s � 1;y; 1; we find that each Vk is P-
parabolic. &

7. Existence and uniqueness of MLE’s

This section and the next one are devoted to the proof of Theorem 1. We need the
following property of geodesics:

Proposition 2. Let F1C?CFs�1 be distinct non-trivial projective subspaces of FPq

and a1;y; as�140 positive real numbers (sX2). For every parameter yAYF
q ; there is a

unique geodesic g issuing from gð0Þ ¼ y; of flag F1C?CFs�1 and eigenvalue

differences a1;y; as�1 (i.e., ak ¼ lk � lkþ1 where l14?4ls are the eigenvalues of

the velocity of g).

Proof. Consider the linear subspaces G1C?CGs�1 corresponding to F1C?CFs�1

(Fk ¼ f½x	AFPqjxAGk;xa0g) and put Gs ¼ Fqþ1: Let E1 ¼ G1 and define recursively
Ekþ1 ¼ fyAGkþ1jðxjyÞy ¼ 0 for all xAEkg: Then E ¼ E1"?"Es: Let pk be the y-
orthogonal projector onto Ek and define ls by equation (16) and lk ¼ lkþ1 þ ak

(k ¼ s � 1;y; 1). The geodesic we are looking for is gðtÞ ¼ el1tp1 þ?þ elstps: It is
unique because the last equation must be the spectral decomposition of g: &

Proof of Theorem 1. Part 1: Suppose that every non-trivial projective subspace of
FPq is P-elliptic. We show that the log-likelihood function rP admits a unique
minimum.

For the existence proof, choose an arbitrary parameter y0AYF
q and consider the

composite function f : Sy0-R given by f ðhÞ ¼ rPðExpy0ðhÞÞ; where Expy0 is the

geodesic exponential defined in Proposition 1. For any geodesic gðtÞ ¼ Expy0 tv

(vASy; va0), limt-þN rgPðtÞ ¼ limt-þN f ðtvÞ ¼ þN according to the first part of

Theorem 3. This ensures the existence of a minimum of f ; hence of rP:
For the uniqueness of the minimum y0 of rP; consider a parameter y1ay0 and let g

be the geodesic with gð0Þ ¼ y0 and gð1Þ ¼ y1 (Proposition 1). Let V1;y;Vs be the
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projective eigenspaces of g: Then PðV1,?,VsÞ ¼ PðV1Þ þ?þ
PðVsÞo½ðdim Vk þ 1Þ þ?þ ðdim Vs þ 1Þ	=ðq þ 1Þ ¼ 1 according to the P-ellipti-

city condition. By Theorem 2, rgP is strictly convex. So, rPðy0Þ ¼ rgPð0ÞorgPð1Þ ¼
rPðy1Þ:

Part 2: Suppose that FPq contains a P-hyperbolic projective subspace V : Let g be a
geodesic of flag reduced to V (cf. Proposition 2). According to the second point of

Theorem 4, rgP decreases from þN to �N: So infyAYF
q
rPðyÞ ¼ �N and rP has no

minimum.
Part 3: Suppose that FPq contains a P-parabolic projective subspace. We first

prove the alternative: either rP has no minimum or FPq decomposes into the direct
sum of minimal P-parabolic projective subspaces. This requires a preparation.

Lemma 2. Let F be a P-parabolic projective subspace of FPq: If FPq does not

decompose into the direct sum of F and another projective subspace F̃; then rP has no

minimum.

Proof. Let y be an arbitrary parameter and let g be a geodesic issuing from gð0Þ ¼ y
of flag reduced to F (cf. Proposition 2). The eigenaxes of the velocity matrix vASy lie
either in F or in the complemetary subspace

F̃ ¼ f½y	AFPqjðxjyÞy ¼ 0 for all ½x	AFg:

By hypothesis, F̃ is not P-parabolic, hence PðF,F̃Þ ¼ PðFÞ þ PðF̃Þo1: According

to the third part of Theorem 4, the function rgP is strictly monotone decreasing. Thus

the parameter y does not minimize rP: &

Now, let V1 ¼ F1 be a minimal P-parabolic subspace of FPq: Suppose that FPq

decomposes into the direct sum of F1 and some projective subspace F̃1: In the
opposite case, rP has no minimum according to Lemma 2. Let V2 be a minimal P-

parabolic subspace of F̃2: If V2 ¼ F̃2; then FPq is the direct sum of the minimal P-
parabolic subspaces V1 and V2: Otherwise, we apply the same process to the smallest
projective subspace F2 containing V1 and V2; and so on. At the end, either we find
that rP has no minimum or we get a direct sum decomposition of FPq into minimal
P-parabolic projective subspaces V1;y;Vs: &

8. The decomposable case

In this section, we make precise and prove part 3(a) of Theorem 1. It is our
purpose to describe the set of all angular Gaussian maximum likelihood estimates of
P; i.e. of all minima of rP: Perhaps the neatest way to achieve this goal is to work
directly with positive definite quadratic forms on linear spaces, rather than
representing them by positive definite matrices.
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Let E be a linear space over F: A quadratic form p : E-R can be written in a
unique way as pðxÞ ¼ ðxjxÞp (xAE), where ðxjyÞpAF (x; yAE) is a symmetric bilinear

form in the real case, and a Hermitian form in the complex case. Let PDðEÞ be the
set of positive definite quadratic forms on E:

We denote by YðEÞ ¼ f½p	jpAPDðEÞg (½p	 ¼ flpjl40g) the space of positive

quadratic forms on E; up to a positive factor. The parameter space YF
q can be

identified with YðFqþ1Þ by associating to the positive definite self-adjoint matrix

yAYF
q the class ½p	AYðFqþ1Þ of the quadratic form pðxÞ ¼ x�y�1x (xAFqþ1).

Let y ¼ ½p	AYðEÞ: Given a linear subspace E1 of E; we call y1 ¼ ½p1	AYðE1Þ the
restriction of y to E1 if p1ðxÞ ¼ pðxÞ for all xAE1: We say that two linear subspaces
E1 and E2 of E are y-orthogonal if ðx1jx2Þp ¼ 0 for all x1AE1 and x2AE2:

Theorem 5. Let P be a Borel probability measure on FPq and suppose that FPq contains

no P-hyperbolic projective subspaces. Let Fqþ1 ¼ E1"?"Es be a direct sum

decomposition into linear subspaces and let Vk ¼ f½x	jxAEk; xa0g be the projective

space corresponding to Ek: Suppose that all Vk are minimal P-parabolic. Let Pk be the

Borel probability measure on Vk defined by

PkðAÞ ¼ q þ 1

dim Vk þ 1
PðAÞ for every Borel subset A of Vk: ð18Þ

Then, every Pk has a unique angular Gaussian maximum likelihood estimate yk ¼
½pk	 ¼ MLEGðPkÞAYðEkÞ:

Moreover, a parameter yAYðFqþ1ÞDYF
q is an angular Gaussian maximum

likelihood estimate of P if and only if E1;y;Es are pairwise y-orthogonal and the

restriction of y to Ek is yk for k ¼ 1;y; s:

Corollary 1. Under the hypotheses of the preceding theorem, put yk ¼ ½pk	: Then, the

set of angular Gaussian maximum likelihood estimates of P, i.e. the set of minima of

rP; consists of those y ¼ ½p	AYðFqþ1ÞDYF
q that can be represented by a positive

definite quadratic form p on E defined by

pðx1 þ?þ xsÞ ¼ l1p1ðx1Þ þ?þ lspsðxsÞ for all xkAEk; ð19Þ

where l1;y; ls are positive real numbers. It is a submanifold of dimension s � 1 of YF
q

since we can choose lk ¼ eak for k ¼ 1;y; s � 1 and ls ¼ 1 with arbitrary

ða1;y; as�1ÞARs�1:

Proof of Corollary 1. Suppose, as in the conclusion of Theorem 5, that yk ¼ ½pk	 is
the restriction of y ¼ ½p	 to Ek and that ðxjjxkÞp ¼ 0 for all xjAEj; xkAEk and jak:

Then, there is a positive real number lk such that pðxkÞ ¼ lkpkðxkÞ for any xkAEk

and

pðx1 þ?þ xsÞ ¼ ðx1 þ?þ xsjx1 þ?þ xsÞp ¼ ðx1jx1Þp þ?þ ðxsjxsÞp

¼ pðx1Þ þ?þ pðxsÞ ¼ l1p1ðx1Þ þ?þ lspsðxsÞ:
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Suppose conversely that condition (19) holds. In particular, pðxkÞ ¼ lkpkðxkÞ for any
xkAEk: Thus ½lkpk	 ¼ ½pk	 ¼ yk is the restriction of ½p	 ¼ y to Ek: Condition (19) also
implies pðxj þ xkÞ ¼ ljpjðxjÞ þ lkpkðxkÞ ¼ pðxjÞ þ pðxkÞ for xjAEj; xkAEk and jak:

Then

ðxj jxjÞp þ ðxkjxkÞp ¼ðxj þ xkjxj þ xkÞp

¼ðxjjxjÞp þ ðxkjxkÞp þ ðxjjxkÞp þ ðxkjxjÞp;

hence ðxjjxkÞp þ ðxkjxjÞp ¼ 0: In the real case, ðxkjxjÞp ¼ ðxjjxkÞp so ðxjjxkÞp ¼ 0: In

the complex case ðxkjxjÞp is the conjugate of ðxj jxkÞp; thus the real part of ðxj jxkÞp is

zero. The imaginary part of ðxjjxkÞp is also zero since it is the real part of ðixjjxkÞ
(i ¼

ffiffiffiffiffiffiffi
�1

p
). In both cases, the linear subspaces E1;y;Es are pairwise y-

orthogonal. &

Proof of Theorem 5. By hypothesis, Vk contains neither P-hyperbolic nor P-
parabolic proper projective subspaces. In other words, taking Eq. (18) into account,
all non-trivial projective subspaces of Vk are Pk-elliptic. Thus, by the first point of

Theorem 1, yk ¼ MLEGðPkÞAYðVkÞ is well-defined.
We come to the main part of Theorem 5. Suppose first that the restriction of

yAYðFqþ1Þ to Ek is yk for k ¼ 1;y; s and that ðaijajÞp ¼ 0 for all aiAEi; ajAEj and

iaj: We prove that y ¼ ½p	 satisfies the maximum likelihood equation of Theorem 3.
As PðV1,?,VsÞ ¼ 1;

ðq þ 1Þ
Z
FPq

jðajxÞpj
2

ðxjxÞp

dPð½x	Þ ¼
Xs

k¼1

ðq þ 1Þ
Z

Vk

jðajxÞpj
2

ðxjxÞp

dPð½x	Þ

¼
Xs

k¼1

ðdim Vk þ 1Þ
Z

Vk

jðajxÞpj
2

ðxjxÞp

dPk ð½x	Þ

for any aAFqþ1: We can write a ¼ a1 þ?þ as with akAEk since Fqþ1 ¼
E1"?"Es: As the restriction yk of y ¼ ½p	 to Ek is the MLE of Pk; it satisfies
the maximum likelihood equation (13)

ðdim Vk þ 1Þ
Z

Vk

jðakjxÞpj
2

ðxjxÞp

dPkð½x	Þ ¼ ðakjakÞp

of Theorem 3. In this equation, ðakjxÞp ¼ ðajxÞp since xAEk; hence

ðq þ 1Þ
Z
FPq

jðajxÞpj
2

ðxjxÞp

dPð½x	Þ ¼
Xs

k¼1

ðdim Vk þ 1Þ
Z

Vk

jðajxÞpj
2

ðxjxÞp

dPkð½x	Þ

¼
Xs

k¼1

ðakjakÞp ¼ ðajaÞp:

So, by Theorem 3, y is a MLE of P: This proves the ‘if’ implication of Theorem 5.
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Conversely, let *yAYF
q be an arbitrary angular Gaussian maximum likelihood

estimate of P: Choose a parameter yAYðFqþ1ÞDYF
q such that E1;y;Es are pairwise

y-orthogonal and the restriction of y to Ek is yk for k ¼ 1;y; s: Let g be the geodesic

with gð0Þ ¼ y and gð1Þ ¼ *y (Proposition 1). As both y and *y minimize rP; the

function rgP has a minimum at 0 and 1. According to Theorem 2, rgP is convex, thus

rgPðtÞ is constant for 0ptp1: But rgP is either strictly convex or affine linear, so it

must be constant.

Let Ẽ1;y; Ẽr be the eigenspaces of the velocity vASy of g and let Ṽk be

the projective subspace corresponding to Ẽk: As rgP is constant, the

projective eigenspaces Ṽ1;y; Ṽr are P-parabolic by the fourth point of
Theorem 4. The projective space FPq has two direct sum decompositions

V1;y;Vs and Ṽ1;y; Ṽr into P-parabolic subspaces. As each Vk is minimal P-

parabolic, it can be proven that each Ẽj is a sum of some Ek’s. In other words,

the velocity of g can be written as v ¼ l1p1 þ?þ lsps; where pk is the y-orthogonal
projector onto Ek and l1;y; ls are (non-necessarily distinct) real numbers such

that
Ps

k¼1 lk dim Ek ¼ 0: It follows that gðtÞ ¼ ½el1tp1 þ?þ elstps	y; in

particular *y ¼ gð1Þ ¼ ½el1p1 þ?þ elsps	y: Given xiAEi and xjAEj with iaj;

ðxijxjÞ*y ¼ ðxij½e�l1p1 þ?þ e�lsps	xjÞy ¼ 0 since pixj ¼ 0 for iaj: This proves that

the subspaces E1;y;Es are *y-orthogonal.
It remains to show that the restriction of *y ¼ ½p̃	AYðFqþ1Þ to Ek is the maximum

likelihood estimate yk ¼ MLEGðPkÞAYðEkÞ: By Theorem 3,

ðq þ 1Þ
Z
FPq

jðajxÞp̃j
2

p̃ðaÞp̃ðxÞ dPð½x	Þ ¼
Xs

j¼1

ðdim Vj þ 1Þ
Z

Vj

jðajxÞp̃j
2

p̃ðaÞp̃ðxÞ dPkð½x	Þ ¼ 1

for all aAFqþ1: In particular, for a ¼ akAEk and ½x	AVj with jak; ðakjxÞp̃ ¼ 0 since

Ek and Ej are *y-orthogonal. Thus

ðdim Vk þ 1Þ
Z

Vk

jðakjxÞp̃j
2

p̃ðakÞp̃ðxÞ
dPkð½x	Þ ¼ 1

for all akAEk: So, by Theorem 3, the restriction of *y to Ek is a MLE of Pk: As yk is

the unique MLE of Pk; the restriction of *y to Ek must be yk: This completes the proof
of Theorem 5. &
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Appendix A. Equivariance and symmetric spaces

Let gASLðq þ 1; FÞ be a square matrix of order q þ 1 and determinant 1,

and XAFqþ1 a random vector of law Nð0; yÞ: The law of the image vector

gXAFqþ1 under g is Nð0; gyg�Þ: So, letting g act on axes ½x	AFPq by
g½x	 ¼ ½gx	AFPq; we find that the image measure of the angular Gaussian
distribution Gy under g is

gGy ¼ Ggyg� ðgASLðq þ 1; FÞ; yAYF
qÞ: ðA:1Þ

As a consequence, the maximum likelihood estimator is equivariant under the action
of SLðq þ 1; FÞ: given a probability distribution P on FPq;

MLEGðgPÞ ¼ gMLEGðPÞg� ðgASLðq þ 1; FÞÞ; ðA:2Þ

where gP is the image measure of P under g: Equivariance has been exploited by
McCullagh [14] in the real case of dimension 1.

The isotropy group of the uniform distribution GI is the special orthogonal
group SOðq þ 1Þ ¼ fgASLðq þ 1;RÞjgg0 ¼ Ig in the real case, and the special
unitary group SUðq þ 1Þ ¼ fgASLðq þ 1;CÞjgg� ¼ Ig in the complex case.

Moreover, the group SLðq þ 1; FÞ acts transitively on YF
q since any matrix

yAYF
q can be decomposed as y ¼ gg�; where gASLðq þ 1; FÞ is e.g. a triangular

matrix (Cholesky decomposition). It follows that the parameter space YF
q is the

homogeneous space

YR
q DSLðq þ 1;RÞ=SOðq þ 1Þ in the real case ðA:3Þ

and

YC
q DSLðq þ 1;CÞ=SUðq þ 1Þ in the complex case:

These are, in fact, symmetric spaces of non-compact type (see [4, Chapters IV, VI]).
More details on SLðq þ 1;RÞ=SOðq þ 1Þ can be found in [3].

Appendix B. Barycentric combinations of shapes

Let ðxð1Þ;y; xðnÞÞ be a configuration of nX2 labelled points in the plane R2DC;
not degenerating into a single point. A plane n-shape is given by such a configuration,
up to an orientation preserving similarity. By a translation, we can represent a shape

by a central configuration ðxð1Þ;y; xðnÞÞ with xð1Þ þ?þ xðnÞ ¼ 0:

Consider the hyperplane Hn ¼ fðxð1Þ;y; xðnÞÞACnjxð1Þ þ?þ xðnÞ ¼ 0g: The

shape manifold is the complex projective space Sn
2 ¼ f½x	jxAHn; xa0gDCPn�2:

Here, ½x	 ¼ flxjlACgASn
2 denotes the shape of a central configuration x ¼

ðxð1Þ;y; xðnÞÞAHn\f0g of n points in the plane.
Let V be the projective span of given shapes ½x1	;y; ½xr	ASn

2; i.e. the smallest

projective subspace of Sn
2DCPn�2 containing them. It consists of the shapes ½x	 of all
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non-zero linear combinations x ¼ l1x1 þ?þ lrxr with l1;y; lrAC: We can also
represent the shapes ½xk	 by the configurations yk ¼ rlkxx (if some yk is zero, then
cross it). Then x ¼ ðy1 þ?þ yrÞ=r: We call the configuration x the barycentre of the
central configurations y1;y; yr:

Let us say that a shape ½x	ASn
2 is a barycentric combination of a set S of

shapes if the central configuration x can be obtained as the barycentre of a
finite set of central configurations y1;y; yr with ½y1	;y; ½yr	AS: With this
terminology,

Proposition 3. The projective span of a set of shapes in Sn
2 consists of their

barycentric combinations. Consequently, a set of shapes is a projective subspace

of the shape manifold Sn
2 if and only if it is closed under barycentric

combinations.
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