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Abstract

Uncertain knowledge can be represented in the framework of argumentation sys-
tems. In this framework, uncertainty is expressed using so-called assumptions.
Depending on the setting of the assumptions, a given hypothesis of interest
can be proved or falsified. The main goal of assumption-based reasoning is to
determine the set of all supporting arguments for a given hypothesis. Such a
supporting argument is a particular setting of assumptions.

The assignment of probabilities to assumptions leads to the framework of proba-
bilistic argumentation systems and allows an additional quantitative judgement
of a given hypothesis. One possibility to compute the degree of support for a
given hypothesis is to compute first the corresponding set of supporting ar-
guments and then to derive the desired result. The problem of this approach
is that the set of supporting arguments is sometimes very huge and can’t be
represented explicitly.

This thesis proposes an alternative way for computing degrees of support which
is often superior to the first approach. Instead of computing a symbolic result
from which the numerical result is derived, we avoid symbolic computations
right away. This can be done due to the fact that degree of support corresponds
to the notion of normalized belief in Dempster-Shafer theory. We will show
how a probabilistic argumentation system can be transformed into a set of
independent mass functions.

For efficient computations, the local computation framework of Shenoy is used.
In this framework, computation is based on a message-passing scheme in a join
tree. Four different architectures could be used for propagating potentials in
the join tree. These architectures correspond to a complete compilation of the
knowledge which allows to answer queries fast. In contrast, this thesis proposes
a new method which corresponds to a partial compilation of the knowledge.
This method is particularly interesting if there are only a few queries. In addi-
tion, it can prevent that the join tree has to be reconstructed in order to answer
a given query.

Finally, the language ABEL is presented. It allows to express probabilistic ar-
gumentations systems in a convenient way. We will show how several examples
from different domains can be modeled using ABEL. These examples are also
used to point out important aspects of the computational theory presented in
the first chapters of this thesis.
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Zusammenfassung

Das Konzept der Argumentations-Systeme dient dem Zweck der Darstellung
von insicherer oder unpräziser Information. Unsicherheit wird in Argumentations-
Systemen durch sogenannte Annahmen dargestellt. Eine gegebene Hypothese
kann dann in Abhängigkeit der Annahmen bewiesen oder verworfen werden.
Hauptaufgabe des Annahmen-basierten Schliessens ist die Bestimmung von Ar-
gumenten welche eine gegebene Hypothese stützen.

Die Zuordnung von Wahrscheinlichkeiten zu den Annahmen führt zum Konzept
der probabilistischen Argumentations-Systeme. Eine zusätzliche quantitative
Beurteilung einer gegebenen Hypothese wird dadurch möglich. Ein erster Ansatz
den Grad der Unterstützung einer Hypothese zu berechnen besteht darin, zuerst
die Menge aller stützenden Argumente zu berechnen Das gewünschte numerische
Resultat kann dann daraus abgeleitet werden. Häufig ist dieser Ansatz jedoch
nicht durchführbar weil die Menge der unterstützenden Argumente zu gross
und deshalb nicht explizit darstellbar ist.

In dieser Arbeit stellen wir einen alternativen Ansatz zur Berechnung des Grades
der Unterstützung einer Hypothese vor. Dieser alternative Ansatz ist oft ef-
fizienter als der ersten Ansatz. Anstatt ein symbolisches Zwischenresultats zu
berechnen von welchem dann das numerische Endresultat abgeleitet wird, ver-
meiden wir symbolisches Rechnen schon ganz zu Beginn. Dies ist möglich weil
der Grad der Unterstützung zum Begriff der Glaubwürdigkeit in der Dempster-
Shafer Theorie equivalent ist. Wir werden zeigen wie ein gegebenes probabilis-
tisches Argumentations-System in eine Menge von equivalenten Mass Funktio-
nen überführt werden kann.

Als Grundlage für die Berechnungen wird das Konzept der Valuations Netz-
werke verwendet. Dadurch wird versucht, die Berechnungen möglichst effizient
durchzuführen. Es gibt dabei vier verschiedene Rechenarchitekturen. Diese vier
Rechenarchitekturen entsprechen einer vollständigen Kompilation der vorhan-
denen Informationen. Der Vorteil davon ist dass Abfragen dann sehr schnell
beantwortet werden können. Im Gegensatz dazu stellen wir in dieser Arbeit
eine neue Methode vor die eher einer partiellen Kompiliation der vorhandenen
Informationen entspricht. Diese neue Methode ist vorallem interessant falls nur
wenige Abfragen zu beantworten sind. Des weitern kann diese Methode verhin-
dern, dass ein Valuationsnetz zur Beantwortung einer Abfrage neu konstruiert
werden muss.

Zum Schluss geben wir eine Einführung in die Modellierspreche ABEL. Diese
Sprache erlaubt, probabilistische Argumentations-Systeme auf eine geeignete
und komfortable Art und Weise zu formulieren. Wir zeigen wie Beispiele
aus verschiedenen Anwendungsgebieten mit ABEL modelliert werden köennen.
Diese Beispiele werden auch dazu verwendet, wichtige Aspekte der in den ersten
Kapiteln dieser Arbeit dargestellten Rechentheorie zu unterstreichen.
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1
Introduction

Inconsistent, inaccurate, and uncertain information is an elementary part of the
world we are living in. For human beings it is not really a problem to deal with
that kind of information. Each one of us is able to take reasonable decisions
based on inconsistent, inaccurate, and uncertain information. In contrast, com-
puters deal with consistent, precise, and certain information. The integration
of real-world information on computers is a main topic of Artificial Intelligence.
Several methods and concepts have been developed in this subfield of computer
science to represent and to draw inferences which are based on real-world in-
formation. In this work, we focus especially on numerical computations for
drawing inferences in the field of assumption-based reasoning.

1.1 Motivation and Purpose

The German mathematician and logician Gottfried Wilhelm Leibniz (1646-
1716), who invented independently of Sir Isaac Newton the differential and
integral calculus, recommended several times that serious attention should be
paid to develop a theory of probabilistic reasoning. In his Ars Conjectandi,
which was published posthumously, the Swiss mathematician Jacob Bernoulli
(1654-1705) did the first steps in that direction. He distinguished between
necessary and contingent sentences and studied what conclusions could be de-
rived in that case. The Swiss-German mathematician Johann Heinrich Lambert
(1728-1777) extended the work of Bernoulli in several aspects. In 1764, he pub-
lished Neues Organon, which is mainly about formal logic and probability
calculus.

More than two hundred years later, the statisticien Arthur Dempster studied
from a pure mathematical point of view upper and lower bounds of probability
distributions induced by a multivalued mapping. In (Dempster, 1967), he laid
the foundations of the so-called Dempster–Shafer theory. Glenn Shafer
continued the work of Dempster. Ten years later, he published (Shafer, 1976) a
theory of evidence, where inferences are drawn from diverse sources of evidence.

1



2 Chapter 1. Introduction

Short time later, he showed in (Shafer, 1979) that the reflections of Bernoulli
and Lambert can be considered as predecessor of his theorie of evidence.

Several autors have shown that Dempster-Shafer theory of evidence can be
conceived as a theory of probability of provability (Pearl, 1988; Laskey & Lehner,
1989) or as a reliability theory of reasoning with unreliable arguments (Kohlas,
1981; Kohlas, 1997; Besnard & Kohlas, 1995). By incorporating a symbolic part
into the formalism, the theory of hints (Kohlas & Monney, 1995) explicitly
pointed out the close connection to Logic.

The connection to Logic is even much more explicit in the closely related theory
of assumption-based reasoning (Kohlas & Monney, 1993; Kohlas & Haenni,
1996). There, uncertainty is expressed by so-called assumptions. Depending on
the setting of these assumptions, a given hypothesis of interest can be proved
or falsified. A particular setting of a collection of assumptions is called an ar-
gument. The main goal of assumption-based reasoning is to determine the set
of arguments in favor of a given hypothesis of interest. In that way, a qualita-
tive judgment of hypotheses is obtained. The assignment of probabilities to
assumptions leads to probabilistic argumentation systems (Haenni, 1998;
Anrig et al., 1999; Haenni et al., 2000). In that way, a quantitative judgment
of hypotheses is possible.

The aim of this work is to study the computation of quantitative judgments
in the field of probabilistic argumentation systems. A rather big impor-
tance will be attached to computational theories for efficient computations.
In particular, we will look at the framework of valuation networks (Shenoy,
1989; Shenoy, 1992; Shenoy, 1994), which allows local computation of marginals
in a join tree on the basis of a message-passing scheme.

1.2 Overview

In Chapter 2, we will introduce assumption-based reasoning. The main
objective of this theory is to derive arguments, that is, particular settings of
collections of assumptions, in favor or against a given hypothesis of interest.
The assignment of probabilities to assumptions then leads to probabilistic
argumentation systems and makes a quantitative judgment of hypotheses
possible. The notion of degree of support will be defined in this context.

The degree of support of a hypothesis can be obtained by first computing sym-
bolic arguments and then calculating the probability of the corresponding for-
mula. However, the set of symbolic arguments may be difficult or even im-
possible to compute if it is very large. The aim of this work is to propose an
alternative way for computing degrees of support. For this, we will introduce
in Chapter 3 the Dempster-Shafer theory of evidence.

In Chapter 4, we will build a bridge between probabilistic argumentation sys-
tems and Dempster-Shafer theory. In particular, we will show that a proba-
bilistic argumentation system can always be transformed into an equivalent set
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of independent potentials. Computing degree of support then corresponds to
computing normalized belief in Dempster-Shafer theory.

One way to obtain the normalized belief is to compute the joint potential by
combining each of these independent potentials. Unfortunately, the joint po-
tential can hardly ever be built explicitly in that way. A better way is given
by the framework of valuation networks which enables local computation
of marginals of a joint valuation. We will see in Chapter 5 that knowledge is
represented in this general framework by so-called valuations and inferences
are drawn using two operators called combination and marginalization.

The elimination of variables is of central importance in Valuation Networks.
By eliminating one variable after another, the marginal for an arbitrary set of
variables can be computed. In Chapter 6, we will discuss several heuristics for
determinating such a variable elimination sequence. In addition, we will
introduce the notion of A-disjoint join trees.

By the elimination of one variable after another, a join tree is constructed. Join
trees are especially valuable if several marginals have to be computed. Marginals
are then computed on the basis of a message-passing scheme. In Chapter 7, we
will look at the traditional approach, where an inward propagation phase
and an outward propagation phase is distinguished.

In Chapter 8, we will present an alternative approach, where outward propaga-
tion is replaced by a partial inward propagation. This alternative approach
is especially valuable if only a few queries have to be answered.

For efficient computations, it is very important that appropriate data structures
are used. In Chapter 9, we will therefore discuss implementation aspects
for doing numerical computations.

The language ABEL will be presented in Chapter 10. It represents a con-
venient way to express assumption-based knowledge and to formulate queries.
Thus, ABEL is not only a language, it is also the name of a software package
which includes a solver part for doing inference.

To consolidate the knowledge about ABEL, we will look in Chapter 11 at several
applications. The aim of this chapter is to fill the gap between practical
examples and the sometimes complicated mathematical theories.

Finally, the last chapter will give an idea in what direction future research will
go. Above all, we think that approximation methods are required because
exact computation is not feasible for many examples.

1.3 An Introductory Example

The graph shown in Figure 1.1 represents a communication network. It
consists of nodes a, b, x, y, and z, which are connected by communication wires
w1, . . . , w6. In order that a node can send a message to another node, there
must be at least one directed path from the former node the later. Such a
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directed path from one node to another is called a communication path. For
example, there are four possible communication paths between node a and node
b. These are the following:

〈w1−w5〉 ; 〈w1−w3−w6〉 ; 〈w2−w4−w6〉 ; 〈w2−w4−w3−w5〉

If one or several communication wires are broken, some point-to-point connec-
tions may be impossible. For example, if the communication wire w1 is broken,
node a can still communicate with node b because there are still two commu-
nication paths which connect node a with node b. These communication paths
are the following:

〈w2−w4−w6〉 ; 〈w2−w4−w3−w5〉

However, if in addition also the communication wire w2 is broken, then a mes-
sage which is sent from node a does never reach node b.

x b

z

y

w1

w2

w5

w3

w4

w6

a

Figure 1.1: A Small Communication Network.

Suppose now that the probability that a wire breaks down is given for each of the
communication wires. The problem to solve then is to compute the reliability
of a communication, this means that a message which is sent from one node
reaches another. One possible approach is to compute first all communication
paths between the two nodes. The reliability of the communication can then
be derived using the failure probabilities of the communication wires.

The main problem of this approach is that the set of possible communication
paths can be huge. For example, consider the communication network shown
in Figure 1.2. Its structure is similar to the previous communication network,
only that it contains more nodes and more communication wires.

For this bigger communication network, the set of communication paths be-
tween the node a and the node b is not as easy to compute as for the previous
communication network. It is almost certain that a human being would miss
some of the 46 possible communication paths. Nevertheless, a computer can
still compute all these communication paths quite efficiently. However, also the
electronic brain reaches its limits for even bigger communication networks. In
that case, the set of possible communication paths between two nodes can really
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Figure 1.2: A Bigger Communication Network.

be huge. The computation of the reliability of the communication between two
nodes then fails for that reason.

The aim of this work is to propose an alternative approach for computing nu-
merical results. Instead of computing a symbolic result (such as the set of
communication paths) from which the numerical result is derived, we avoid
symbolic computations right away. This alternative approach is often superior
to the first approach.
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2
Assumption-Based Reasoning

Classical propositional logic can be used to encode information or knowl-
edge. In particular, uncertainty can be incorporated by including so-called
assumptions which may or may not be true. Whether a given hypothesis can
be proved or not depends on the setting of these assumptions. Assumption-
based reasoning(Kohlas & Monney, 1993; Kohlas & Haenni, 1996) consists
then to derive arguments in favor or against the given hypothesis of interest,
that is, arguments which allow to prove or to falsify the hypothesis. Therefore,
an argument represents a particular setting of a collection of assumptions and
can be seen as a chain of possible events that makes the hypothesis true or
false. De Kleer’s assumption-based truth maintenance systems (ATMS)
represent a general architecture for determinating such arguments (de Kleer,
1986a; de Kleer, 1986b).

Although propositional logic allows to express a wide range of interesting prob-
lems, it is often not very convenient. This inconvenience can be omitted if its
generalization given by set constraint logic is used instead. The main dif-
ference to propositional logic is that variables in the language of set constraint
logic are not restricted to only two values.

The assignment of probabilities to the assumptions leads to the theory of
probabilistic argumentation systems (Haenni, 1998; Anrig et al., 1999)
and represents in some sense a combination of logic and probability theory.
The incorporation of probability theory can be considered as an added value
which allows a quantitative judgment of hypotheses.

In this chapter, the concept of probabilistic argumentation systems will
be introduced. For this, we will follow the approach given in (Haenni et al.,
2000). The main difference is that here, argumentation systems as well
as probabilistic argumentation systems will be based on set constraint
logic instead of classical propositional logic. The concept of probabilistic ar-
gumentation systems will allow us to define the important notions degree of
support and degree of possibility. However, we will first start with a short
description of classical propositional logic and its generalization given by set
constraint logic.

7
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2.1 Propositional Logic

The building blocks of propositional logic are atomic statements called propo-
sitions which can either be true or false. For a finite set of propositions
P = {p1, . . . , pn}, each pi ∈ P is called an atom . The symbol ⊥ repre-
sents the impossible statement and � represents the statement which is always
true. Often, the impossible statement is also called contradiction or falsity,
while tautology is usally used for the statement represented by �.

Compound formulas can be build using negation and logical connectors:

(1) atoms, ⊥, and � are formulas;

(2) if γ is a formula, then ¬γ is a formula;

(3) if γ and δ are formulas, then (γ ∧ δ), (γ ∨ δ), (γ → δ), and
(γ ↔ δ) are formulas.

Of course, unnecessary parentheses can be omitted by assigning priorities to
the logical connectors. The set LP of all formulas generated by the above
rules is called propositional language over P. A formula γ ∈ LP is called
propositional sentence.

2.1.1 Semantics

A propositional sentence can be evaluated by assigning truth values 0 (false) or
1 (true) to each proposition. The truth value of an arbitrary formula γ ∈ LP
can then be obtained according to Table 2.1.

γ δ ⊥ � ¬γ γ ∧ δ γ ∨ δ γ → δ γ ↔ δ

0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0
1 0 0 1 0 0 1 0 0
1 1 0 1 0 1 1 1 1

Table 2.1: Truth Values of Compound Formulas.

An assignment of truth values to the elements of P = {p1, . . . , pn} is called
interpretation relative to P. NP = {0, 1}n denotes the set of all 2n dif-
ferent interpretations. Every interpretation x ∈ NP can be seen as a point
x = (x1, . . . , xn) in the n-dimensional product space NP. Each component
xi ∈ {0, 1} of x is associated with the corresponding proposition pi ∈ P.

An interpretation x relative to P is called a model of γ ∈ LP if γ evaluates
to 1 under the interpretation x. The set of all models of γ is denoted by
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NP(γ). Clearly, NP(γ) ⊆ NP for all formulas γ ∈ LP . A formula γ is called
unsatisfiable if NP(γ) = ∅. Otherwise, γ is called satisfiable.

The notion of a model links propositional logic to the algebra of subsets of
interpretations:

(1) NP(⊥) = ∅,
(2) NP(�) = NP,

(3) NP(¬γ) = NP−NP(γ),

(4) NP(γ ∧ δ) = NP(γ) ∩NP(δ),

(5) NP(γ ∨ δ) = NP(γ) ∪NP(δ).

A formula γ ∈ LP entails another formula δ ∈ LP (denoted by γ |= δ), if
and only if NP(γ) ⊆ NP(δ). In this case, δ is a logical consequence of γ.
Furthermore, γ and δ are logically equivalent (denoted by γ ≡ δ), if and only
if NP(γ) = NP(δ). Note that logically equivalent formulas represent exactly the
same information.

2.1.2 Normal Forms

In propositional logic, the conjunctive and the disjunctive normal form are two
types of formulas which are particularly important. These types of formulas
are based on the notions of literals, clauses, and terms:

A positive literal is an element of P = {p1, . . . , pn}, while the elements of
¬P = {¬p1, . . . ,¬pn} are negative literals. P± = P ∪ ¬P denotes the set of
all literals. A clause is a disjunction �1∨· · ·∨ �s of literals �i ∈ P±. The empty
disjunction is also a clause and corresponds to ⊥. A clause is called proper,
if every propositional symbol appears at most once. The symbol DP represents
the set of all proper clauses. Similarly, a term is a conjunction �1 ∧ · · · ∧ �s
of literals �i ∈ P±. Here, the empty conjunction corresponds to �. A term is
called proper, if every propositional symbol appears at most once. Finally, CP
represents the set of all proper terms.

A conjunctive normal form (CNF for short) is a conjunction ϕ1 ∧ · · · ∧ ϕr

of proper clauses. Similarly, a disjunctive normal form (DNF for short) is a
disjunction ψ1∨· · ·∨ψr of proper terms. Note that every propositional sentence
can be transformed into an equivalent conjunctive or disjunctive normal form
(Chang & Lee, 1973). Often, CNF or DNF formulas are considered as sets of
clauses and terms. For example, if Γ is the set of clauses for γ and ∆ is the set
of terms for δ, it is often convenient to write Γ |= ∆, γ |= ∆, or Γ |= δ instead
of γ |= δ. Similarly, Γ ≡ ∆, γ ≡ ∆, or Γ ≡ δ is sometimes used instead of γ ≡ δ.
Furthermore, ¬Γ denotes the corresponding set of negated terms of ¬γ. Note
that the negation of a clause is a term and, similarly, the negation of a term is
a clause.
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2.2 Set Constraint Logic

Propositional logic is a formal language to describe statements about binary
variables. This is sufficient to express a certain class of problems. However,
describing the world on the basis of binary variables is sometimes not very
convenient. For that reason, propositional logic has been generalized to set
constraint logic (SCL for short) (Anrig et al., 1997c; Haenni & Lehmann,
1998). The main idea is that each variable can have a finite set of possible
values. Constraints about the possible true value of a variable are then the
atoms of the language. Such constraints therefore correspond somehow to the
notion of literals in propositional logic.

Set constraint logic is closely related to many-valued logic (MVL for short)
(Hähnle, 1994; Lu, 1996; Lu et al., 1994; Murray & Rosenthal, 1994). The idea
behind the MVL approach is that the set of possible truth values is extended
from {0, 1} to an arbitrary set Θ. Depending on properties of Θ (finite, infinite,
unordered, partially ordered, totally ordered, etc.), various classes of many-
valued logics can be defined (Hähnle & Escalada-Imaz, 1997). The case of a
finite and unordered set Θ leads to signed logic. The main difference between
signed logic and the SCL-framework is that for signed logic, the same set of
possible values is used for all variables. From this point of view, SCL is a more
general approach, since each variable has its own set of possible values.

The alphabet of set constraint logic is a finite set of variables V = {v1, . . . , vn}.
It is supposed that the true value of a variable v ∈ V is exactly one value of a
given set of values Θv called frame of v. An expression 〈v ∈ X〉, where X is a
subset of Θv, is called a set constraint. A set constraint 〈v ∈ {θi}〉, θi ∈ Θv,
is an assignment and is often abbreviated by 〈v = θi〉.
SCL-formulas can be build using negation and logical connectors:

(1) set constraints, ⊥ and � are SCL-formulas;

(2) if γ is a SCL-formula, then ¬γ is a SCL-formula;

(3) if γ and δ are SCL-formulas, then (γ ∧ δ), (γ ∨ δ), (γ → δ) and
(γ ↔ δ) are SCL-formulas.

Of course, unnecessary parentheses can be omitted by assigning priorities to the
logical connectors. The symbol LV denotes the set of all SCL-formulas which
can be generated by the above rules.

2.2.1 Semantics

The assignment of a specific value to every variable vi ∈ V is called an in-
terpretation. The set of all possible interpretations is denoted by NV =
Θv1×· · ·×Θvn . An interpretation x ∈ NV can be seen as a point x = (x1, . . . , xn)
in the n-dimensional product space NV . For a given interpretation x, the truth
value of a set constraint 〈vi ∈ X〉 is 1 (true) whenever xi ∈ X and 0 (false)
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otherwise. Given the truth values of the set constraints contained in a SCL-
formula, the truth value of the SCL-formula itself can be determined in the
same way as in propositional logic (see Subsection 2.1.1).

NV(γ) ⊆ NV denotes the set of all interpretations for which a SCL-formula γ
is true. γ entails another SCL-formula δ (denoted by γ |= δ), if and only if
NV(γ) ⊆ NV(δ). Furthermore, γ and δ are equivalent (denoted by γ ≡ δ),
if and only if NV(γ) = NV(δ). Note that equivalent SCL-formulas represent
exactly the same information. The set of variables occuring in a SCL-formula
ξ is called the domain of ξ and is denoted as d(ξ). Sometimes, we write N(γ)
for Nd(ξ)(ξ).

Some basic properties of SCL-formulas are given by axioms of set theory (Gries
& Schneider, 1993) and can be used for simplifying SCL-formulas:

(1) 〈v ∈ ∅〉 ≡ ⊥,

(2) 〈v ∈ Θv〉 ≡ �,

(3) ¬〈v ∈ X〉 ≡ 〈v ∈ (Θv −X)〉,
(4) 〈v ∈ X1〉 ∨ 〈v ∈ X2〉 ≡ 〈v ∈ (X1 ∪X2)〉,
(5) 〈v ∈ X1〉 ∧ 〈v ∈ X2〉 ≡ 〈v ∈ (X1 ∩X2)〉.

2.2.2 Normal Forms

The conjunctive and the disjunctive normal form are two types of formulas
which are particularly important. In set constraint logic, these types of formulas
are based on the notions of proper SCL-clauses and proper SCL-terms:

A set constraint 〈v ∈ X〉 is called proper, if X �= ∅ and X �= Θv. A disjunction
of proper set constraints 〈v1 ∈ X1〉∨· · ·∨〈vq ∈ Xq〉, where every variable occurs
at most once, is called a SCL-clause. Similarly, a conjunction of proper set
constraints 〈v1 ∈ X1〉∧· · ·∧〈vq ∈ Xq〉, where every variable occurs at most once,
is called a SCL-term. Arbitrary disjunctions or conjunctions of set constraints
can be transformed into corresponding SCL-clauses or SCL-terms by applying
properties (1) to (5).

We say that a SCL-clause δ1 absorbs another SCL-clause δ2 wheneverNV(δ1) ⊆
NV(δ2). Similarly, a SCL-term γ1 absorbs another SCL-term γ2 whenever
NV(γ1) ⊇ NV(γ2). If Γ is a set of SCL-clauses, µ(Γ) denotes the result of
removing all absorbed SCL-clauses from Γ. Similarly, µ(∆) is the result of
removing absorbed SCL-terms from the set of SCL-terms ∆.

A conjunctive normal form is a conjunction δ1 ∧ · · · ∧ δr of proper SCL-
clauses. A disjunctive normal form is a disjunction γ1∧· · ·∧γr of proper SCL-
terms. Every SCL-formula can be transformed into an equivalent conjunctive
or disjunctive normal form.
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2.3 Argumentation Systems

In the following, the SCL-framework will be used to define argumentation
systems. Nevertheless, propositional logic is a very important special case of
set constraint logic. In addition, it is often much more appropriate to illustrate
different concepts. Therefore, we will first define propositional argumenta-
tion systems:

Definition 2.1 Let P and A be two disjoint sets of propositions. If ξ is a
formula in LA∪P , the triple ASP = (ξ,P,A) is called propositional argu-
mentation system. ξ is called the knowledge base of ASP .

Propositional argumentation systems are therefore restricted to binary vari-
ables. In contrast, an argumentation system does not have this restriction:

Definition 2.2 Let V and A be two disjoint sets of variables. If ξ is a SCL-
formula in LA∪V , the triple ASV = (ξ,V,A) is called argumentation system.
ξ is called the knowledge base of ASV .

A propositional argumentation system is therefore a special case of an argumen-
tation system. In fact, for a given propositional argumentation system ASP it
is easy to construct an equivalent argumentation system ASV .

An argumentation system ASV = (ξ,V,A) consists therefore of two disjoint
sets V = {v1, . . . , vn} and A = {a1, . . . , am} of variables and a knowledge base
ξ ∈ LA∪V . The knowledge base ξ is often given as a set Σ = {ξ1, . . . , ξr} of SCL-
clauses ξi ∈ DA∪V . In such a case, the corresponding conjunction ξ = ξ1∧· · ·∧ξr
can always be used instead.

The elements of A are called assumptions and are essential for expressing
uncertain information. They are used to represent uncertain events, unknown
circumstances, or possible risks and outcomes. The set NA of possible interpre-
tations relative to A is therefore of particular interest. Such an interpretation
s ∈ NA is called scenario. It represents a possible state of the world and is
a fundamental notion in argumentation systems. As an abuse of notation, we
will sometimes write s ∧ ξ for s ∈ NA and ξ ∈ LA∪V . In this case, s ∈ NA is
considered as a SCL-formula for which the set of interpretations is equal to s.

2.3.1 Consistent and Inconsistent Scenarios

Some scenarios may become impossible with the given knowledge base. It is
therefore necessary to distinguish two different types of scenarios:

Definition 2.3 Let ASV = (ξ,V,A) be an argumentation system. A scenario
s ∈ NA is called
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(1) inconsistent relative to ξ, if and only if s ∧ ξ |= ⊥;

(2) consistent relative to ξ otherwise.

The definition of inconsistent and consistent scenarios leads directly to the
definition of the sets IA(ξ) and CA(ξ):

IA(ξ) = {s ∈ NA : s ∧ ξ |= ⊥} (2.1)
CA(ξ) = {s ∈ NA : s ∧ ξ �|= ⊥} (2.2)

Clearly, IA(ξ) and CA(ξ) are complementary sets, that is,

CA(ξ) = NA− IA(ξ). (2.3)

Example 2.1 Consistent and Inconsistent Scenarios Let the proposi-
tional argumentation system ASP = (ξ,P,A) be given by P = {p}, A =
{a1, a2}, and ξ = (a1 → p) ∧ (a2 → ¬p). Then, IA(ξ) = {(1, 1)} is the set of
inconsistent scenarios and CA(ξ) = {(0, 0), (0, 1), (1, 0)} is the set of consistent
scenarios. The scenario (1, 1) is inconsistent because ξ is unsatisfiable when a1

and a2 are simultaneously true.  

The distinction between consistent and inconsistent scenarios is the essence of
argumentation systems. It introduces in a natural and convenient way non-
monotonicity into set constraint logic. Non-monotonicity is the fundamental
property of any formalism for dealing with uncertainty. The question, why
and how the distinction between consistent and inconsistent scenarios leads to
non-monotonicity, is discussed later in this chapter.

2.3.2 Supporting Scenarios

The situation becomes more interesting if a second SCL-formula h ∈ LA∪V
called hypothesis is given. Hypotheses represent open questions or uncertain
statements about some of the variables in A∪V. What can be concluded from
ξ about the possible truth of h with respect to the given set of assumptions A ?
Possibly, if the assumptions are set according to some scenarios s ∈ NA, then h
may be a logical consequence of ξ. In other words, h is supported by certain
scenarios.

Definition 2.4 Let ASV = (ξ,V,A) be an argumentation system and let h ∈
LA∪V be a hypothesis. A scenario s ∈ NA is called

(1) quasi-supporting scenario for h relative to ξ, if and only if s ∧ ξ |= h;

(2) supporting scenario for h relative to ξ, if and only if s ∧ ξ |= h and
s ∧ ξ �|= ⊥;

(3) possibly supporting scenario for h relative to ξ, if and only if s ∧ ξ �|=
¬h.
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These definitions lead directly to the definition of the sets QSA(h, ξ), SPA(h, ξ),
and PSA(h, ξ):

QSA(h, ξ) = {s ∈ NA : s ∧ ξ |= h} (2.4)
SPA(h, ξ) = {s ∈ NA : s ∧ ξ |= h, s ∧ ξ �|= ⊥} (2.5)
PSA(h, ξ) = {s ∈ NA : s ∧ ξ �|= ¬h} (2.6)

The difference between quasi-supporting and supporting scenarios is that quasi-
supporting scenarios can be inconsistent. However, inconsistency is usually
excluded. Therefore, supporting scenarios are more interesting.

Figure 2.1 illustrates the relation between different subsets of NAwith IA(ξ) = A,
QSA(h, ξ) = A + B, SPA(h, ξ) = B, PSA(h, ξ) = B + C, and CA(ξ) = B + C + D.

 C

 D

 A
 N

 B

A

Figure 2.1: Different Subsets of Scenarios.

Note that IA(ξ) ⊆ QSA(h, ξ), SPA(h, ξ) ⊆ CA(ξ), and PSA(h, ξ) ⊆ CA(ξ) for all
hypotheses h ∈ LA∪V . Furthermore, SPA(h, ξ) ⊆ QSA(h, ξ) and SPA(h, ξ) ⊆
PSA(h, ξ).

Example 2.2 Quasi-Supporting and Supporting Scenarios Again, let
the propositional argumentation system ASP = (ξ,P,A) be given by P =
{p}, A = {a1, a2}, and ξ = (a1 → p) ∧ (a2 → ¬p). Then, QSA(p, ξ) =
{(1, 0), (1, 1)} and SPA(p, ξ) = {(1, 0)}. Similarly, QSA(¬p, ξ) = {(0, 1), (1, 1)}
and SPA(¬p, ξ) = {(0, 1)}.  

The sets of inconsistent and consistent scenarios can be expressed in terms of
quasi-supporting scenarios for ⊥:

IA(ξ) = QSA(⊥, ξ) (2.7)
CA(ξ) = NA−QSA(⊥, ξ) (2.8)

Similarly, the set of supporting scenarios for h is determined by sets of quasi-
supporting scenarios:

SPA(h, ξ) = QSA(h, ξ)−QSA(⊥, ξ) (2.9)
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Furthermore, the sets of supporting scenarios for ⊥ and � are given by:

SPA(⊥, ξ) = ∅ (2.10)
SPA(�, ξ) = CA(ξ) (2.11)

The problem of computing sets of consistent, inconsistent, and supporting sce-
narios can therefore be solved by computing sets of quasi-supporting scenarios.
The quasi-supporting scenarios are therefore important mainly for technical
reasons.

An interesting situation to be considered is the case, where new information is
added to the knowledge base ξ. Then, the number of quasi-supporting scenarios
is monotonically increasing as shown by the following theorem:

Theorem 2.5 If ξ′ = ξ ∧ ξ̃ ∈ LA∪V and h ∈ LA∪V , then

QSA(h, ξ) ⊆ QSA(h, ξ′). (2.12)

Proof See Appendix, page 161. !"
If new information is added, the set of supporting scenarios behaves non-
monotonically, that is, it may either grow or shrink, both cases are possible.
The reason for this is that according to Equation (2.9), SPA(h, ξ) is the set
difference of two monotonically growing sets QSA(h, ξ) and QSA(⊥, ξ).
The non-monotonicity of SPA(h, ξ) is an important property of argumentation
systems. It reflects a natural property of how a human’s conviction or belief
can change when new information is given. Non-monotonicity is therefore a
fundamental property of any mathematical formalism for reasoning under un-
certainty. Argumentation systems represent a natural and convincing way to
achive non-monotonicity.

2.4 Symbolic Arguments

Sets of scenarios S ⊆ NA (such as IA(ξ), CA(ξ), QSA(h, ξ), and SPA(h, ξ)) tend
to grow exponentially with the size of A. An explicit representation as a list of
elements s ∈ S is therefore not feasible. Therefore, an alternative representation
is needed.

2.4.1 Representing Sets of Scenarios

An efficient representation is obtained by considering SCL-terms α ∈ CA for
which NA(α) ⊆ S holds. Let T (S) = {α ∈ CA : NA(α) ⊆ S} be the set of
all SCL-terms for which this condition holds. The set T (S) is called term
representation of S. A term α ∈ T (S) is called minimal in T (S), if there
is no other (shorter) term α′ in T (S) so that α |= α′. The corresponding set
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µT (S) of minimal terms is called minimal term representation of S. Note
that

S =
⋃

α∈T (S)

NA(α) =
⋃

α∈µT (S)

NA(α). (2.13)

Example 2.3 Term Representation Suppose that A = {a1, a2} is the set
of assumptions for a propositional argumentation system. For S ⊆ NA given
by S = {(0, 0), (1, 0), (1, 1)}, the term representation is T (S) = {a1,¬a2, a1 ∧
a2, a1 ∧ ¬a2,¬a1 ∧ ¬a2}. In addition, µT (S) = {a1,¬a2} is the minimal term
representation of S.  

The operations for sets of scenarios can be replaced by corresponding operations
for minimal term representations (Haenni et al., 2000). Therefore, a set of
scenarios S will be represented from now on by its minimal term representation
µT (S).

2.4.2 Consistent and Inconsistent Arguments

Definition 2.6 Let ASV = (ξ,V,A) be an argumentation system. A SCL-term
α ∈ CA is called

(1) inconsistent relative to ξ, if NA(α) ⊆ IA(ξ);

(2) consistent relative to ξ, if NA(α) ⊆ CA(ξ).

Inconsistent SCL-terms are also called contradictory. Note that there are
possibly terms α ∈ CA that are neither inconsistent nor consistent relative to ξ.
The term representations of IA(ξ) and CA(ξ) are

I(ξ) = {α ∈ CA : NA(α) ⊆ IA(ξ)}, (2.14)
C(ξ) = {α ∈ CA : NA(α) ⊆ CA(ξ)}, (2.15)

respectively. The sets µI(ξ) and µC(ξ) are the corresponding minimal term
representations. Some authors do call I(ξ) the contradiction of ξ. Similarly,
µI(ξ) is called minimal contradiction of ξ.

The term representations of IA(ξ) and CA(ξ) can also be characterized without
using the notions of inconsistent and consistent scenarios. If ASV = (ξ,V,A)
is an argumentation system, then

I(ξ) = {α ∈ CA : α ∧ ξ |= ⊥}, (2.16)
C(ξ) = {α ∈ CA : ∀α′ ⊇ α, α′ ∈ CA, α′ ∧ ξ �|= ⊥}. (2.17)
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2.4.3 Supporting Arguments

The problem of representing sets of scenarios also appears in the case of quasi-
supporting and supporting scenarios for a given hypothesis:

Definition 2.7 Let ASV = (ξ,V,A) be an argumentation system and let h ∈
LA∪V be a hypothesis. A SCL-term α ∈ CA is called a

(1) quasi-supporting argument for h relative to ξ, if NA(α) ⊆ QSA(h, ξ);

(2) supporting argument for h relative to ξ, if NA(α) ⊆ SPA(h, ξ);

(3) possibly supporting argument for h relative to ξ, if NA(α) ⊆ PSA(h, ξ).

The term representations of QSA(h, ξ), SPA(h, ξ), and PSA(h, ξ), that is

QS(h, ξ) = {α ∈ CA : NA(α) ⊆ QSA(h, ξ)}, (2.18)
SP (h, ξ) = {α ∈ CA : NA(α) ⊆ SPA(h, ξ)}, (2.19)
PS(h, ξ) = {α ∈ CA : NA(α) ⊆ PSA(h, ξ)}, (2.20)

are called quasi-support, support, and possibility for h relative to ξ. Fur-
thermore, the minimal term representations µQS(h, ξ), µSP (h, ξ), and µPS(h, ξ)
are called minimal quasi-support, minimal support, and minimal pos-
sibility for h relative to ξ.

Of course, the sets QS(h, ξ), SP (h, ξ), and PS(h, ξ) can also be characterized
without the notion of scenarios:

QS(h, ξ) = {α ∈ CA : α ∧ ξ |= h},
SP (h, ξ) = {α ∈ CA : α ∧ ξ |= h, ∀α′ ⊇ α, α′ ∈ CA, α′ ∧ ξ �|= ⊥};
PS(h, ξ) = {α ∈ CA : ∀α′ ⊇ α, α′ ∈ CA, α′ ∧ ξ �|= ¬h}.

2.5 Probabilistic Argumentation Systems

So far, the problem of judging hypotheses has only been considered from a
qualitative point of view. An additional judgment of hypotheses can be obtained
if a probability distribution is associated to every assumption. If the frame of
ai ∈ A is Θai and θij ∈ Θai , let πij denote the probability that the true value
of ai is θij . As we have imposed that the true value of ai ∈ A must be in
Θai , these probabilities have to sum to 1, that is,

∑
j πij = 1. The probability

distribution πi can be understand as an estimation that expresses on a scale
between 0 and 1 the subjective belief about the true value of ai. We assume
the probabilities πi to be stochastically independent.

Assigning probabilities to assumptions induces a probabilistic structure upon
argumentation systems. Therefore, it is reasonable to define probabilistic argu-
mentation systems:
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Definition 2.8 Let V and A be two disjoint sets of variables, ξ a SCL-formula
in LA∪V and Π = {π1, . . . , πm} a set of probability distributions on the ele-
ments of A = {a1, . . . , am}. Then, the quadruple PASV = (ξ,V,A,Π) is called
probabilistic argumentation system.

Again, the important special case of propositional argumentation systems can
be treated specially. This leads to the quadruple PASP = (ξ,P,A,Π), where
P and A are two disjoint sets of propositions, ξ ∈ LA∪P and Π = {π1, . . . , πm}.
The probability distribution πi associated to ai ∈ A is then given by the number
p(ai), where 0 ≤ p(ai) ≤ 1. This number expresses the subjective belief of
ai being true. The corresponding subjective belief of ai being false is then
implicitly given by the value 1− p(ai).

2.6 Numerical Arguments

Suppose that a probabilistic argumentation system PASV = (ξ,V,A,Π) is given.
As we assume that the probabilities which are assigned to the assumptions
are stochastically independent, the probability of a particular scenario s =
(θ1j , . . . , θmj) in NA is given by

p(s) =
m∏
i=1

p(ai = θij) =
m∏
i=1

πij . (2.21)

For an arbitrary set of scenarios S ⊆ NA, the probability of S is obtained by
summing up the probabilities of the elements of S:

p(S) =
∑
s∈S

p(s). (2.22)

In the following, we will be particularly interested in the set of quasi-supporting
scenarios QSA(h, ξ), the set of supporting scenarios SPA(h, ξ), and the set of
possibly supporting scenarios PSA(h, ξ).

2.6.1 Degree of Quasi-Support

Given a probabilistic argumentation system PASV = (ξ,V,A,Π) and a hypoth-
esis h ∈ LA∪V , the expression

dqs(h, ξ) = p(QSA(h, ξ)) (2.23)

is called degree of quasi-support of h relative to ξ. We will show in Chapter 4
that degree of quasi-support corresponds to the notion of unnormalized belief
in Dempster-Shafer theory (Shafer, 1976).
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2.6.2 Degree of Support

For a probabilistic argumentation system PASV = (ξ,V,A,Π), there is exactly
one (unknown) interpretation in NA that represents the true interpretation.
Therefore, if the set of inconsistent scenarios IA(ξ) is not empty, the prior
probability distribution on NA has to be conditioned on the fact that the true
scenario must be in CA(ξ). Thus, for the knowledge base ξ and a hypothesis
h ∈ LA∪V , the expression

dsp(h, ξ) = p(SPA(h, ξ)|CA(ξ)) (2.24)

is called degree of support of h relative to ξ. It is computed as follows:

dsp(h, ξ) =
p(SPA(h, ξ))
p(CA(ξ))

=
p(QSA(h, ξ))− p(QSA(⊥, ξ))

1− p(QSA(⊥, ξ))

=
dqs(h, ξ)− dqs(⊥, ξ)

1− dqs(⊥, ξ) (2.25)

Therefore, the value of dsp(h, ξ) is completely determined by the two values
dqs(h, ξ) and dqs(⊥, ξ). For the special cases, where h ≡ ⊥ and h ≡ �, we have
the following properties:

dsp(⊥, ξ) = 0 (2.26)
dsp(�, ξ) = 1 (2.27)

We will show in Chapter 4 that degree of support corresponds to normalized
belief in Dempster-Shafer theory (Shafer, 1976). An important property of
dsp(h, ξ) is that it behaves non-monotonically when new knowledge is added to
the knowledge base ξ.

2.6.3 Degree of Possibility

For degree of possibility, the prior probability distribution on NA is also con-
ditioned by the fact that the true scenario must be in CA(ξ). Therefore, for
a probabilistic argumentation system PASV = (ξ,V,A,Π) and a hypothesis
h ∈ LA∪V , the expression

dps(h, ξ) = p(PSA(h, ξ)|CA(ξ)) (2.28)

is called degree of possibility of h relative to ξ. It is computed as follows:

dps(h, ξ) =
p(PSA(h, ξ))
p(CA(ξ))

=
1− p(QSA(¬h, ξ))
1− p(QSA(⊥, ξ))

=
1− dqs(¬h, ξ)
1− dqs(⊥, ξ) = 1− dsp(¬h, ξ) (2.29)

Therefore, dps(h, ξ) can be obtained by computing dsp(¬h, ξ). For the special
cases, where h ≡ ⊥ and h ≡ �, we have the following properties:

dps(⊥, ξ) = 0 (2.30)
dps(�, ξ) = 1 (2.31)
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Finally, an important property follows the fact that SPA(h, ξ) is always a subset
of PSA(h, ξ):

dsp(h, ξ) ≤ dps(h, ξ) (2.32)

Note that the degree of possibility corresponds to the notion of plausibility in
Dempster-Shafer theory (Shafer, 1976).

2.7 From Symbolic to Numerical Arguments

Suppose that a probabilistic argumentation system PASV = (ξ,V,A,Π) is given.
The problem of computing dsp(h, ξ) and/or dps(h, ξ) for a hypothesis h ∈ LA∪V
relative to ξ involves three steps:

(1) compute dqs(h, ξ), respectively dqs(¬h, ξ);
(2) compute dqs(⊥, ξ);
(3) apply Equation (2.25), respectively Equation (2.29).

The problem to be solved is therefore the computation of dqs(h, ξ) for arbitrary
hypotheses h ∈ LA∪V . For this reason, suppose that the corresponding set
of quasi-supporting arguments QSA(h, ξ) is represented by the set µQS(h, ξ) =
{α1, . . . , αq}. Clearly, this set of minimal quasi-supporting arguments defines
the DNF α1 ∨ · · · ∨ αq with

QSA(h, ξ) = NA(α1 ∨ · · · ∨ αq) = NA(α1) ∪ · · · ∪NA(αq). (2.33)

The probability p(QSA(h, ξ)) can therefore be seen as a probability of a union of
events. This is a classical problem of probability theory and there are several
approaches to this problem:

2.7.1 The Inclusion-Exclusion Method

A first and simple approach is given by the so-called inclusion-exclusion
method (Feller, 1968). In order to illustrate this method, suppose that q = 2,
thus µQS(h, ξ) = {α1, α2}. Then,

dqs(h, ξ) = p(NA(α1) ∪NA(α2))
= p(NA(α1)) + p(NA(α2))− p(NA(α1) ∩NA(α2))
= p(α1) + p(α2)− p(α1 ∧ α2).

The computation of p(α1), p(α2), and p(α1 ∧ α2) is not difficult and as a con-
sequence, dqs(h, ξ) can be computed easily.

For the general case, suppose that Pk is defined for 1 ≤ k ≤ q as

Pk =
∑

I ⊆ {1, . . . , q},
1 ≤ |I| ≤ k

(−1)|I|+1 · p(
⋂
i∈I

NA(αi)). (2.34)
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Then

P2 ≤ P4 ≤ · · · ≤ p(NA(α1) ∪ · · · ∪NA(αq)) ≤ · · · ≤ P3 ≤ P1. (2.35)

In addition,

p(NA(α1) ∪ · · · ∪NA(αq)) = Pq. (2.36)

However, the computation of Pq involves a summation over (2q − 1) terms.
Therefore, the computational effort needed can quickly become prohibitive.

2.7.2 The Method of Abraham

An alternative method consists in transforming the DNF α1 ∨ · · · ∨ αq into an
equivalent disjunction γ1 ∨ . . . ∨ γr with mutually disjoint formulas γi ∈ LA,
that is, NA(γi)∩NA(γj) = ∅ whenever i �= j. The probability p(QSA(h, ξ)) is then
simply the sum of the probabilities of the individual formulas γi:

p(QSA(h, ξ)) = p(NA(γ1) ∪ · · · ∪NA(γr)) =
r∑

i=1
p(NA(γi)). (2.37)

The number of terms in such a sum is often much smaller than the number of
terms in Equation (2.36). However, the problem of computing such a disjoint
representation of QSA(h, ξ) remains. In addition, the disjoint form should be so
that p(NA(γi)) can be computed easily.

Several methods for this problem have been developed especially in reliability
theory. A simple method is presented in (Abraham, 1979) for monotone boolean
functions. This method has been generalized in (Kohlas & Monney, 1995) for
propositional logic and in (Monney & Anrig, 2000) for set constraint logic. The
idea is that the new disjunction γ1 ∨ . . . ∨ γr consists of disjoint terms γi ∈ CA.

In the case of a probabilistic argumentation system PASV = (ξ,V,A,Π), where
the set of assumptions A consists of propositions only, the probability of a term
γi = l1 ∧ · · · ∧ lm can easily be computed as

p(NA(γi)) =
∏

lk=ak

p(lk) ·
∏

lk=¬ak

(1− p(lk)). (2.38)

In the case, where the set of assumptions A consists of SCL-variables, the
probability of a SCL-term γi = X1(a1) ∧ · · · ∧ Xm(am), where Xk ⊆ Θak

, is
computed as

p(NA(γi)) =
m∏

k=1


 ∑

θkj∈Xk

p(ak = θkj)


. (2.39)

However, unfortunately, this method still tends to generate a relatively large
number of disjoint terms γ1 ∨ . . . ∨ γr.
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2.7.3 The Method of Heidtmann

Heidtmann (Heidtmann, 1989) proposed a much better but more complex
method for propositional logic. In the case of a probabilistic argumentation
system PASV = (ξ,V,A,Π), where the set of assumptions A consists of propo-
sitions only, every γi is represented as a conjunction of the form

γi = δ1 ∧ ¬δ2 ∧ · · · ∧ ¬δs

so that these factors are independent and each δj ∈ CA. The probability p(γi)
can then be computed very easily as

p(NA(γi)) = p(δ1) ·
s∏

k=2

(1− p(δk)). (2.40)

The weakness of Heidtmann’s method is its restriction to monotone boolean
formulas. The generalization of Heidtmann’s method to non-monotone boolean
formulas can be found in (Bertschy & Monney, 1996). Furthermore, the gener-
alization to set constraint logic is given in (Monney & Anrig, 2000). In any case,
Heidtmann’s method is often much more efficient than the method of Abraham.
In addition, it usually gives a significantly smaller number of terms.

2.8 The “Communication Line” Example

It was shown that numerical arguments can be obtained by first computing
symbolic arguments and then using one of the methods described previously.
However, this approach is not always feasible because the set of symbolic ar-
guments is sometimes much too big and cannot be represented explicitly. The
following simple example will show this.

Example 2.4 Communication Line Suppose that m + 1 computers are
connected using m connections as shown in Figure 2.2 for the case m = 3.
When the network was set up, two wires of different quality were used for each
connection between two computers. Our main point of interest is whether or
not a mail which is sent from the first computer on the left reaches the last
computer on the right.

Figure 2.2: A Communication Line with four Computers.

To answer this question, we construct a propositional argumentation system
ASP = (ξ,P,A), where the set of propositions P = {x0, . . . , xm} and the set
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of assumptions A = {a1, . . . , bm, b1, . . . , bm} are used. Computers are numbered
from left to right, starting with the number 0. The meaning of a proposition
xi ∈ P is that xi is true whenever the corresponding computer has received the
mail. Accordingly, the assumptions ai, bi ∈ A represent the two wires which
connect the computer i − 1 to the computer i. The knowledge base ξ consists
of 2m rules of the form

(xi−1 ∧ ai) → xi

(xi−1 ∧ bi) → xi

where 1 ≤ i ≤ m. The meaning of a rule (xi−1 ∧ ai) → xi is the following: if
computer i− 1 has received the mail and the wire represented by ai is working
correctly, then computer i receives the mail, too. This situation is visualized in
Figure 2.3, where x0, . . . , xm are represented by points and each rule is repre-
sented by an arrow labeled with the corresponding assumption.

x1

b1 b2

a1 a2

x0

x2

b3

a3 x3 xm-1

bm

am

xm

Figure 2.3: Graph for the Communication Line.

It may now be interesting to compute the degree of support that a mail which
is send from the first computer on the left receives the last computer on the
right. This corresponds to computing dsp(x0 → xm, ξ).

In order to compute dsp(x0 → xm, ξ), we have to compute the values dqs(x0 →
xm, ξ) and dqs(⊥, ξ). The corresponding sets of quasi-supporting arguments
QS(x0 → xm, ξ) and QS(⊥, ξ) are given as follows:

QS(x0 → xm, ξ) = {(a1a2 . . . am), (a1a2 . . . bm), . . . , (b1b2 . . . bm)}
QS(⊥, ξ) = ∅

Each argument in QS(x0 → xm, ξ) corresponds to a possible way to establish
a connection between x0 and xm (see Figure 2.3). Unfortunately, there are
2m different ways to establish such a connection. Therefore, it is not feasible
to compute QS(x0 → xm, ξ) explicitly if m is too big. The computation of
dsp(x0 → xm, ξ) then fails for that reason.  

The above rather small example shows that computing degree of support by
first computing symbolic arguments is often not feasible. The following chapters
will show how numerical arguments can be obtained without that symbolic
arguments have to be computed first.
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3
Dempster-Shafer Theory

The foundations of Dempster-Shafer theory were laid in (Dempster, 1967; Demp-
ster, 1968), where Dempster studied from a purely mathematical point of view
upper and lower bounds of probability distributions induced by a multivalued
mapping. Shafer continued the work of Dempster and developped in (Shafer,
1976) a theory of evidence, where inferences are drawn from various sources of
evidence. He proposed to call set functions having the structure of Dempster’s
lower probabilities belief functions and determined most of the terminology
used now. Unfortunately, people occasionally confuse Dempster’s upper and
lower probabilities with belief functions or use belief functions blindly which
can lead to contradictory results (Pearl, 1990; Smets, 1992). More information
on Dempster-Shafer theory can be found in (Kong, 1986; Smets, 1988; Thoma,
1991; Kohlas & Monney, 1995).

Nowadays, Dempster-Shafer theory is widely used to represent uncertain knowl-
edge. A piece of evidence can be encoded by a Dempster-Shafer belief function.
Given several pieces of evidence encoded by belief functions, the problem to
solve is to combine these functions and to compute the strength of belief in one
or more given hypotheses.

In this chapter, we will introduce multivariate Dempster-Shafer belief
functions. First, we will take a look at the different representations which are
mass function, belief function, and commonality function. Then, the
basic operations combination, marginalization, extension, and division
will be discussed. Because the efficiency of these operations depends heavily on
the representation used, it can be worthwhile to perform a transformation and
change the representations. After the discussion of such transformations we will
finally look at how Dempster-Shafer belief functions can be stored efficiently.

3.1 Basic Definitions

When we are modeling aspects of the real world we often deal with multivariate
situations, where the state space is a product space. Therefore, multivariate

25
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Dempster-Shafer belief functions often turn out to be well suited for the mod-
eling of real world problems.

Variables and Configurations. We define Θx as the state space of a variable
x, i.e. the set of values of x. It is assumed that all variables have finite
state spaces. Upper-case italic letters such as D,E,F ,... denote sets of
variables. Given a set D of variables, let ΘD denote the Cartesian product
ΘD = ×{Θx : x ∈ D}. ΘD is called state space for D. The elements of
ΘD are configurations of D. Upper-case italic letters from the beginning
of the alphabet such as A,B,... are used to denote sets of configurations.

Projection of Sets of Configurations. If D and D′ are sets of variables,
D′ ⊆ D and x is a configuration of D, then x↓D′

denotes the projection
of x to D′. If A is a subset of ΘD, then the projection of A to D′,
denoted as A↓D′

, is obtained by projecting each element of A to D′, i.e.
A↓D′

= {x↓D′
: x ∈ A}. Note that A↓D′

is a subset of ΘD′ .

Extension of Sets of Configurations. If D and D′ are sets of variables,
D′ ⊆ D, and B is a subset of ΘD′ , then B↑D denotes the extension
of B to D, i.e. B↑D = B ×ΘD\D′ . Note that B↑D is a subset of ΘD.

Projection and extension of sets of configurations are very important in Dempster-
Shafer theory. Therefore, let’s look at the following example:

Example 3.1 Projection and Extension of Sets of Configurations Sup-
pose that the set of variables D = {x, y, z} is given and suppose in addition
that Θx = {x1,x2}, Θy = {y1,y2}, and Θz = {z1, z2}. Then, the state space
of D consists of 8 configurations and is given by

ΘD = {(x1y1z1), (x1y1z2), (x1y2z1), . . . , (x2y2z2)}.
There are 256 different sets of configurations which could be build. Let’s con-
sider here the set of configurations A given by

A = {(x1y2z2), (x2y1z1), (x2y2z1), (x2y2z2)}.
On the left side of Figure 3.1 the set A is represented in a 3-dimensional cube
of which the axes are given by the three variables x, y, and z. For example, the
point on the x-axis corresponds to the configuration x2y1z1. The projection of
A to the set of variables D′ = {x, y} is denoted as A↓D′

and is given by

A↓D′
= {(x1y2), (x2y1), (x2y2)}.

In the middle of Figure 3.1 it can be seen that A↓D′
is really a subset of ΘD′ .

If B denotes this set of configurations, that is B = A↓D′
, then the extension of

B to D denoted as B↑D is given by

B↑D = {(x1y2z1), (x1y2z2), (x2y1z1), (x2y1z2), (x2y2z1), (x2y2z2)}.
On the right side of Figure 3.1 it is shown that B↑D is a subset of ΘD and that
it is obtained by a cylindrical extension of B.
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Figure 3.1: Projection and Extension of a Set of Configurations.

3.2 Different Representations

Similar to complex numbers, where c ∈ C can be represented in polar or rectan-
gular form, there are also different ways to represent the information contained
in a Dempster-Shafer belief function. It can be represented as a mass function,
as a belief function, or as a commonality function. The unusual notation [ϕ]m,
[ϕ]b, and [ϕ]q is used instead of mϕ, belϕ, and qϕ, because it is more convenient.
The new notation has among others the following advantages:

• it focuses on the information contained in ϕ, whereas the usual notation
focuses on the representation of ϕ.

• it allows to distinguish easily between normalized and unnormalized mass,
belief, or commonality functions.

When a set of configurations A is given and we want to refer to the mass, belief
or commonality of A, then we write simply [ϕ(A)]m, [ϕ(A)]b, and [ϕ(A)]q. In
accordance with Shafer (Shafer, 1991) we speak of potentials when no represen-
tation is specified. We then write only ϕ, but without enclosing brackets.

3.2.1 Mass Function

A mass function [ϕ]m on D assigns to every subset A of ΘD a value in [0, 1],
that is [ϕ]m : 2ΘD → [0, 1]. The following condition must be satisfied:∑

A⊆ΘD

[ϕ(A)]m = 1. (3.1)

Intuitively, [ϕ(A)]m is the belief of evidence for A that has not already been
assigned to some proper subset of A. Sometimes, a second condition, [ϕ(∅)]m =
0, is imposed. A mass function for which this additional condition holds is
called normalized, otherwise it is called unnormalized.

Given a potential ϕ on D, D is called the domain of ϕ. The sets A ⊆ ΘD

for which [ϕ(A)]m �= 0 are called focal sets. We use FS(ϕ) to denote the focal
sets of ϕ. In addition, ϕ on domain D is called neutral potential for D if
[ϕ(ΘD)]m = 1.
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3.2.2 Belief Function

A belief function [ϕ]b on D, [ϕ]b : 2ΘD → [0, 1], can be obtained in terms of a
mass function:

[ϕ(A)]b =
∑

B:B⊆A

[ϕ(B)]m. (3.2)

Again, if [ϕ(∅)]b = 0, then the belief function is called normalized. Note that a
normalized mass function always leads to a normalized belief function.

3.2.3 Commonality Function

A commonality function [ϕ]q on D, [ϕ]q : 2ΘD → [0, 1], can be defined in terms
of a mass function:

[ϕ(A)]q =
∑

B:A⊆B

[ϕ(B)]m. (3.3)

It is always [ϕ(∅)]q = 1. Therefore, there is no easy way to see whether a
commonality function is normalized or not.

3.3 Normalization

Unnormalized mass, belief, or commonality functions can always be normal-
ized. An advantage of the notation introduced is its ability to distinguish easily
between normalized and unnormalized mass, belief, or commonality functions.
We write [ϕ]M , [ϕ]B, and [ϕ]Q when ϕ is normalized. The transformation is
given as follows:

[ϕ(A)]M =

{
0 if A = ∅,
[ϕ(A)]m

1−[ϕ(∅)]m otherwise.
(3.4)

[ϕ(A)]B =
[ϕ(A)]b − [ϕ(∅)]b

1− [ϕ(∅)]b
(3.5)

[ϕ(A)]Q =

{
1 if A = ∅,

[ϕ(A)]q
1−[ϕ(∅)]m otherwise.

(3.6)

Note that above, it is supposed that the given information is not completely
contradictory, that is [ϕ(∅)]m �= 1. The normalizations are very similar since
[ϕ(∅)]b = [ϕ(∅)]m. However, note that the normalization of a commonality func-
tion by Equation 3.6 in terms of commonality functions is much more difficult
than the normalization of a mass or belief function. This is due to the fact that
the computation of [ϕ(∅)]m is not easy when a commonality function is given.

Example 3.2 Different Representations Suppose that the domain of the
potential ϕ is D = {x} and suppose in addition that the state space of x is
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Θx = {v1,v2,v3}. Therefore, there are exactly 8 sets A ⊆ ΘD. Let’s suppose
now that the masses of [ϕ]m are as shown in Table 3.1. [ϕ]m is an unnormalized
mass function because it is [ϕ(∅)]m �= 0. The belief function [ϕ]b and the
commonality function [ϕ]q are obtained by applying Equations 3.2 and 3.3.
By applying Equations 3.4, 3.5, and 3.6, the normalized mass function, belief
function and commonality function are obtained. The unnormalized functions
[ϕ]m, [ϕ]b, and [ϕ]q as well as their normalized counterparts [ϕ]M , [ϕ]B, and
[ϕ]Q are shown in Table 3.1.

Unnormalized Normalized
A ⊆ ΘD [ϕ]m [ϕ]b [ϕ]q [ϕ]M [ϕ]B [ϕ]Q
∅ 0.2 0.2 1.0 0 0 1.000
{v1} 0 0.2 0.7 0 0 0.875
{v2} 0.1 0.3 0.5 0.125 0.125 0.625
{v1,v2} 0 0.3 0.4 0 0.125 0.500
{v3} 0 0.2 0.7 0 0 0.875
{v1,v3} 0.3 0.5 0.7 0.375 0.375 0.875
{v2,v3} 0 0.3 0.4 0 0.125 0.500
{v1,v2,v3} 0.4 1.0 0.4 0.500 1.000 0.500

Table 3.1: Normalization of potentials

 

3.4 Basic Operations

The basic operations for potentials are combination, marginalization, and ex-
tension. Intuitively, these operations correspond to aggregation, focusing, and
refinement, respectively. Another basic operation is division. It is used when-
ever some information has to be removed from a potential.

For every basic operation there are representations which are more appropriate
than others and representations which cannot be used directly. For example, the
belief function representation is more appropriate for the marginalization than
the mass function representation, whereas there is no direct way to marginalize
a commonality function.

3.4.1 Combination

Suppose ϕ and ψ are potentials on D1 and D2. The combination of these two
potentials produces an (unnormalized) potential on domain D = D1 ∪D2:

[ϕ⊗ ψ(A)]m =
∑

{[ϕ(B1)]m · [ψ(B2)]m : B↑D
1 ∩B↑D

2 = A}, (3.7)
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[ϕ⊗ ψ(A)]q = [ϕ(A↓D1)]q · [ψ(A↓D2)]q. (3.8)

Note that there is no easy way to combine two belief functions.

3.4.2 Marginalization

Suppose ϕ1 is a potential on D1 and suppose D2 ⊆ D1. The marginalization of
ϕ1 to D2 produces a potential on D2:

[ϕ↓D2
1 (B)]m =

∑
A:A↓D2=B

[ϕ1(A)]m, (3.9)

[ϕ↓D2
1 (B)]b = [ϕ1(B↑D1)]b. (3.10)

Note that there is no easy way to marginalize a commonality function.

3.4.3 Extension

Suppose ϕ2 is a potential on D2 and suppose D2 ⊆ D1. The extension of ϕ2 to
D1 produces a potential on D1:

[ϕ↑D1
2 (A)]m =

{
[ϕ2(B)]m if A = B↑D1 ,
0 otherwise,

(3.11)

[ϕ↑D1
2 (A)]q = [ϕ2(A↓D2)]q. (3.12)

Note that there is no direct way to extent a belief function.

3.4.4 Division

Suppose ψ and ϕ are potentials on D1 and D2. The division of these two
potentials produces a potential on D = D1 ∪ D2 and is formally defined by
Equation 3.13. Note that in general the result is not a valid potential, which
means that some of the sets A ⊆ ΘD can obtain negative masses. In (Thoma,
1991) the class of such functions is called quasi-belief functions.

[
ψ

ϕ
(A)

]
q

=

{
[ψ(A↓D1 )]q
[ϕ(A↓D2 )]q

if [ϕ(A↓D2)]q �= 0,
0 otherwise.

(3.13)

Note that the division operation is only defined for commonality functions.
There is no direct way to divide two mass functions or belief functions.

3.5 Transformations

Transforming a representation into another representation is necessary when
the requested basic operation cannot be applied directly. A transformation may
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also be valuable when there is another representation which allows to perform
the requested basic operation more efficiently.

Given a potential ϕ on D in one of the three representations it is always possible
to derive the others (Thoma, 1991):

[ϕ(A)]m =
∑

B:A⊆B

(−1)|B\A| · [ϕ(B)]q, (3.14)

[ϕ(A)]m =
∑

B:B⊆A

(−1)|A\B| · [ϕ(B)]b, (3.15)

[ϕ(A)]q =
∑

B:B⊆A

(−1)|B| · [ϕ(B)]b, (3.16)

[ϕ(A)]b =
∑

B:B⊆A

(−1)|B| · [ϕ(B)]q. (3.17)

However, the transformations above are usually computationally very expen-
sive. For example, suppose that ϕ has domain D = {x1, . . . , x } and suppose
that the state space of a variable xi is given by Θxi = {vi1 , . . . ,viki

}. ΘD then
has exactly k1k2 · · · k configurations. Let’s denote the number of configurations
of ΘD by n, that is n = k1k2 · · · k . If FS(ϕ) contains the maximum of 2n focal
sets, then there would be

n∑
k=0

(
n
k

)
· 2k = 3n (3.18)

terms to sum up for each transformation above. From Table 3.2 it can be seen
that this would even for relatively small domains not be feasible, even if we
suppose that all variables are binary, that is Θxi = {vi1 ,vi2} for 1 ≤ i ≤ �.

|D| n 2n n · 2n 3n

1 2 4 8 9
2 4 16 64 81
3 8 256 2,048 6,561
4 16 65,536 1,048,576 43,046,721
5 32 4,294,967,296 137,438,953,472 1,853,020,188,851,841

Table 3.2: Exponential Growth

3.5.1 Fast Moebius Transformation

An improvement is obtained when fast Moebius transformations (Kennes &
Smets, 1990; Thoma, 1991; Xu & Kennes, 1994) are used instead. In the follow-
ing, it is explained how a mass function can be transformed into a commonality
function.
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Suppose that a mass function [ϕ]m on domain D = {x1, . . . , x } is given and
that the state space of a variable xi is Θxi = {vi1 , . . . ,viki

}. Then,

ΘD = {(v11v21 . . .v 1), (v11v21 . . .v 2), . . . , (v1k1
v2k2

. . .v k�
)}

has exactly n := k1k2 · · · k elements. The commonality function [ϕ]q is obtained
from [ϕ]m by applying a sequence of n elementary steps. The i-th step will be
associated with the i-th element of ΘD and is given by

[ϕi(A)] =




[ϕi−1(A)] + [ϕi−1(A ∪ {si})] if si �∈ A,

[ϕi−1(A)] otherwise
(3.19)

where si is the i-th element of ΘD. When we start with [ϕ0] = [ϕ]m then a
sequence [ϕ1], [ϕ2], . . . , [ϕn] is generated and finally it is [ϕ]q = [ϕn].

Example 3.3 Fast Moebius Transformation Suppose that the mass func-
tion [ϕ]m is given on domain D = {x}, where the state space of the variable x
is Θx = {v1,v2,v3} and suppose in addition that the masses are as shown in
Table 3.3. The application of the algorithm generates the intermediate results
[ϕ1], [ϕ2], and [ϕ3], respectively. It can be verified that [ϕ3] is equal to the
commonality function [ϕ]q.

A ⊆ ΘD [ϕ]m [ϕ1] [ϕ2] [ϕ3] [ϕ]q
0 ∅ 0 0.1 0.3 1.0 1.0
1 {v1} 0.1 0.1 0.1 0.8 0.8
2 {v2} 0.2 0.2 0.2 0.6 0.6
3 {v1,v2} 0 0 0 0.4 0.4
4 {v3} 0 0.3 0.7 0.7 0.7
5 {v1,v3} 0.3 0.3 0.7 0.7 0.7
6 {v2,v3} 0 0.4 0.4 0.4 0.4
7 {v1,v2,v3} 0.4 0.4 0.4 0.4 0.4

Table 3.3: Fast Moebius Transformation

 

A better understanding of the algorithm is obtained when every set A ⊆ ΘD is
represented by a point in the n-dimensional boolean cube Bn, where the axes
are the elements of ΘD. In addition, for every set A ⊆ ΘD the value [ϕ(A)]m is
attached to the point which corresponds to A. At every step, only the values
of half the points of Bn are changed. At step i, only those values are changed
which are attached to the points corresponding to sets which do not contain
the i-th element of ΘD.
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Example 3.4 Visualization of the Fast Moebius Transformation Let’s
look again at the previous example. It is ΘD = {v1,v2,v3} and the boolean
cube B3 is therefore spread by the three axes v1, v2, and v3 respectively. The
three steps of the algorithm are shown in Figure 3.2. At each step, only the
values of points with an incoming arrow are changed. For example, in the
first step, only the values of the points in the (v2,v3)-plane are changed. For
example, the arrow from 5 to 4 means that the value attached to {v1,v3} (=
5) is added to the value attached to {v3} (= 4).
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Figure 3.2: Visualization of Fast Moebius.

 

Using fast Moebius transformations, the number of terms to sum up in the worst
case is reduced from 3n to n·2n. Nevertheless, for multivariate Dempster-Shafer
belief function, n grows itself exponential and transformations are therefore not
feasible in the worst case (see Table 3.2). Fortunately, practical experiences
show that the case, where every set A ⊆ ΘD is a focal set hardly ever occurs.
Instead, very often it can be observed that a potential has only a few focal
sets. The following section shows that this observation can be used to store
potentials efficiently.

3.6 Storing Potentials

Suppose that a potential ϕ on domain D is given and suppose that n denotes the
number of configurations of ΘD. Then, there are 2n different subsets A ⊆ ΘD.
From Table 3.2 it can be seen that it would even for relatively small domains
D not be feasible to store the values [ϕ(A)]m for every A ⊆ ΘD.

Fortunately, it is very often [ϕ(A)]m = 0 for most of the sets A ⊆ ΘD. There-
fore, it is sufficient to store the values [ϕ(A)]m only for the sets A ∈ FS(ϕ).
ϕ is completely determined when for each focal set A the value [ϕ(A)]m is
given. In the same way, a belief function and a commonality function are com-
pletely determined whenever the values [ϕ(A)]b, and [ϕ(A)]q are given for every
A ∈ FS(ϕ).

In the following, two algorithms are presented. The first algorithm transforms
a mass function to a commonality function and the second algorithm does the
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inverse transformation. Both algorithms take advantage of the sparse represen-
tation of mass functions and commonality functions.

Algorithm mass function to commonality function
Suppose ϕ is a potential with domain D and suppose in addition that

the values [ϕ(Ak)]m are known for all Ak ∈ FS(ϕ). For each of these
focal sets the following formula has to be applied:

[ϕ(Ak)]q =
∑

B:Ak⊆B

{[ϕ(B)]m : B ∈ FS(ϕ)} (3.20)

Note that Equation 3.20 can also be used to calculate [ϕ(A)]q for A /∈
FS(ϕ).

Algorithm commonality function to mass function
Suppose ϕ is a potential with domain D and suppose in addition that

the values [ϕ(Ak)]q are known for all Ak ∈ FS(ϕ). First, an ordering
{A1, . . . , An} of the set FS(ϕ) has to be found so that for each pair
Ak,Al ∈ FS(ϕ), whenever Ak ⊇ Al we have k ≤ l. Such an ordering can
always be found. The following formula has then to be applied to this
ordering:

[ϕ(Ak)]m = [ϕ(Ak)]q −
∑

B:Ak⊂B

{[ϕ(B)]m : B ∈ FS(ϕ)} (3.21)

These two algorithms are very simple. They perform well if the set FS(ϕ) is
relatively small. In (Dugat & Sandri, 1994) another algorithm is presented
which takes advantage of the partially ordered structure of FS(ϕ), due to set-
inclusion.



4
Computing Numerical

Arguments

For a given probabilistic argumentation system PASV = (ξ,V,A,Π) and a hy-
pothesis h ∈ LV , one possibility to compute dsp(h, ξ) is to compute first the
two sets of symbolic arguments µQS(h, ξ) and µQS(⊥, ξ). Then, the methods
described in Section 2.7 can be used to compute dqs(h, ξ) and dqs(⊥, ξ) from
which dsp(h, ξ) can finally be derived. However, the example in Section 2.8
showed that it is not always feasible to compute µQS(h, ξ) and µQS(⊥, ξ).
A more efficient approach is based on the fact that degree of quasi-support
corresponds to the notion of unnormalized belief in Dempster–Shafer theory
(see Chapter 3). Therefore, the method presented in this chapter transforms
the given probabilistic argumentation system (ξ,V,A,Π) into a family of inde-
pendent potentials ϑ1, . . . , ϑm. Then, dsp(h, ξ) can be derived from the joint
potential ϕ = ϑ1 ⊗ · · · ⊗ ϑm. The following picture illustrates the two different
ways to compute dsp(h, ξ).

✲

❄
✲

❄

(ξ,V,A,Π)

ϑ1, . . . , ϑm

µQS(h, ξ)
µQS(⊥, ξ)

dsp(h, ξ)

The method presented in this chapter constructs for a given probabilistic argu-
mentation system (ξ,V,A,Π) a potential ϕ = ϑ1 ⊗ · · · ⊗ ϑm on domain V so
that for all hypotheses h ∈ LV it holds that

dqs(h, ξ) = [ϕ(H)]b

where H = NV(h). However, ϕ is not formed explicitly because it could have
too many focal sets. Instead, only its factors ϑ1, . . . , ϑm are computed.

35
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4.1 Constructing Independent Mass Functions

Let PASV = (ξ,V,A,Π) be a probabilistic argumentation system. The problem
to solve is to find a potential ϕ on domain V so that for all hypotheses h ∈ LV
it holds that

dqs(h, ξ) = [ϕ(H)]b

where H = NV(h). For this purpose, we will apply the partition algorithm to
ξ which yields a symbolic mass function. This symbolic mass function is a set
of implications 2Σ′′ which allows finally to derive the potential ϕ.

4.1.1 Symbolic Mass Functions

First, the knowledge base ξ has to be transformed into an equivalent set of
SCL-clauses Σ = {ξ1, . . . , ξr}. Every SCL-clause ξi ∈ Σ can then be written as
an implication of the form

ξi = l1 ∨ · · · ∨ lk︸ ︷︷ ︸
∈A

∨ lk+1 ∨ · · · ∨ lm︸ ︷︷ ︸
∈V

≡ ¬α ∨ β ≡ α→ β, (4.1)

where α ∈ CA is a SCL-term composed of assumptions and β ∈ DV is a SCL-
clause composed of variables. Therefore, let

2Σ = {α1 → β1, . . . , αr → βr}

denote the corresponding set of implications obtained from Σ. Clearly, Σ and
2Σ are logically equivalent.

The Production Rule

Two distinct implications of 2Σ can always be replaced by three other impli-
cations so that the new set of implications is logically equivalent to 2Σ. The
general form of the production rule is therefore given as follows:

αi → βi

αj → βj

}
=⇒




(αi ∧ ¬αj)→ βi

(αi ∧ αj)→ (βi ∧ βj)
(¬αi ∧ αj)→ βj

. (4.2)

Above all, note that NA(αi ∧ ¬αj), NA(αi ∧ αj), and NA(¬αi ∧ αj) are mutually
disjoint. In order to prevent the creation of formulas of the form ⊥ → β, the
above production rule is specialized depending on αi and αj :

• if NA(αi) ∩NA(αj) = ∅:

αi → βi

αj → βj

}
=⇒

{
αi → βi

αj → βj
(4.3)
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• if NA(αi) = NA(αj):

αi → βi

αj → βj

}
=⇒

{
αi → (βi ∧ βj) (4.4)

• if NA(αi) ⊆ NA(αj):

αi → βi

αj → βj

}
=⇒

{
αi → (βi ∧ βj)
(¬αi ∧ αj)→ βj

(4.5)

• if NA(αi) ⊇ NA(αj):

αi → βi

αj → βj

}
=⇒

{
αj → (βi ∧ βj)
(αi ∧ ¬αj)→ βi

(4.6)

The first of the four cases above shows that the application of the production
rule makes only sense if NA(αi) and NA(αj) are not already mutually disjoint.

The Simplification Rule

The objective of the following simplification rule is to simplify implications
which have the same conclusion. Two such implications can always be simplified
as follows:

αi → β
αj → β

}
=⇒ (αi ∨ αj)→ β. (4.7)

Two implications with the same conclusion are therefore replaced by only one
implication. The new set of implications obtained is logically equivalent to 2Σ.

Constructing the Symbolic Mass Function

By repeatetly using the production rule until the conditions of all implications
are mutually disjoint, a new set of implications {α′

1 → β′
1, . . . , α

′
s → β′

s} is
created. If an additional implication α′

0 → β′
0 of the form ¬(∨t

i=1α
′
i) → � is

added, the resulting set of implications 2Σ′ given by

2Σ′ = {α′
0 → β′

0, . . . , α
′
s → β′

s}

then represents a full decomposition of NA. This means that for each scenario
s ∈ NA, there is an implication α′

k → β′
k ∈ 2Σ′ so that s ∈ NA(α′

k). The set of
implications 2Σ′ satisfies the following three conditions:

(1) NA(α′
i) ∩NA(α′

j) = ∅ for all i �= j,

(2)
⋃s

i=0 NA(α′
i) = NA,

(3) NA(α′
i) �= ∅ for 0 ≤ i ≤ s.
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It follows from (1) and (2) that 2Σ′ defines a partition of NA, whereas (3)
reveals that there are no implications of the form ⊥ → β. However, there
might be implications which have the same conclusion. By repeatetly using the
simplification rule until there are no implications which have logical equivalent
conclusions, the set of implications

2Σ′′ = {α′′
0 → β′′

0 , . . . , α
′′
s → β′′

s }

obtained satisfies the following additional fourth condition:

(4) NV(β′′
i ) �= NV(β′′

j ) for all i �= j.

We call the set of implications 2Σ′′ a symbolic mass function. In the next
subsection, we will see that it is easy to derive a mass function from 2Σ′′.

The pseudo code of the partition algorithm is given below. The input of the
partition algorithm is the knowledge base ξ and the output is the set of impli-
cations 2Σ′′ = {α′′

0 → β′′
0 , . . . , α

′′
s → β′′

s }.
Algorithm The Partition Algorithm

Transform ξ into Σ = {ξ1, . . . , ξr}, ξi ∈ DA∪V
Transform Σ into 2Σ = {α1 → β1, . . . , αr → βr}
2Σ′ = {� → �}
For each αi → βi in 2Σ do

Γ = ∅
For each αj → βj in 2Σ′ do

If NA(αi) ∩NA(αj) �= 0 then
If NA(αi) = NA(αj) or NA(αi) ⊇ NA(αj) then

Γ = Γ ∪ {αj → (βi ∧ βj)}
else

Γ = Γ ∪ {(αj ∧ ¬αi)→ βj , (αj ∧ αi)→ (βi ∧ βj)}
EndIf

EndIf
Next αj → βj

2Σ′ = Γ
Next αi → βi

2Σ′′ = Simplify(2Σ′)

The purpose of Simplify is to perform all possible simplifications. In the worst
case, 2Σ′′ consists of 2r implications. Therefore, the partition algorithm can only
be applied if the set of clauses Σ obtained from ξ is relatively small.

Example 4.1 Partition Algorithm Suppose that a propositional argume-
nation system ASP = (ξ,P,A) consists of P = {x, y}, A = {a, b} and that the
knowledge base ξ is given by the set of clauses Σ = {ξ1, ξ2, ξ3, ξ4} as follows:
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ξ1 = ¬b ∨ x
ξ2 = ¬a ∨ y
ξ3 = ¬a ∨ b ∨ ¬x ∨ ¬y
ξ4 = a ∨ ¬b ∨ ¬x ∨ ¬y

First, these clauses have to be written as implications in order to obtain the set
of implications 2Σ given as follows:

b→ x
a→ y
(a ∧ ¬b)→ (¬x ∨ ¬y)
(¬a ∧ b)→ (¬x ∨ ¬y)

The partition algorithm as presented above then starts with 2Σ′ = {� → �}
Then, the implications of 2Σ are adjoined one after the other to 2Σ′. At every
step of the algorithm, the condition part of all implications of 2Σ′ are mutually
disjoint. After adjoining b→ x, 2Σ′ is given by

b→ x
¬b→ �

After adjoining a→ y, the set 2Σ′ consists of the following four implications:

(¬a ∧ b)→ x
(a ∧ b)→ (x ∧ y)
(¬a ∧ ¬b)→ �
(a ∧ ¬b)→ y

After adjoining a→ y, the set 2Σ′ is given by

(¬a ∧ b)→ x
(a ∧ b)→ (x ∧ y)
(¬a ∧ ¬b)→ �
(a ∧ ¬b)→ (¬x ∧ y)

After adjoining the last implication of 2Σ, the final result is obtained because
there are no simplifications possible. 2Σ′′ is therefore given by

(¬a ∧ b)→ (x ∧ ¬y)
(a ∧ b)→ (x ∧ y)
(¬a ∧ ¬b)→ �
(a ∧ ¬b)→ (¬x ∧ y)

 

4.1.2 Constructing the Mass Function

Let 2Σ′′ = {α′′
0 → β′′

0 , . . . , α
′′
s → β′′

s } be the set of implications obtained by the
partition algorithm from the knowledge base ξ. Then, the corresponding mass
function [ϕ]m : 2NV → [0, 1] is constructed as follows:

[ϕ(B)]m =
{

p(NA(α′′
i )) if there is α′′

i → β′′
i ∈ 2Σ′′ with NV(β′′

i ) = B,
0 otherwise.
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[ϕ]m is a valid mass function because 2Σ′′ satisfies conditions (1) to (4) on
page 38. The potential ϕ can be used to answer queries with hypotheses h ∈ LV
because by the above construction, the domain of ϕ is d(ϕ) = V. We refer to
Section 7.6 for the most general case, where h ∈ LA∪V .

Note that the mass function [ϕ]m is unequivocally determined for a given set
of clauses Σ. Conversely, several sets of clauses may lead to the same mass
function.

4.1.3 Computing Degrees of Quasi-Support

Let h ∈ LV be an arbitrary hypothesis. Since ξ and 2Σ′′ are logically equivalent,
it is possible to define the set QSA(h, ξ) of quasi-supporting scenarios for h in
terms of the implications in 2Σ′′:

QSA(h, ξ) = {s ∈ NA : s ∧ ξ |= h}
=

⋃
{NA(α′′

i ) : α′′
i → β′′

i ∈ 2Σ′′, β′′
i |= h}. (4.8)

As already mentioned, the sets NA(α′′
i ) are mutually disjoint. The degree of

quasi-support can therefore be written as a corresponding sum of probabilities
of sets NA(α′′

i ). Furthermore, if ϕ is the mass function constructed for 2Σ′′, then
the equivalence between degree of quasi-support and unnormalized belief can
be demonstrated as follows:

dqs(h, ξ) = p(QSA(h, ξ))

=
∑

{p(NA(α′′
i )) : α′′

i → β′′
i ∈ 2Σ′′, β′′

i |= h}

=
∑
B⊆H

[ϕ(B)]m = [ϕ(H)]b

where H = NV(h) represents the hypothesis h. The consequence of this is that

dsp(h, ξ) = [ϕ(H)]B.

Therefore, degree of support corresponds to the notion of normalized belief
in Dempster–Shafer theory.

4.1.4 Decomposition

As mentioned previously, the partition algorithm should preferably be applied
to relatively small sets Σ. If the size of Σ exceeds a certain range, then it is
advisable to decompose Σ into several smaller sets Σ1, . . . ,Σm. The decompo-
sition must be so that every assumption a ∈ A occurs in at most one of these
smaller sets. Therefore, if dA(Σi) denotes the set of assumptions appearing in
Σi, then there must be

dA(Σi) ∩ dA(Σj) = ∅ (4.9)
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for all i �= j. This prerequisite is needed because it allows to compute inde-
pendent mass functions for each of the smaller sets. Independency is a basic
requirement for Dempster’s rule of combination.

In the following, the simple case, where Σ = {ξ1, . . . , ξr} is decomposed into
only two parts Σ1 and Σ2 is studied first. Therefore, let

2Σ′′
1 = {α′′

0 → β′′
0 , . . . , α

′′
s → β′′

s }
2Σ′′

2 = {γ′′0 → δ′′0 , . . . , γ
′′
t → δ′′t }

be the corresponding sets of implications obtained from the partition algorithm.
A consequence of dA(Σ1) ∩ dA(Σ2) = ∅ is that

2Σ′ = {(α′′
i ∧ γ′′j )→ (β′′

i ∧ δ′′j ) : α′′
i → β′′

i ∈ 2Σ′′
1, γ

′′
j → δ′′j ∈ 2Σ′′

2}

is the resulting set of implications obtained from repeatetly using the production
rule for the initial set Σ. The set QSA(h, ξ) of quasi-supporting scenarios for a
hypothesis h ∈ LV can therefore be written as

QSA(h, ξ) =
⋃
{NA(α′′

i ∧ γ′′j ) : (α′′
i ∧ γ′′j )→ (β′′

i ∧ δ′′j ) ∈ 2Σ′, β′′
i ∧ δ′′j |= h}.

Again, the sets NA(α′′
i ∧γ′′j ) are mutually disjoint. The degree of quasi-support is

therefore a corresponding sum of probabilities p(NA(α′′
i ∧γ′′j )). dA(Σ1)∩dA(Σ2) =

∅ implies also that

p(NA(α′′
i ∧ γ′′j )) = p(NA(α′′

i )) · p(NA(γ′′j )).

If [ϑ1]m and [ϑ2]m are the mass functions constructed from 2Σ′′
1 and 2Σ′′

2, then
dqs(h, ξ) can be expressed in terms of ϑ1 and ϑ2. For H = NV(h) and ϕ =
ϑ1 ⊗ ϑ2 it is

dqs(h, ξ) = p(QSA(h, ξ))

=
∑

{p(NA(α′′
i ∧ γ′′j )) : (α′′

i ∧ γ′′j )→ (β′′
i ∧ δ′′j ) ∈ 2Σ′, β′′

i ∧ δ′′j |= h}

=
∑

{p(NA(α′′
i )) · p(NA(γ′′j )) : (α′′

i ∧ γ′′j )→ (β′′
i ∧ δ′′j ) ∈ 2Σ′, β′′

i ∧ δ′′j |= h}

=
∑

B1∩B2⊆H

[ϑ1(B1)]m · [ϑ2(B2)]m =
∑
B⊆H

[(ϑ1 ⊗ ϑ2)(B)]m

= [(ϑ1 ⊗ ϑ2)(H)]b = [ϕ(H)]b. (4.10)

The most general case, where Σ is split up into several subsets Σ1, . . . ,Σm can
be obtained by repeatedly decomposing Σ into only two parts. Therefore, if the
knowledge base ξ is transformed into a set of clauses Σ which is then split up
into several sets Σ1, . . . ,Σm so that dA(Σi) ∩ dA(Σj) = ∅ whenever i �= j, and if
next ϑ1, . . . , ϑm are constructed for these sets, then

dqs(h, ξ) = [ϕ(H)]b

for ϕ = ϑ1 ⊗ · · · ⊗ ϑm and H = NV(h).
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4.2 The “Communication Line” Example

It might be interesting to look again at the example of Section 2.8. For this ex-
ample, an argumentation system ASP = (ξ,P,A) has been constructed. How-
ever, we were not able to compute the degree of support of a hypothesis by first
computing corresponding sets of symbolic arguments.

In the following, we will first construct a probabilistic argumentation system
PASP = (ξ,P,A,Π) for the argumentation system ASP . For this, we suppose
that p(ai) = 0.8 and p(bi) = 0.5. It is often not easy to justify the values which
are assigned to assumptions. Here, we try to express the fact that two wires of
different quality were used when the network was set up. Finally, we will show
how the knowledge base of this example can be transformed into equivalent
potentials ϑ1, . . . , ϑm.

Example 4.2 Communication Line (continued) In order to construct
independent mass functions, the knowledge base ξ consisting of 2m rules of the
form

(xi−1 ∧ ai) → xi

(xi−1 ∧ bi) → xi

has first to be transformed into an equivalent set of clauses Σ. Here, the set Σ
consists of 2m clauses and is given by

Σ = {(¬x0 ∨ ¬a1 ∨ x1), (¬x0 ∨ ¬b1 ∨ x1), . . . , (¬xm−1 ∨ ¬bm ∨ xm)}.

Σ can be split up into sets of clauses Σ1, . . . ,Σm. Each of these sets Σi contains
only two clauses and is given by

Σi = {(¬xi−1 ∨ ¬ai ∨ xi), (¬xi−1 ∨ ¬bi ∨ xi)}.

Then, these sets of clauses have to be transformed into equivalent sets of im-
plications. Therefore,

2Σi = {(ai → (¬xi−1 ∨ xi)), (bi → (¬xi−1 ∨ xi))}.

The results of the partition algorithm applied to each of these sets of implica-
tions are then the sets 2Σ′

1, . . . ,
2Σ′

m given by

2Σ′′
i = {((ai ∨ bi)→ (¬xi−1 ∨ xi)), (¬(ai ∨ bi)→ �)}.

Then, mass functions ϑ1, . . . , ϑm with d(ϑi) = {xi−1, xi} can be constructed. If
Θxi = {fi, ti}, then Θ{xi−1,xi} is given by

Θ{xi−1,xi} = {(fi−1fi), (fi−1ti), (ti−1fi), (ti−1ti)}.

Each mass function ϑi has two focal sets. The first focal set corresponds to
the formula ¬xi−1 ∨ xi and the second to the tautology represented by �.
Therefore, the first focal set is {(fi−1fi), (fi−1ti), (ti−1ti)} and the second is
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0.10.90.9 0.1

xi xi

xi+1

xi-1

xi

xi-1

xi

xi+1

Figure 4.1: The Focal Sets of ϑi and ϑi+1.

Θ{xi−1,xi}. Because the probabilities a priori assigned to the assumptions are
p(ai) = 0.8 and p(bi) = 0.5, the masses assigned to these focal sets are 0.9
(= p(ai ∨ bi)) and 0.1 (= p(ai ∨ bi)). In Figure 4.1, the focal sets of ϑi and ϑi+1

are shown.

For the computation of dsp(x0 → xm, ξ) it would be necessary to compute
the joint potential ϕ = ϑ1 ⊗ · · · ⊗ ϑm. However, this is only feasible for rela-
tively small values of m because ϕ would have 2m focal sets. For example, the
combination ϑi ⊗ ϑi+1 has the 22 = 4 focal sets shown in Figure 4.2.

xi

xi+1
xi-1

xi

xi+1
xi-1

xi

xi+1
xi-1

xi

xi+1
xi-1

0.09 0.010.81 0.09

Figure 4.2: The Focal Sets of the Combination ϑi ⊗ ϑi+1.

 

The computation of the joint potential is therefore often not feasible. The
framework of valuation networks which will be described in the next chapter
shows a way how a query of the form [ϕ(H)]b can be answered without that
the joint potential ϕ = ϑ1 ⊗ · · · ⊗ ϑm has to be formed explicitly.
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5
Local Computations in Valuation

Networks

In the last chapter, it was proved that given a hypothesis h and a knowledge
base ξ, dqs(h, ξ) is equal to [ϕ(H)]b for H = NV(h) and a potential ϕ which is
equivalent to ξ. Therefore, computing degrees of quasi-support can be reduced
to the computation of unnormalized belief in Dempster–Shafer theory. How-
ever, the last example of the previous chapter has shown that it is often not
feasible to compute the joint potential ϕ = ϑ1 ⊗ · · · ⊗ ϑm for given potentials
ϑ1, . . . , ϑm. Fortunately, in Dempster–Shafer theory it is by Equation 3.10 (see
page 30)

[ϕ(H)]b = [ϕ↓Dh(Hh)]b (5.1)

where Dh = d(h) is the set of variables occuring in h and Hh = NDh
(h).

Therefore, the problem to solve is to compute the marginal ϕ↓Dh without that
the joint potential ϕ = ϑ1 ⊗ · · · ⊗ ϑm has to be formed explicitly.

The solution to this problem is given by the framework of valuation net-
works, where four simple axioms enable local computation of marginals of
a joint valuation. It is a very general framework and probabilistic argumen-
tation systems as well as Dempster–Shafer theory fit perfectly well into this
framework. In the framework of valuation networks, knowledge is represented
by so-called valuations and inferences are drawn using two operations called
combination and marginalization. The marginal of any subset of variables
can be computed by eliminating one variable after another. This is the basic
idea of Shenoy’s fusion algorithm. Thus, the elimination of a single variable
is the essential operation of the fusion algorithm.

In this chapter, the framework of valuation networks will be described. First,
we will show that Dempster–Shafer theory fits perfectly well into this frame-
work. Then, the four axioms which enable local computation will be given.
Afterwards, Shenoy’s fusion algorithm will be described. Finally, we will look
again at the last example of the previous chapter and we will show that for
this example, marginals can be computed efficiently using the framework of
valuation networks.
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5.1 The Valuation Network Framework

The framework of valuation networks is a very general framework and was first
introduced in (Shenoy, 1989). Probabilistic argumentation systems as well as
Dempster–Shafer theory fit perfectly well into this framework. Besides these,
it can also be used for Bayesian probability theory (Pearl, 1986; Pearl, 1988),
Spohn’s theory of epistemic beliefs (Spohn, 1987; Shenoy, 1991), and possibility
theory (Zadeh, 1987; Dubois & Prade, 1986). In a valuation network, knowledge
is represented by valuations and inferences are drawn using two operations
called combination and marginalization.

In the following, the framework of valuation networks is presented in a general
form. Additional information about this framework can be found in (Shenoy &
Shafer, 1990; Shenoy, 1992; Shenoy, 1994).

Variables and Configurations. The symbol Θx is used to denote the set of
values of a variable x. It is assumed that all variables have finite sets of
values. The symbol V denotes the set of all variables. For D ⊆ V let ΘD

denote the Cartesian product of the values of variables x ∈ D, that is
ΘD = ×{Θx : x ∈ D}. ΘD is called the frame for D.

Valuations. Valuations are the basic objects in the framework of valuation
networks. Intuitively, a valuation φ for a set of variables D represents
some knowledge about the variables in D. We write d(φ) = D in this case
and call d(φ) the domain of φ.

Combination. The symbol ⊗ is used for combination. Combination is a func-
tion (φ, ψ) )→ φ ⊗ ψ. Intuitively, it corresponds to aggregation of knowl-
edge. If φ and ψ are valuations for D1 and D2 respectively, then φ⊗ψ is
a valuation for D1 ∪D2. Therefore, d(φ⊗ ψ) = d(φ) ∪ d(ψ).

Marginalization. The symbol ↓ is used for marginalization. Marginalization
is a function (φ,D′) )→ φ↓D

′
, where D′ ⊆ d(φ). Intuitively, it corresponds

to coarsening of knowledge. If φ is a valuation for D and D′ ⊆ D, then
φ↓D

′
is a valuation for D′. Therefore, d(φ↓D

′
) = D′.

Where Dempster–Shafer theory is concerned, valuations correspond to mass
functions, belief functions, or commonality functions. In addition, combination
and marginalization were defined in Chapter 3.

5.2 Axioms for Local Computations

In order to be able to compute marginals of a joint valuation efficiently using
local computations, the following set of axioms has to be satisfied (Shenoy,
1989; Shenoy & Kohlas, 2000).
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Axiom A1 (Neutrality). There is a neutral potential eD for each domain D.
For two arbitrary domains E and F

eE ⊗ eF = eE∪F . (5.2)

Axiom A2 (Commutativity and associativity). Suppose φ1, φ2, and φ3

are valuations for D1, D2, and D3, respectively. Then

φ1 ⊗ φ2 = φ2 ⊗ φ1, (5.3)
φ1 ⊗ (φ2 ⊗ φ3) = (φ1 ⊗ φ2)⊗ φ3. (5.4)

Axiom A3 (Transitivity of marginalization). Suppose φ is a valuation for
D, and suppose F ⊆ E ⊆ D. Then

φ↓F =
(
φ↓E

)↓F
. (5.5)

Axiom A4 (Distributivity of marg. over combination). Suppose φ1 and
φ2 are valuations for D1 and D2 respectively. Then

(φ1 ⊗ φ2)↓D1 = φ1 ⊗ φ↓D1∩D2
2 . (5.6)

Axiom A2 implies that a combination of valuations φ1, . . . , φm can be written
in any order and without parentheses. Axiom A3 implies that the order in
which variables are eliminated does not matter. Finally, it is Axiom A4 which
enables local computations. It implies that it is not necessary to compute the
joint valuation when a marginal has to be computed.

The following theorem is similar to Axiom A4 above. It states under which
conditions an expression (ϕ1 ⊗ ϕ2)↓D3 can be written as ϕ↓D3

1 ⊗ ϕ2.

Theorem 5.1 Suppose that φ1 and φ2 are valuations for D1 and D2 respec-
tively. If D2 ⊆ D3 ⊆ D1 then

(φ1 ⊗ φ2)↓D3 = φ↓D3
1 ⊗ φ2. (5.7)

Proof See Appendix, page 161. !"

Of course, it has to be proved that Dempster–Shafer theory satisfies the axioms
of the framework of valuation networks:

Theorem 5.2 Dempster–Shafer theory satisfies the axioms above.

Proof See Appendix, page 161. !"
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5.3 The Fusion Algorithm

The fusion algorithm allows to compute the marginal of any subset of variables
by successively eliminating one variable after another. The elimination of a
single variable is therefore the essential operation of the fusion algorithm. Let
Φ = {φ1, . . . , φm} be the set of given valuations for domains D1, . . . , Dm with
D = D1 ∪ · · · ∪ Dm. For the elimination of a variable x ∈ D, the valuations
which contain x are of particular interest. If σ = ⊗{φ ∈ Φ : x ∈ d(φ)} denotes
the corresponding combined valuation, S = d(σ), then

φm+1 = σ↓S−{x} (5.8)

is a new valuation, where x does not occur any more. Then, we can define

Fusx{Φ} = {φm+1} ∪ {φ ∈ Φ : x /∈ d(φ)} (5.9)

as the set of valuations that remains after the elimination of x. In addition, by
Theorem 5.1

(φ1 ⊗ · · · ⊗ φm)↓D−{x} = ⊗Fusx{Φ}. (5.10)

By successively eliminating one variable after another, the marginal for any
subset can be obtained. Therefore, suppose that T ⊆ D is the set of vari-
ables for which the marginal has to be computed and suppose in addition that
〈x1, . . . , x 〉 is the sequence in which the variables in D−T are eliminated. Fur-
thermore, let Φ0 = Φ = {φ1, . . . , φm} be the set of valuations at the beginning.
The complete process can then be described as follows:

Φ1 = Fusx1(Φ0),
Φ2 = Fusx2(Φ1),

...
Φ = Fusx�

(Φ −1).

At each step i of the elimination process, 1 ≤ i ≤ �, the variable xi is eliminated
and a new valuation φm+i for a corresponding domain Dm+i is created. Finally,
after the elimination of x , it is

(φ1 ⊗ · · · ⊗ φm)↓T = ⊗Φ .

The main operation of the fusion algorithm is the elimination of a single vari-
able. Therefore, it can alternatively be written as a sequence of variable elimi-
nations:

(φ1 ⊗ · · · ⊗ φm)↓T = ⊗Fusx�
(· · ·Fusx2(Fusx1({φ1, . . . , φm})) · · ·)

= (· · · (φ1 ⊗ · · · ⊗ φm)↓D−{x1} · · ·)↓D−{x1,...,x�}

The fusion algorithm works with every elimination sequence 〈x1, . . . , x 〉. How-
ever, the efficiency of the algorithm depends strongly on the choice of the se-
quence. In the next chapter, we show how a “good” elimination sequence can
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be found so that the total time to compute (φ1⊗ · · · ⊗φm)↓T becomes as small
as possible.

A method which needs the elimination of all variables will be presented in
Chapter 8. For this method, T is therefore equal to the empty set.

5.4 The “Communication Line” Example

In the previous chapter, potentials ϑ1, . . . , ϑm were constructed for the example
of Section 2.8. Each potential ϑi is defined on domain d(ϑi) = {xi−1, xi}. If the
state space of the variable xi is given by Θxi = {fi, ti}, then the focal sets of
ϑi are {(fi−1fi), (fi−1ti), (ti−1ti)} and Θ{xi−1,xi}. The masses attached to these
focal sets are 0.9 and 0.1 respectively. Even though the potentials have only
two focal sets, it is not feasible to compute the joint potential ϕ = ϑ1⊗· · ·⊗ϑm

if m is too big. This was the reason why it was not possible to compute
dsp(x0 → xm, ξ).

In the following, we will show how dsp(x0 → xm, ξ) can be computed without
that the joint potential has to be formed explicitly. For this, the marginal
ϕ↓{x0,xm} is computed using the fusion algorithm. If the marginal is known, it
is easy to compute dsp(x0 → xm, ξ).

Example 5.1 Communication Line (continued) If ϕ = ϑ1 ⊗ · · · ⊗ ϑm

denotes the joint potential and if 〈x1, x2, . . . , xm−1〉 is the elimination sequence,
then the fusion algorithm computes

ϕ↓{x0,xm} = ⊗Fusxm−1(· · ·Fusx2(Fusx1({ϑ1, . . . , ϑm})) · · ·)

= (· · · ((ϑ1 ⊗ ϑ2)↓{x0,x2} ⊗ ϑ3)
↓{x0,x3} · · · ⊗ ϑm)

↓{x0,xm}

Therefore, the elimination of x1 generates the new potential

ϑm+1 = (ϑ1 ⊗ ϑ2)↓{x0,x2}

on domain d(ϑm+1) = {x0, x2}. It can be verified that ϑm+1 has the two focal
sets {(f0f2), (f0t2), (t0t2)} and Θ{x0,x2} with masses 0.81 and 0.19 respectively.
In Figure 5.1, the two focal sets of ϑm+1 are shown.

0.81 0.19

x0

x2
x0

x2

Figure 5.1: The Focal Sets of ϑm+1.

In general, the elimination of the variable xi, 1 < i ≤ m − 1, generates a new
potential ϑm+i on domain d(ϑm+i) = {x0, xi+1} given by

ϑm+i = (ϑm+i−1 ⊗ ϑi+1)
↓{x0,xi+1}.
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ϑm+i has focal sets {(f0fi+1), (f0ti+1), (t0ti+1)} and Θ{x0,xi+1} with masses 0.9i+1

and 1− 0.9i+1 respectively. As an example, Figure 5.2 shows that ϑm+2 differs
from ϑm+1 only in the masses assigned to the focal sets.

0.729 0.271

x0

x3
x0

x3

Figure 5.2: The Focal Sets of ϑm+2.

Finally, the marginal ϕ↓{x0,xm} is obtained after the elimination of xm−1. Its
two focal sets are {(f0fm), (f0tm), (t0tm)} and Θ{x0,xm} with masses 0.9m and
1 − 0.9m respectively. Because dqs(⊥, ξ) = 0 and because the hypothesis h =
x0 → xm is equivalent to the first focal set of ϕ↓{x0,xm}, it is finally

dsp(x0 → xm, ξ) = 0.9m

 



6
Constructing Join Trees

Shenoy’s fusion algorithm, presented in the previous chapter, computes the
marginal of a subset of variables by eliminating the remaining variables one
after another. A query of which the domain is the same as the domain of
the marginal can then be answered very easily. However, very often there is
not only one query but several queries on different domains. In this case, the
repeated application of Shenoy’s fusion algorithm would be inefficient, because
there would be much duplication of effort.

If there are several queries on different domains, it is much more efficient to
make use of a join tree. A join tree consists of a set of nodes, where each
node is connected to one or more neighbor nodes and where the initially given
potentials are distributed on the nodes. Marginals are then computed on the
basis of a message-passing scheme, where nodes receive and send messages to
their neighbor nodes. Therefore, a join tree can be seen as a data structure
which allows to compute marginals efficiently.

In this chapter, we will see how a join tree can be constructed for the initially
given potentials ϑ1, . . . , ϑm. For this, we will first show what join trees exactly
are. The concept of A-disjoint join trees which allows to compute degrees
of support by propagating potentials in a join tree will then be introduced.
After this, we will show that Shenoy’s fusion algorithm leads directly to a
join tree. Because the quality of the constructed join tree depends heavily
on the elimination sequence used by the fusion algorithm, we will then look
at heuristics for finding a “good” elimination sequence. We will propose a
new heuristic, which is especially suited for the case, where potentials are mass
functions. Finally, we will show how the join tree obtained from the application
of the fusion algorithm can be simplified.

6.1 Join Trees

A join tree JT = (N,C) consists of a set of nodes N = {N1, . . . , Nn} and
a set of connections C = {(Ni, Nj), . . . , (Nk, N )}. A connection of the form
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(Ni, Nj) means that nodes Ni and Nj are connected together. For two arbitrary
nodes Ni and Nj , we use Path(Ni, Nj) to denote the set of nodes on the path
between Ni and Nj . Since JT is a tree, there is a unique path for every pair of
nodes. We require that join trees are completely connected, which means that
Path(Ni, Nj) �= ∅ for all 1 ≤ i, j ≤ n.

Every node Ni ∈ N of a join tree has a label Di. A join tree has to satisfy
the Markov property. This property requires that Di ∩ Dj ⊆ Dk for every
pair of nodes Ni and Nj and for every node Nk ∈ Path(Ni, Nj). Therefore, a
variable which appears in two nodes appears also in every node on the path
between the two nodes.

Example 6.1 The Markov Property On the left side of Figure 6.1, it can
be verified that the Markov property is violated by the node {b, d}. For example,
this node is on the path between nodes {e, c} and {c, d}, nevertheless, it does
not contain the variable c. In contrast, the Markov property is fullfilled for the
join tree on the right side of Figure 6.1.  

ab

ac

bd

ec

cd

bc

abc

c

ab

ac

bcd

ec

cd

bc

abc

Figure 6.1: Markov Property violated and Markov Property fullfilled.

The Markov property is the reason why join trees are also called qualitative
Markov trees (Shafer et al., 1987) in literature. Sometimes, also the terms
junction trees (Jensen et al., 1990b) and clique trees (Lauritzen & Spiegel-
halter, 1988) are used.

We will see later in this chapter how a join tree JT = (N,C) is constructed
for the initially given potentials ϑ1, . . . , ϑm. Each node Ni ∈ {N1, . . . , Nn}
will have a potential ϕi = ⊗{ϑk : k ∈ Ii}, where I1, . . . , In are subsets of
I = {1, . . . ,m} so that

⋃n
k=1 Ik = I and Ii ∩ Ij = ∅ for all i �= j. Of course,

some of the sets Ii are empty, which means that the corresponding potential
ϕi is equal to the neutral potential. In any case, we can think as if ϑ1, . . . , ϑm

were distributed on the nodes of the join tree.

In the following, we will sometimes denote nodes by their label. Although a
join tree can contain several nodes which have the same label, it should always
be clear which node is concerned.
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6.2 A-Disjoint Join Trees

The potentials ϑ1, . . . , ϑm which are used for the construction of a join tree
JT are originally derived from a probabilistic argumentation system PASV =
{ξ,V,A,Π}. Therefore, sets of clauses Σ1, . . . ,Σm correspond to ϑ1, . . . , ϑm

and Σ = {Σ1, . . . ,Σm} is equivalent to the knowledge base ξ.

If we suppose that Σ1, . . . ,Σm are distributed on the nodes of JT exactly in the
same way as ϑ1, . . . , ϑm, it means that a set of clauses is attached to each node
of the join tree. Therefore, every node of a join tree has a label, a potential,
and a set of clauses which is equivalent to the potential.

It has been shown in Chapter 4 that it is important that dA(Σi) ∩ dA(Σj) = ∅
for 1 ≤ i �= j ≤ m. Each assumption a ∈ A occurs therefore in at most one of
the sets Σ1, . . . ,Σm and, consequently, it is not possible that a ∈ A occurs in
the sets of clauses attached to two different nodes of the join tree.

We call a join tree an A-disjoint join tree if every assumption a ∈ A occurs
in at most one of the sets of clauses attached to its nodes. It is the concept of
A-disjoint join trees which allows to compute correctly degrees of support by
propagating potentials.

6.3 The Fusion Algorithm

In the following, we will show that the application of Shenoy’s fusion algorithm
to the initially given potentials ϑ1, . . . , ϑm leads directly to a join tree. How-
ever, this join tree often has too many nodes. In Section 6.5 we will therefore
demonstrate how a join tree can easily be simplified by removing unnecessary
nodes.

6.3.1 Constructing a Join Tree

Suppose that the set of potentials Φ0 = {ϑ1, . . . , ϑm} on domains D1, . . . , Dm is
initially given. Suppose in addition that D =

⋃m
i=1 Di is the set of all variables

and that 〈x1, . . . , x 〉 is the elimination sequence consisting of variables in D−T
for a set T ⊆ D. As shown in Section 5.3, the fusion algorithm eliminates at
each step i of the elimination process the variable xi from the current set of
potentials Φi−1. If σi = ⊗{ϑ ∈ Φi−1 : xi ∈ d(ϑ)} denotes the corresponding
combined potential, Si = d(σi), then

ϑm+i = σ
↓Si−{xi}
i (6.1)

is a new potential on domain Dm+i = Si − {xi}. Finally,

Φi = {ϑm+i} ∪ {ϑ ∈ Φi−1 : xi �∈ d(ϑ)}

is the new set of potentials. If xi ∈ Dj for j ≤ k and xi �∈ Dj otherwise,
then step i of the elimination process can be visualized as shown on the left
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side of Figure 6.2. Each node D1, . . . , Dk contains its corresponding potential
ϑ1, . . . , ϑk, whereas the nodes Si and Dm+i initially contain the neutral po-
tential. In order to compute ϑm+i, the nodes D1, . . . , Dk send their potential
to node Si. Then, these potentials are combined on node Si which gives σi.
Finally, the potential obtained by eliminating xi from σi is sent to node Dm+i

and corresponds to ϑm+i.

After the elimination of the last variable x , the set Φ contains one or more
potentials. If Φ contains more than one potential, a node with label S +1 = T
has to be added as shown on the right side of Figure 6.2. Therefore, the nodes

D1

D2

Dk

Dm+iSi

D1

D2

Dm+l

Sl+1

Figure 6.2: Elimination of xi and after the Elimination of x .

are labeled as D1, . . . , Dm+ , S1, . . . , S +1. It is indeed a join tree, because

(1) the Markov property is satisfied for all nodes,

(2) Path(Ni, Nj) �= ∅ for every pair of nodes Ni and Nj .

Initially, the nodes D1, . . . , Dm contain the potentials ϑ1, . . . , ϑm. The poten-
tials σ1, . . . , σ and ϑm+1, . . . , ϑm+ are computed on the nodes S1, . . . , S and
Dm+1, . . . , Dm+ . Finally, the potential computed on the root node is equivalent
to the marginal (ϑ1 ⊗ · · ·ϑm)↓T .

Example 6.2 Join Tree obtained from the Fusion Algorithm Suppose
ϑ1, ϑ2 and ϑ3 have domains {a, b}, {b, c}, and {c, d}. The join tree obtained
from the fusion algorithm for T = {d} and the elimination sequence 〈a, b, c〉 is
shown in Figure 6.3. Each elimination of a variable has generated a subtree of
the join tree. The subtrees resulted by eliminating a and c are emphasized.  

ab b

bc

bc c

ab

cd

cd d

Elimination of a

Elimination of c

Figure 6.3: Join Tree obtained from the Fusion Algorithm.
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6.4 Determinating the Elimination Sequence

The elimination sequence used by the fusion algorithm determines the join tree
completely. For example, the two join trees of Figure 6.4 are the results of two
different elimination sequences used for the previous example.

ab bab

cd

bcd bd

bc

bd d

Elimination Sequence : cab

adbc

abc ac

ab

d

cd

acd ad

Elimination Sequence : bca

Figure 6.4: Join Trees for different Elimination Sequences.

A join tree can also be considered as a graphical visualization of the compu-
tations performed, because a sequence of operations is attached to every node.
Often, it can be observed that nodes with a large label slow down computations.
For nodes with a very large label they even may not be feasible at all. This
is because potentials computed on these nodes often contain much more focal
sets than potentials computed on nodes with smaller labels. In addition, it is
much more difficult to store potentials with large domains (see Section 9.2).

Therefore, in order to minimize the overall time needed for the computations,
the problem to solve is to find an elimination sequence so that the largest label
of the constructed join tree is as small as possible. This problem has been
studied extensively and it is known to be NP-complete (Arnborg et al., 1987).
Several heuristics for finding an elimination sequence producing a “good” join
tree have been developed for that reason (Rose, 1970; Bertele & Brioschi, 1972;
Yannakakis, 1981; Tarjan & Yannakakis, 1984; Kong, 1986; Kjærulff, 1990;
Almond & Kong, 1991; Haenni & Lehmann, 1999). A comparison of different
heuristics can be found in (Cano & Moral, 1995).

In this section, we will look at the problem of finding a “good” elimination
sequence. The heuristic proposed is especially suited for mass functions. As
other heuristics, it tries to minimize the size of the largest label of the con-
structed join tree, but, in addition, it takes also into consideration that variable
elimination is a dynamic process. However, in order to explain this heuristic,
it is necessary to talk first about Hypergraphs and Hypertrees.

6.4.1 Hypergraphs and Hypertrees

A graph G can be described as a pair G = (V,E), where V = {v1, . . . , vn} is a
set of vertices and E = {E1, . . . , Ek} is a set of edges Ei ⊆ V. If all edges are
pairs, then the resulting graph is a simple graph. If the edges are arbitrary
sets of vertices, then the resulting graph is a hypergraph and the edges are
called hyperedges. Note that we allow the same hyperedge to occur more
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than once in a hypergraph. Usually, hypergraphs are drawn using closed curves
enclosing the elements of the hyperedges.

Example 6.3 Hypergraph for a Set of Potentials The domains of the
initially given set of potentials Φ0 = {ϑ1, . . . , ϑm} form a hypergraph H =
(V,E), where V =

⋃m
i=1 d(ϑi) and E = {d(ϑ) : ϑ ∈ Φ0}. For example, the

hypergraph on the left side of Figure 6.5 corresponds to Φ0 = {ϑ1, . . . , ϑ5},
where the potentials ϑ1, . . . , ϑ5 are defined on domains {a, b}, {b, c}, {b, d},
{c, d, e}, and {e}.  
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Figure 6.5: Hypergraph and a Covering Hypertree.

A vertice v is called a leaf ofH = (V,E), if it occurs only in one hyperedge Ei ∈
E. The set of leafs is denoted by leafs(H). Two vertices are called neighbors,
if there is a hyperedge, where both vertices occur. The set of neighbors of a
vertice v in H is denoted by N(v,H). The set consisting of a vertice v and
its neighbors is called the closure of v in H, thus, Cl(v,H) = {v} ∪ N(v,H).
The rank r(H) of a hypergraph H is the size of its largest hyperedge. For the
hypergraph shown on the left side of Figure 6.5, it is for example leafs(H) = {a},
N(b,H) = {a, c, d}, Cl(b,H) = {a, b, c, d}, and r(H) = 3.

A hypergraph T is a hypertree if it is acyclic. However, although it can
easily be recognized that the hypergraph on the left side of Figure 6.5 is not
acyclic, for example, the formal definition of a cycle in a hypergraph is not
as straightforward as for simple graphs. Therefore, a different approach for
defining hypertrees will be used here. For that purpose, we need the concepts
of twigs and branches. A hyperedge Et ∈ E is called twig if there is another
hyperedge Eb ∈ (E− Et) so that

Et ∩ (∪(E− Et)) = Et ∩ Eb. (6.2)

We call any such hyperedge Eb a branch for the twig Et.

A hypergraph is a hypertree, if its hyperedges can be ordered, say 〈E1, . . . , Ek〉,
so that Ei is a twig in the hypergraph given by the hyperedges {E1, . . . , Ei},
for i = 2, . . . , k. Such an ordering is called a hypertree construction order-
ing. If a hypergraph H = (V,E) is not a hypertree, it is always possible to
find a corresponding covering hypertree T = (V,E′). T covers H if a cor-
responding E′

i ∈ E′ is found for every Ei ∈ E so that Ei ⊆ E′
i. As an example,
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the hypergraph on the right side of Figure 6.5 is a covering hypertree of the
hypergraph shown on the left.

Finding a covering hypertree for a hypergraph is not difficult. The hypertree
T = (V, {V}) consisting of the hyperedge V only is a covering hypertree for any
hypergraph H = (V,E). However, finding the best covering hypertree, of which
the largest hyperedge is as small as possible, is known to be an NP-complete
problem (Arnborg et al., 1987). Fortunately, there are many algorithms for find-
ing nearly optimal covering hypertrees. These algorithms determine a variable
elimination sequence on the basis of a specific heuristic.

Hypertrees are more useful than hypergraphs: a join tree corresponding to a
covering hypertree can easily be obtained by going through the reverse hypertree
construction ordering. The rank (= size of the largest label) of the join tree
is then equal to the rank of the hypertree. Therefore, we are particularly
interested in covering hypertrees of which the rank is as small as possible.
For example, T = (V, {V}) is the worst possible covering hypertree for a
hypergraph H = (V,E).

In the following we will see that every elimination sequence which consists of
all variables of H, determines a covering hypertree for H.

6.4.2 The Elimination of Variables

From the perspective of hypergraphs, the elimination of a variable x with the
fusion algorithm corresponds to a transformation of the hypergraphH = (V,E)
into another hypergraph H−x = (V−x,E−x) given by

V−x = V − {x}, (6.3)
E−x = (E− {Ek ∈ E : x ∈ Ek}) ∪ {Cl(x,H)− {x}}. (6.4)

The transformation is illustrated on the right side of Figure 6.6, where the
elimination of b causes the removal of the hyperedges {a, b}, {b, c}, and {b, d}.
In addition, the new hyperedge {a, c, d} is added to H−b. The corresponding
subtree is shown on the left side of Figure 6.6.

Figure 6.6: Elimination of the Variable b.

The elimination of a variable after another according to an elimination sequence
〈x1, . . . , x 〉 yields the sequence of hypergraphs H−x1 , . . . , H−x1...x� . The hyper-
graph H−x1 is obtained from H by eliminating x1. At step i, the elimination of
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xi transforms H−x1...xi−1 into H−x1...xi . The sequence of hypergraphs obtained
for the previous example and the elimination sequence 〈a, e, c, d, b〉 is shown in
Figure 6.7.
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Figure 6.7: Hypergraphs for the Elimination Sequence 〈a, e, c, d, b〉.

Each time a variable is eliminated, a corresponding subtree is constructed. The
join tree finally obtained consists of all these subtrees constructed previously.
Therefore, if the variable xi is eliminated at step i of the elimination process,
the largest label of the corresponding subtree is given by Cl(xi,H−x1...xi−1).
Therefore, the problem of finding an elimination sequence for which the rank
of the constructed join tree is as small as possible, is equivalent to the prob-
lem of finding an elimination sequence 〈x1, . . . , x 〉 for which the maximal size
of Cl(xi,H−x1...xi−1) for i ≤ � is as small as possible. Figure 6.8 shows the
sequence Cl(xi,H−x1...xi−1) for the previous example and the elimination se-
quence 〈a, e, c, d, b〉. Thus, the rank of the corresponding join tree is 3.
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Figure 6.8: Cl(xi,Hx1...xi−1) for Elimination Sequence 〈a, e, c, d, b〉.

A join tree of rank 4 is obtained for the elimination sequence 〈b, a, e, c, d〉. If the
variable b is eliminated first, Cl(b,H) = {a, b, c, d}. The elimination sequence
〈a, e, c, d, b〉 is therefore better than 〈b, a, e, c, d〉.

If 〈x1, . . . , x 〉 is an elimination sequence consisting of all variables ofH = (V,E)
and if Si = Cl(xi,H−x1...xi−1), the hypergraph T of which the hyperedges are
given by {S1, . . . , S } is a covering hypertree of H. In addition, the sequence of
hyperedges (S , . . . , S1) is a hypertree construction ordering for T . Therefore,
every elimination sequence consisting of all variables of H determines a covering
hypertree for H.
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6.4.3 Heuristic “OSLA – Smallest Clique”

Algorithms for finding nearly optimal covering hypertrees determine a variable
elimination sequence 〈x1, . . . , x 〉 for which the maximal size of Cl(xi,H−x1...xi−1)
is as small as possible. In any case, the minimal rank of a covering hypertree
for a hypergraph H is at least the size of the largest hyperedge of H. The
elimination of a leaf variable corresponds to the replacement of a hyperedge by
a smaller hyperedge. It is thus advisable to first eliminate a leaf at every step
of the elimination process, if possible.

The ideas developed so far lead directly to a widely used heuristic, known as
“One Step Look Ahead – Smallest Clique” (OSLA–SC for short). This heuristic
is given by the following pseudo-algorithm:

Pseudo-Algorithm One Step Look Ahead – Smallest Clique

1. If there is a leaf variable, eliminate it.

2. If there is no leaf variable, eliminate the variable x for which
|Cl(x,H−x1...xi−1)| is as small as possible.

3. If there are several such variables, break ties arbitrarily.

If the heuristic is applied to the previous example, the variable a is eliminated
first. Then, Cl(b,H−a) = {b, c, d}, Cl(c,H−a) = Cl(d,H−a) = {b, c, d, e}, and
Cl(e,H−a) = {c, d, e}. Therefore, either b or e are eliminated next. Proceeding
further, the heuristic generates one of the twelve elimination sequences shown
in Figure 6.9. The rank of the corresponding covering hypertree for each of
these sequences is 3.
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Figure 6.9: Elimination Sequences for “OSLA – Smallest Clique”.

6.4.4 Heuristic “OSLA – Fewest Fill-Ins”

Another widely used heuristic is known as “One Step Look Ahead – Fewest
Fill-ins” (OSLA–FFI for short). For this heuristic, it is necessary to construct
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first the so-called 2-section graph of the initially given hypergraph H. The
elimination of a variable after another according to an elimination sequence
〈x1, . . . , x 〉 generates a sequence of graphs G−x1 , . . . ,G−x1...x� , where G−x1...xi

is the corresponding 2-section graph ofH−x1...xi . Therefore, the heuristic selects
at each step of the elimination process the variable to eliminate next on the basis
of the 2-section graph G−x1...xi−1 of the hypergraph H−x1...xi−1 .

The 2-section graph G = (N,C) of a hypergraph H = (V,E) is given by
N = V and C = {(vi, vj) : ∃Ek ∈ E so that {vi, vj} ⊆ Ek}. Therefore, vertices
of hyperedges are connected two by two in the 2-section graph. Figure 6.10
shows the 2-section graph for the previous example.
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Figure 6.10: Hypergraph with corresponding 2-Section Graph.

For the graph G = (N,C), a set J ⊆ N is completely connected if all pairs of
vertices in J are linked together in G. A clique is a maximal completely con-
nected subset. For example, the 2-section graph on the right side of Figure 6.10
has the three cliques {a, b}, {b, c, d}, and {c, d, e}.

For the selection of the variable to eliminate next, the heuristic uses the so-called
fill-in number for the remaining variables. The fill-in number for a variable
x to be eliminated from G is the number of pairs xi, xj ∈ N(x,G) which are
not connected. In other words, it is the number of connections which would be
filled if we were to eliminate x from G. For example, |FI(a,G)| = |FI(e,G)| = 0,
|FI(c,G)| = |FI(d,G)| = 1, and |FI(b,G)| = 2 for the graph shown on the right
side of Figure 6.10.

It is shown in (Kong, 1986) that if the fill-in number of a certain variable is zero,
it is always optimal to eliminate that variable. It seems therefore natural to
eliminate the variable with the smallest fill-in number at each step. In that way,
leaf variables are eliminated first because the fill-in number of a leaf variable is
always zero. Note however that not only leaf variables may have a fill-in number
of zero. For example, the variable e in Figure 6.10 is not a leaf variable, but
nevertheless its fill-in number is zero.

The heuristic “One Step Look Ahead – Fewest Fill-ins” is given by the following
pseudo-algorithm:
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Pseudo-Algorithm One Step Look Ahead – Fewest Fill-ins

1. Eliminate the variable x for which |FI(x,G−x1...xi−1)| is as small as
possible.

2. If there are several such variables, break ties arbitrarily.

If the heuristic is applied to the previous example, one of the variables a and e is
eliminated first. If a is eliminated first, one of the twelve elimination sequences
shown in Figure 6.9 is generated. If e is eliminated first, either a, c or d are
eliminated next, because their fill-in number with respect to G−e is 0. In that
way, the heuristic generates one of 26 possible elimination sequences. The rank
of the corresponding covering hypertree for each of these sequences is 3.

6.4.5 Heuristic “OSLA – Smallest Clique, Fewest Focal Sets”

The two heuristics presented previously have a weakness. Namely, the fact that
sets of values of the variables may be of different size is not taken into consid-
eration. From this point of view, the size of the closure Cl(x,H−x1...xi−1) used
in OSLA-SC is not really appropriate. A better choice is the number of con-
figurations of the closure, thus |ΘCl(x,H−x1...xi−1 )|. This number measures more
precisely the costs of storing an individual focal set of the potential obtained
at step i of the elimination process.

Another weakness is that the selection of the variable to eliminate next is exclu-
sively based on static entities. For example, it is possible to build the join tree
without performing any combinations or marginalizations. However, variable
elimination is a dynamic process and the number of focal sets of poten-
tials involved in the elimination process should also be considered. If there
are several variables which could be eliminated next, it seems natural to elim-
inate the variable x for which the computation of the corresponding potential
ϑm+i = σ

↓Si−{x}
i can be performed as fast as possible instead of breaking ties

arbitrarily. As the computation of σi mainly determines the time needed for
the computation of ϑm+i, it is justified to use the expected number of focal sets
of σi as an estimate for the time needed. If Φi−1(x) denotes the set of potentials
available at step i of the elimination process and containing the variable x, an
estimate for the number of focal sets of σi is given by

∏
ϑ∈Φi−1(x) |FS(ϑ)|.

These ideas lead directly to a new heuristic which is based on OSLA–SC and
given by the following pseudo-algorithm:



62 Chapter 6. Constructing Join Trees

Pseudo-Algorithm OSLA – Smallest Clique, Fewest Focal Sets

1. If there is a leaf variable, eliminate it.

2. If there is no leaf variable, eliminate the variable x for which
|ΘCl(x,H−x1...xi−1 )| is as small as possible.

3. If there are several such variables, eliminate the variable x for
which

∏
ϑ∈Φi−1(x) |FS(ϑ)| is as small as possible.

4. If there are several such variables, break ties arbitrarily.

The main difference to OSLA–SC is that ties are not broken arbitrarily in
step 3. If OSLA–SC were applied to the previous example, each one of the
twelve possible elimination sequences shown in Figure 6.9 could be generated.
Depending on the elimination sequence generated, more or less time is needed
for the computation of the marginal. In contrast, some of these elimination
sequences would never be generated by “OSLA – Smallest Clique, Fewest Focal
Sets” (OSLA–SC–FFS for short).

Therefore, the new heuristic has the following two objectives:

(1) generate an elimination sequence for which the rank of the corresponding
join tree is as small as possible.

(2) if there are several elimination sequences possible, select the one which
allows to compute the marginal as fast as possible.

Of course, the first objective is much more important than the second one.
Nevertheless, we think that it is worthwhile considering the second objective
as well. Note that the heuristic OSLA–FFI can be modified in the same way
as OSLA–SC. We focused on the latter heuristic because it is much easier to
implement efficiently (see Chapter 9).

6.4.6 Heuristic “OSLA–SC–FFS, Initial Structure”

The potential ϑm+i = σ
↓Si−{xi}
i which is created in step i by the elimination of

the variable xi has often much more focal sets than each one of the initially given
potentials ϑ1, . . . , ϑm. Therefore, the heuristic OSLA–SC–FFS tends to select
variables which occur in the domain of newly created potentials. However, the
elimination of a non-leaf variable which occurs only in the domain of initially
given potentials is sometimes not a good idea. Such a variable is in some sense
located somewhere in the “centre” of the hypergraph given by the domains of
the initially given potentials.

It would be better to continue the work done so far by eliminating a variable
which is “close” to variables which have already been eliminated. For example,
the heuristic OSLA–FFI promotes the elimination of such variables: if xi is
eliminated in step i, then the variables in Si−{xi} are completely connected in
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the corresponding 2-section graph G−x1...xi . Therefore, there is a high chance
that one of the variables in Si − {xi} is eliminated in the next step.

Another way to promote the elimination of variables which are “close” to vari-
ables already eliminated is not to consider the number of focal sets of the
potentials ϑm+i created during the elimination process. Thus, only the number
of focal sets of the initially given potentials Φ0 = {ϑ1, . . . , ϑm} are used for
the selection of the variable to eliminate next. This idea leads to the heuristic
OSLA–SC–FFS–IS given by the following pseudo algorithm:

Pseudo-Algorithm OSLA – SC–FFS, Initial Structure

1. If there is a leaf variable, eliminate it.

2. If there is no leaf variable, eliminate the variable x for which
|ΘCl(x,H−x1...xi−1 )| is as small as possible.

3. If there are several such variables, eliminate the variable x for
which

∏
ϑ∈(Φ0∩Φi−1(x)) |FS(ϑ)| is as small as possible.

4. If there are several such variables, break ties arbitrarily.

This heuristic is located somewhere between OSLA–SC and OSLA–SC–FFS.
Just as the latter, the number of focal sets is used for selecting the variable to
eliminate next. However, here, the join tree could be built in advance without
performing any combination or marginalization. Clearly, this is an advantage
because it allows to compute marginals more efficiently using a network of
computers. If each node is associated with a computer, computations can
then be performed in parallel on several computers. Thus, each computer re-
ceives messages from neighboring computers and computes then messages to
its neighbors. Such a distributed computing of marginals is not possible for
the heuristic OSLA–SC–FFS.

In Chapter 11, we will compare the five heuristics for selecting the variable
to eliminate next. For each of the examples given there, some heuristics work
better than others. Therefore, the conclusion will be that there is no “best”
heuristic which gives for all problem instances the best results.

6.5 Simplification of the Join Tree

The join tree obtained from the fusion algorithm often contains more nodes
than necessary. For example, the join tree of Figure 6.3 consists of nine nodes,
even though initially there were only three potentials given. In the following,
five simple simplifications for removing unnecessary nodes are proposed. The
first simplification has to be performed prior to the construction of the join
tree. In contrast, for the remaining four simplifications we will suppose that
the join tree is given right from the beginning because this will allow us to
explain these kinds of simplification in an intelligible manner. Note, however,
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that these simplifications are actually performed dynamically during the process
of eliminating one variable after another.

1. Simplification: Special Handling of Observations

In the previous section, we have seen that the sequence in which variables are
eliminated is determined in such a way that the size of the largest label of
the resulting join tree is as small as possible. This is also the main objective
of the first simplification method. Note, however, that this method has to be
applied prior to the construction of the join tree. We even propose to apply
it before potentials are constructed for the given probabilistic argumentation
system PASV = {ξ,V,A,Π}.
The knowledge base ξ can always be transformed into an equivalent set of
SCL-clauses. However, ξ is often already given as a set of SCL-clauses Σ =
{ξi, . . . , ξr}. It can occur that some of these clauses involve only a single vari-
able and correspond to an assignment of a value to this variable. Typically,
observations and facts which are added to the knowledge base have often this
particular form. Therefore, suppose that δ ∈ Σ is such a SCL-clause of the form
〈xi = θij〉, where θij ∈ Θxi . Σ can then be split up into sets Σ∗, Σ+, and Σ−
as follows:

Σ∗ = {ξk ∈ Σ : xi �∈ d(ξk)}
Σ+ = {ξk ∈ Σ : ξk = 〈xi ∈ Xi〉 ∧ αk, θij ∈ Xi}
Σ− = {ξk ∈ Σ : ξk = 〈xi ∈ Xi〉 ∧ αk, θij �∈ Xi}

The simplification method consists in constructing for Σ an equivalent set of
SCL-clauses Σ′ containing fewer and simpler SCL-clauses. For example, δ en-
tails each of the SCL-clauses of Σ+, thus δ |= ξk for all ξk ∈ Σ+. Moreover,
δ ∧ ξk ≡ αk for each ξk ∈ Σ− of the form 〈xi ∈ Xi〉 ∧αk. As a consequence, the
set Σ′ constructed as

Σ′ = Σ∗ ∪ {δ} ∪ {αk : ξk ∈ Σ−, ξk = 〈xi ∈ Xi〉 ∧ αk}

is logically equivalent to Σ but contains fewer and simpler SCL-clauses. Usually,
the join tree constructed for PASV ′ = {ξ′,V,A,Π}, where ξ′ is given by the
set of SCL-clauses Σ′ then has smaller labels than the one constructed for
PASV = {ξ,V,A,Π}.

2. Simplification: Merging Potentials with same Domains

It can happen that two or more potentials of the initially given set of potentials
Φ0 = {ϑ1, . . . , ϑm} have the same domain. In this case, by combining potentials
with the same domain, a new set of potentials Φ′

0 = {ϑ′1, . . . , ϑ′s} is obtained,
where all potentials have different domains. The fusion algorithm applied to
Φ′

0 instead of Φ0 then gives a simpler join tree.
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Note that the sequence in which potentials are combined is important. It is
better to combine potentials with fewer focal sets first. This kind of simplifi-
cation is not always advisable. For example, merging potentials with the same
domain is sometimes not justified for a method which will be presented later in
Chapter 8.

3. Simplification: Direct Marginalization

Suppose that the variable xi has been elimiminated. The corresponding poten-
tials σi and ϑm+i are then associated with the nodes Si and Dm+i respectively.
Similarly, if a variable xj ∈ d(ϑm+i) is eliminated next, then σj and ϑm+j are
associated with Sj and Dm+j respectively. Of particular interest is the situ-
ation, where xj occurs in none of the remaining potentials. This situation is
shown on the left side of Figure 6.11.

Si Dm+i Sj Dm+j Simplification Dm+jSi

Figure 6.11: Removing the Nodes Dm+i and Sj .

If xj occurs in none of the remaining potentials, two marginalizations are per-
formed one after another. The first one is performed on node Si and the second
one on node Sj . However, this last marginalization would not have been neces-
sary if both variables would have been eliminated at the same time. Figure 6.11
shows that two nodes can then be omitted. Of course, note that it can even
happen that d(ϑm+i) contains several variables which occur in none of the re-
maining potentials. In this case, even more than two nodes can be omitted.

4. Simplification: Removing Nodes Dm+1, . . . , Dm+ 

The fourth simplification concerns the nodes Dm+1, . . . , Dm+ . If Dm+i is one of
these nodes, it is always between nodes Si and Sj ∈ {Si+1, . . . , S +1}. Moreover,
Dm+i has no other neighbor nodes. This situation is shown on the left side of
Figure 6.12.

In any case, Dm+i = Si ∩ Sj . Therefore, node Si can be directly connected
to Sj without violating the Markov property. On the right side of Figure 6.12,
Dm+i does not occur any more. Thus, the nodes Dm+1, . . . , Dm+ are not really
needed and we propose to remove them from the join tree. It is worth perform-
ing this kind of simplification specially if the elimination sequence consists of
many variables.
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Figure 6.12: Removing the Node Dm+i.

5. Simplification: If there is a Dk so that Si = Dk

It can happen that for some Si ∈ {S1, . . . , S +1} there is a corresponding Dk ∈
{D1, . . . , Dm} so that Dk = Si. In this case, we propose to replace the node Si

by the corresponding node Dk as shown in Figure 6.13.
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Figure 6.13: Replacing Node Si if there is a Dk so that Si = Dk.

Example 6.4 Simplification of the Join Tree Let us consider again the
join tree of Figure 6.3. It was obtained from the fusion algorithm and con-
sists of nine nodes. Figure 6.14 shows the join trees which are obtained if the
proposed simplifications are performed one after another. Eventually, after the
application of the fifth simplification, the join tree on the right of Figure 6.14
is obtained. It is composed of only three nodes and is obviously much simpler
than the original join tree.  
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Figure 6.14: Simplification of the Join Tree.
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Some Remarks

If we were to use join trees for the purpose of visualizing computations or
showing the structure of a probabilistic argumentation system, it is much
better to use the simplified join tree instead of the original join tree. Compare
for example the join tree of Figure 6.3 and its simplified counterpart shown
on the right side of Figure 6.14. The original join tree consists of nine nodes,
whereas the simplified join tree has only three nodes.

A reason against the removal of unnecessary nodes is that a query of which the
domain is equal to a label of a removed node can be answered faster. Neverthe-
less, in our opinion, the gain concerning memory space justifies the removal. In
addition, the five different kinds of simplifications can be performed very easily
and do not need much computational effort. However, concerning the number
of operations (combination/marginalization) which have to be performed, the
original and the simplified join tree are often the same. This is due to the fact
that only the first and the third simplification change the number of operations.

The third simplification, that is direct marginalization, allows to adapt the
heuristics for determinating a variable elimination sequence. If it is performed,
then leaf variables can only exist at the start of the elimination process. If
one or several leaf variables result from the elimination of a variable, then all
these variables are eliminated together in one step. Therefore, once the last leaf
variable is eliminated, there is no need to look for leaf variables.

6.6 The “Communication Line” Example

In the previous chapter we have shown how (ϑ1⊗· · ·⊗ϑm)↓{x0,xm} is computed
by the fusion algorithm using the elimination sequence 〈x1, . . . , xm−1〉. In the
following, we will come back to the computation of this marginal, but we will
look at it from the perspective of join trees.

Example 6.5 Communication Line (continued) The potentials ϑ1, . . . , ϑm

constructed for the 2m rules are defined on domains {x0, x1}, . . . , {xm−1, xm},
thus d(ϑi) = {xi−1, xi}. The corresponding hypergraph H = (V,E), where
V = {x0, . . . , xm} and E = {{x0, x1}, . . . , {xm−1, xm}} is shown in Figure 6.15.

x0 x1 x2 x3 x4 xm-2 xm-1 xmx5 x6 x7

Figure 6.15: Hypergraph for the “Communication Line” Example.

Cl(xk,H) = {xk−1, xk, xk+1} and |FI(xk,H)| = 1 for all xk ∈ {x1, . . . , xm−1}.
Therefore, the two heuristics “OSLA – Smallest Clique” and “OSLA – Fewest
Fill-ins” select an arbitrary variable from {x1, . . . , xm−1} as the variable to be
eliminated first. Whatever variable is eliminated, the size of the closure and
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also the fill-in number of the remaining variables do not change. Thus, both
heuristics generate one of the (m− 1)! possible elimination sequences.

The situation is the same for the heuristic “OSLA – Smallest Clique, Fewest
Focal Sets”. At the start of the elimination process, |ΘCl(xk,H)| = 8 and∏

ϑ∈Φi−1(xk) |FS(ϑ)| = 4 for all xk ∈ {x1, . . . , xm−1}. Whatever variable is
eliminated, these reference numbers do not change. In any case, the rank of the
join tree corresponding to the generated elimination sequence is 3.

Suppose now that the elimination sequence 〈x1, . . . , xm−1〉 is generated. The
corresponding join tree obtained from applying the fusion algorithm is shown
in Figure 6.16. (2m − 1) of its nodes are of size 2 and (m − 1) nodes are of
size 3. The potentials ϑ1, . . . , ϑm are distributed on the grey nodes labeled as
{x0, x1}, . . . , {xm−1, xm}.

x0x1x2

x0x1

x1x2

x0x2

x0x2x3

x2x3

x0x3

x0x3x4

x3x4

x0x4

x0xm-1xm

x0xm-1

xm-1xm

x0xm

Figure 6.16: Join Tree for the Elimination Sequence 〈x1, . . . , xm−1〉.

If the proposed simplifications are performed, (m − 1) nodes of size 2 can be
removed. The corresponding simplified join tree is shown in Figure 6.17.

x0xm-1xm

xm-1xm

x0x1x2

x2x3

x0x1

x1x2 x0x2x3

x0x3x4

x3x4

Figure 6.17: Simplified Join Tree.

The computation of (ϑ1 ⊗ · · · ⊗ ϑm)↓{x0,xm} then corresponds to a propaga-
tion towards the root node {x0, xm−1, xm}, followed by an additional marginal-
ization. First, σ1 = ϑ1 ⊗ ϑ2 is computed on the node {x0, x1, x2}. Then,
ϑm+1 = σ

↓{x0,x2}
1 is computed and sent to the node {x0, x2, x3}, where the

computation of σ2 = ϑ3 ⊗ ϑm+1 is done. Proceeding further, the marginal
(ϑ1⊗· · ·⊗ϑm)↓{x0,xm−1,xm} is obtained on the root node. Finally, an additional
marginalization is required in order to obtain (ϑ1 ⊗ · · · ⊗ ϑm)↓{x0,xm}.  



7
Computing Marginals in Join

Trees

The fusion algorithm presented in Chapter 5 eliminates one variable after an-
other. In that way, the marginal for any subset can be computed. The marginal
for several subsets of variables could be obtained through repeated application
of the fusion algorithm. But this is not very efficient because there would be
much unnecessary duplication of effort.

The solution to this problem is given by join trees, where nodes can receive
and send messages to their neighbor nodes. By storing intermediate results,
the computation of several marginals is improved significantly.

The change of viewpoint, from eliminating variables to message passing in a
join tree, allows also a much richer understanding. A join tree can easily be
visualized graphically and computations can then be represented by arrows
between connected nodes.

There are four different architectures which can be used to compute marginals
in join trees. For each one of them there is an inward propagation phase
and an outward propagation phase. The main difference of the architec-
tures is mostly the way in which messages are computed during the outward
propagation phase.

In this chapter, we will take a closer look at propagation in join trees. Before
describing the four architectures we will start with a description of the common
ground, consisting of an inward and an outward propagation phase. Finally, we
will argue that the Shenoy-Shafer architecture, combined with binary join
trees, is more appropriate for the propagation of multivariate Dempster-Shafer
belief functions than the other architectures.

7.1 Computing one Marginal

In the previous section we have shown that a join tree can be obtained from the
process of eliminating one variable after another through the fusion algorithm.

69



70 Chapter 7. Computing Marginals in Join Trees

Suppose that this join tree is JT = (N,E) and is given by the set of nodes
N = {N1, . . . , Nn} and a set of edges E between these nodes. One of the nodes
is the root node and is denoted as Nr. In addition, every node Ni ∈ N contains
a potential ϕi on domain Di = d(ϕi).

The process of eliminating one variable after another translates into an inward
propagation phase toward the root node. As soon as a node has received a
message from every outward neighbor, it is able to compute a message to its
inward neighbor. The inward propagation phase is finished when the root node
has received a message from each of its outward neighbors. The marginal on
the root node can then be computed.

Example 7.1 The Inward Propagation Phase The inward propagation
phase for a join tree with root node N1 is shown in Figure 7.1. In step 1,
only leave nodes can send messages. Then, in step 2, nodes N3, N4 and N5

have received the messages from their outward neighbors, so, each of them can
compute its message to the root node N1. Finally, in step 3, the root node
has received a message from every neighbor node and can therefore compute
its marginal.
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Figure 7.1: The Inward Propagation Phase.

 

More formally, suppose that an arbitrary node Nk0 has outward neighbors
Nk1 , . . . , Nkm−1 and inward neighbor Nkm . During the inward propagation
phase, Nk0 receives the messages ϕk1k0 , . . . , ϕkm−1k0 from Nk1 , . . . , Nkm−1 . The
inward message ϕk0km from Nk0 to Nkm is then computed as

ϕk0km =
(
ϕk0 ⊗ ϕk1k0 ⊗ · · · ⊗ ϕkm−1k0

)↓Dk0
∩Dkm . (7.1)

If node Nk0 is the root node, there is no inward neighbor and, therefore, no
inward message is computed.

In order to understand the messages which are sent during the inward propa-
gation phase, let us define for two neighbor nodes Ni and Nj

Φij = {ϕk : Nj �∈ Path(Nk, Ni)}, (7.2)
φij = ⊗Φij . (7.3)
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Path(Nk, Ni) denotes the set of nodes on the (undirected) path between Nk and
Ni. The set Φij represents the set of potentials contained in the subtree rooted
at Ni. It is always ϕi ∈ Φij and

Φij ∪ Φji = {ϕ1, . . . , ϕn}, (7.4)
Φij ∩ Φji = ∅. (7.5)

In addition, if a node Nk0 has outward neighbors Nk1 , . . . , Nkm−1 and inward
neighbor Nkm , then

Φk0km = {ϕk0} ∪ Φk1k0 ∪ · · · ∪ Φkm−1k0 . (7.6)

The following theorem can be formulated, using the definition of φij .

Nk0

Nk2

Nk1 Nk3

Nk4

jk0k4

jk3k0

jk1k0
jk2k0

Fk1k0 Fk3k0

Fk2k0

Figure 7.2: Messages during Inward Propagation.

Theorem 7.1 Suppose a node Nk0 has outward neighbors Nk1 , . . . , Nkm−1 and
inward neighbor Nkm. During the inward propagation phase, Nk0 combines its
potential ϕk0 with the incoming messages ϕk1k0 , . . . , ϕkm−1k0. Then

φ
↓Dk0
k0km

= ϕk0 ⊗ ϕk1k0 ⊗ · · · ⊗ ϕkm−1k0 (7.7)

and the message ϕk0km which is sent to Nkm is given by

ϕk0km = φ
↓Dk0

∩Dkm

k0km
. (7.8)

Proof See Appendix, page 162. !"
The message ϕk0km from Nk0 to its inward neighbor Nkm is therefore nothing
else than the combination of the potentials which are contained in the subtree
rooted at Nk0 and marginalized to the intersection Dk0 ∩Dkm .

If Nk0 is the root node, it has no inward neighbor and no message is com-
puted. Instead, by combining its potential ϕk0 with the incoming messages
ϕk1k0 , . . . , ϕkm−1k0 the marginal of the root node can be computed.
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Theorem 7.2 Suppose that Nk0 is the root node and has outward neighbors
Nk1 , . . . , Nkm−1. During the inward propagation phase, Nk0 receives the mes-
sages ϕk1k0 , . . . , ϕkm−1k0. Then

(ϕ1 ⊗ · · · ⊗ ϕn)↓Dk0 = ϕk0 ⊗ ϕk1k0 ⊗ · · · ⊗ ϕkm−1k0 . (7.9)

Proof See Appendix, page 163. !"
Note that every node of a join tree could be the root node. But in practice, the
root node is often chosen in such a way that a given query can be answered by
computing the marginal of the root node.

7.2 Computing all Marginals

Suppose that the marginal of the root node has already been obtained after a
first inward propagation phase and now the marginals of other nodes have to be
computed. This could be done by repeatedly changing the root node followed
by an inward propagation phase toward the new root node. But this is not
efficient, because it would be unnecessary repetition of effort.

For example, in Figure 7.1 the marginal of N2 could be obtained after an addi-
tional inward propagation phase with N2 as new root node. However, the only
difference between this inward propagation phase and the previous one with
root node N1 is, that N2 now receives a message from N1 instead of sending a
message to N1.

In general, two inward propagation phases differ only in the direction of the mes-
sages on the path between the two root nodes. To avoid unnecessary repetition
of effort, previously performed computations have to be taken into considera-
tion. If all messages are stored during the first inward propagation phase, only
the messages on the path between the two root nodes have to be computed. This
is clearly much more efficient than performing an additional complete inward
propagation phase.

A join tree is an appropriate data structure for computing several marginals.
The trick is to perform a first inward propagation phase during which all mes-
sages are stored. Then, the marginal of every node can be obtained by an out-
ward propagation phase. First, only the root node can send messages. Then,
as soon as a node has received a message from its inward neighbor, it can also
compute and send messages to its outward neighbors. The outward propagation
phase is finished when all leaf nodes have received a message.

Example 7.2 The Outward Propagation Phase The outward propaga-
tion phase for a join tree with root node N1 is shown in Figure 7.3. In step 1,
only the root node can send messages to its outward neighbors N2, N3, N4, and
N5, respectively. Then, in step 2, these four nodes can compute their marginal
if necessary. In addition, nodes N3, N4 and N5, respectively, compute a message
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to their corresponding outward neighbors. Finally, in step 3, every leaf node
has received a message from its inward neighbor and can compute the marginal
if necessary.
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Figure 7.3: The Outward Propagation Phase.

 

Note, often it is not advisable to perform a complete outward propagation.
Instead, it is better to perform only a partial outward propagation to the set of
nodes allowing to answer the given queries.

7.3 Different Architectures

In the following, four different architectures are presented in detail. These
architectures are:

• the Shenoy-Shafer architecture

• the Lauritzen-Spiegelhalter architecture

• the Hugin architecture

• the Fast-Division architecture

For each of these architectures we will show what is computed during the inward
and the outward propagation phase. They differ from each other mainly by the
way in which the outward messages are computed.

In order to describe each architecture we will suppose in the following that a
join tree is already given and that one of its nodes is the root node. Nk0 will be
an arbitrary node with outward neighbors Nk1 , . . . , Nkm−1 and inward neighbor
Nkm . In addition, for two neighbor nodes Ni and Nj with labels Di and Dj ,
the set of variables Sij is the intersection Di∩Dj . Finally, a message from node
Nki

to Nkj
will be denoted as ϕkikj

.

Finally, we will argue that the Shenoy-Shafer architecture is most suited
for the propagation of multivariate Dempster-Shafer belief functions. If it is



74 Chapter 7. Computing Marginals in Join Trees

used together with binary join trees, it should be the first choice for the
propagation of multivariate Dempster-Shafer belief functions.

7.3.1 The Shenoy-Shafer Architecture

The Shenoy-Shafer architecture (SS architecture) was first described in (Shenoy
& Shafer, 1990). It is a general architecture, because there is no difference be-
tween the inward and the outward propagation phase. The outward messages
are computed in the same way as the inward messages. A significant improve-
ment to the SS architecture was the introduction of binary join trees (Shenoy,
1997). The concept of binary join trees will be explained in Section 7.5.

The Inward Propagation Phase
A node Nk0 , different from the root node, computes the inward message ϕk0km

to its inward neighbor Nkm as

ϕk0km = (ϕk0 ⊗ (⊗{ϕk�k0 : 1 ≤ � ≤ m− 1}))↓Sk0km . (7.10)

The inward propagation phase is finished when the root node has received a
message from each of its outward neighbors.

The Outward Propagation Phase
A node Nk0 , which is not a leaf node, can compute the outward message ϕk0kj

to its outward neighbor Nkj
as

ϕk0kj
= (ϕk0 ⊗ (⊗{ϕk�k0 : 1 ≤ � ≤ m, � �= j}))↓Sk0kj . (7.11)

The root node can compute and send messages right away. The outward prop-
agation phase is finished when every leaf node has received a message.

Computing Marginals
Every node Nk0 can compute the potential ϕ′′

k0
as soon as it has received a

message from each of its neighbor nodes. It is computed as

ϕ′′
k0

= ϕk0 ⊗ (⊗{ϕk�k0 : 1 ≤ � ≤ m}) . (7.12)

The following theorem then holds:

Theorem 7.3 Suppose that Nk0 is an arbitrary node and suppose, in addition,
that ϕ′′

k0
is computed as above. Then,

ϕ′′
k0

= ϕ↓Dk0 . (7.13)

Proof See Appendix, page 164. !"
Therefore, ϕ′′

k0
is equivalent to ϕ↓Dk0 , that is, to the joint potential marginalized

to Dk0 . The marginal of the root node can already be computed after the inward
propagation phase. However, note that it is advisable to compute the marginals
only for those nodes for which there is a query to answer.
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7.3.2 The Lauritzen-Spiegelhalter Architecture

The Lauritzen-Spiegelhalter architecture (LS architecture) was first described
in (Lauritzen & Spiegelhalter, 1988) and is very popular in the field of Bayesian
Networks (Pearl, 1988). It could also be used for multivariate Dempster-Shafer
belief functions, but this is not very common. The main difference to the SS
architecture is that the division operation is used during the inward propagation
phase.

The Inward Propagation Phase
A node Nk0 , different from the root node, computes the inward message ϕk0km

to its inward neighbor Nkm in two steps as

ϕ′
k0

= ϕk0 ⊗ (⊗{ϕk�k0 : 1 ≤ � ≤ m− 1}) , (7.14)

ϕk0km = ϕ
′↓Sk0km

k0
. (7.15)

Then, ψ′
k0

can be computed as

ψ′
k0

=
ϕ′

k0

ϕk0km

. (7.16)

ψ′
k0

will be used later during the outward propagation phase. However, note
that it is not a valid potential in general. The inward propagation phase is
finished when the root node has received a message from every neighbor node.
Suppose now that Nk0 is the root node. It can then compute

ϕ′′
k0

= ϕk0 ⊗ (⊗{ϕk�k0 : 1 ≤ � < m}) . (7.17)

The Outward Propagation Phase
Suppose that Nk0 is the root node. It computes the outward message ϕk0kj

to
an outward neighbor Nkj

as

ϕk0kj
= ϕ

′′↓Sk0kj

k0
. (7.18)

Every other node Nk0 can compute a potential ϕ′′
k0

as soon as it has received a
message ϕkmk0 from its inward neighbor as

ϕ′′
k0

= ψ′
k0
⊗ ϕkmk0 . (7.19)

If Nk0 is not a leaf node, it has to compute a message for each of its outward
neighbors. The outward message ϕk0kj

to an outward neighbor Nkj
is then

computed as in Equation 7.18 above.

Computing Marginals
The marginals are already computed during the propagation because the po-
tential ϕ′′

k0
computed on node Nk0 is equal to ϕ↓Dk0 .
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7.3.3 The Hugin Architecture

The Hugin architecture (Jensen et al., 1990a; Jensen et al., 1990b) was obtained
by modifying the LS architecture and is very popular in the field of Bayesian
Networks (Pearl, 1988). In (Lauritzen & Jensen, 1997) it was shown that it can
also be applied to more general theories, including the Dempster-Shafer theory.

In the Hugin architecture the division operation is performed during the out-
ward propagation phase on nodes called separators. A separator is a special
node, which connects two neighbor nodes and of which the label is the inter-
section of the labels of these two nodes. Figure 7.4 shows a join tree used for
the Hugin architecture. The separators are represented as rectangles.
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N1

N10
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N4

N5
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N11

N8

Figure 7.4: A Join Tree with Separators.

The Inward Propagation Phase
A node Nk0 , different from the root node, computes the inward message ϕk0km

to its inward neighbor Nkm in two steps as

ϕ′
k0

= ϕk0 ⊗ (⊗{ϕk�k0 : 1 ≤ � ≤ m− 1}) , (7.20)

ϕk0km = ϕ
′↓Sk0km

k0
. (7.21)

ϕ′
k0

is stored on the node Nk0 and ϕk0km is stored on the separator between
Nk0 and Nkm . The inward propagation phase is finished when the root node
has received a message from every neighbor node. Suppose now that Nk0 is the
root node. It can then compute

ϕ′′
k0

= ϕk0 ⊗ (⊗{ϕk�k0 : 1 ≤ � ≤ m− 1}) . (7.22)

The Outward Propagation Phase
Suppose that Nk0 is the root node. The outward message ϕk0kj

to the separator
between Nk0 and Nkj

is computed as

ϕk0kj
= ϕ

′′↓Sk0kj

k0
. (7.23)
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Then, the message ϕ̃k0kj
to Nkj

is computed on the separator as

ϕ̃k0kj
=

ϕk0kj

ϕkjk0

. (7.24)

ϕkjk0 was stored on the separator during the inward propagation phase. How-
ever, note that ϕ̃k0kj

is not a valid potential in general. Every other node Nk0

can compute a potential ϕ′′
k0

when it has received the message ϕ̃kmk0 from the
separator between itself and its inward neighbor Nkm as

ϕ′′
k0

= ϕ′
k0
⊗ ϕ̃kmk0 . (7.25)

If Nk0 is not a leaf node, it has to compute a message for each of its outward
neighbors. The message ϕ̃k0kj

to an outward neighbor Nkj
is then computed in

two steps as shown in Equation 7.23 and Equation 7.24.

Computing Marginals
The marginals are already computed during the propagation because the po-
tential ϕ′′

k0
computed on every node Nk0 is equal to ϕ↓Dk0 .

7.3.4 The Fast-Division Architecture

The Fast-Division architecture (FD architecture) was first described in (Bissig
et al., 1997) and resulted from a diploma thesis (Bissig, 1996) carried out at
the University of Fribourg. At first sight it is similar to the LS and Hugin ar-
chitectures, but thanks to a useful property it is well suited for the propagation
of multivariate Dempster-Shafer belief functions.

The Inward Propagation Phase
A node Nk0 , different from the root node, computes the inward message ϕk0km

to its inward neighbor Nkm in two steps as

ϕ′
k0

= ϕk0 ⊗ (⊗{ϕk�k0 : 1 ≤ � ≤ m− 1}) , (7.26)

ϕk0km = ϕ
′↓Sk0km

k0
. (7.27)

ϕ′
k0

and ϕk0km have to be stored because they will be used during the outward
propagation phase. The inward propagation phase is finished when the root
node has received a message from every neighbor node. Suppose now that Nk0

is the root node. It can then compute

ϕ′′
k0

= ϕk0 ⊗ (⊗{ϕk�k0 : 1 ≤ � < m}) . (7.28)

The Outward Propagation Phase
Suppose that Nk0 is the root node. It computes the outward message ϕk0kj

to
an outward neighbor Nkj

as

ϕk0kj
= ϕ

′′↓Sk0kj

k0
. (7.29)
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Every other node Nk0 can compute a potential ϕ′′
k0

as soon as it has received
the message ϕkmk0 from its inward neighbor as

ϕ′′
k0

=
ϕ′

k0
⊗ ϕkmk0

ϕk0km

. (7.30)

If Nk0 is not a leaf node, it has to compute a message for each of its outward
neighbors. The outward message ϕk0kj

to an outward neighbor Nkj
is then

computed as in Equation 7.29 above.

Speed up Computations
The potential ϕ′′

k0
in Equation 7.30 can be computed efficiently thanks to the

following property (Bissig, 1996):

FS(ϕ′′
k0

) ⊆ FS(ϕ′
k0
⊗ ϕkmk0) (7.31)

Therefore, [ϕ′′
k0

(A)]m = 0 for all A /∈ FS(ϕ′
k0
⊗ ϕkmk0).

Computing Marginals
The marginals are already computed during the propagation because the po-
tential ϕ′′

k0
computed on every node Nk0 is equal to ϕ↓Dk0 .

7.4 Comparison and Discussion

In order to compare the four architectures, let us define the potential φij for
two neighbor nodes Ni and Nj like in (7.3), as the combination of the potentials
contained in the subtree rooted at Ni. Using this definition it can be verified
that for all four architectures

ϕk0km = φ
↓Sk0km

k0km
. (7.32)

By way of contrast, the outward message ϕkmk0 is not the same in all four
architectures. In the SS architecture

ϕkmk0 = φ
↓Sk0km

kmk0
(7.33)

whereas in the LL, Hugin and FD architectures

ϕkmk0 = φ
↓Sk0km

k0km
⊗ φ

↓Sk0km

kmk0
. (7.34)

The inward message ϕk0km is therefore a factor of the outward message. The
LS, Hugin and FD architectures use the division operation to remove ϕk0km .
The marginal ϕ↓Dk0 is computed as(

ϕ′
k0

ϕk0km

)
⊗ ϕkmk0 , (Lauritzen-Spiegelhalter)

ϕ′
k0
⊗

(
ϕkmk0

ϕk0km

)
, (Hugin)(

ϕ′
k0
⊗ ϕkmk0

)
ϕk0km

, (Fast-Division)
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which corresponds to the three possibilities to remove ϕk0km . Although the final
result of the computations is always a valid potential, this is in general not the
case for the intermediate result of the division operation. Similarly, consider
the computation of (4·3

6 ) by (4
6) · 3 or by 4 · (3

6). The result is always the integer
2, but the intermediate results are not integers.

The advantage of the LS, Hugin, and FD architectures is that they require less
operations than the SS architecture (Lepar & Shenoy, 1998). For a node with m
neighbor nodes, the minimal number of combinations in the SS architecture is
3(m− 1), when a binary join tree is used (see Section 7.5). By way of contrast,
the other architectures use only m combinations and m divisions for the root
node and m combinations and m−1 divisions for other nodes. Table 7.1 shows
that there are less operations used in the LS, Hugin, and FD architectures than
in the SS architecture for nodes with 3 or more neighbor nodes.

LS, Hugin, FD Shenoy-Shafer
Neighbors Combinations Divisions Total Combinations Total

1 1 0 1 1 1
2 2 1 3 3 3
3 3 2 5 6 6
4 4 3 7 9 9
5 5 4 9 12 12
6 6 5 11 15 15

Table 7.1: The Number of Combinations and Divisions

Nevertheless, the LS and Hugin architectures are not practicable for multivari-
ate Dempster-Shafer belief functions. This is due to the fact that the division
of two potentials on domain D involves computing a value for every A ⊆ ΘD,
which is not even possible for relatively small domains D (see Section 3.6).
However, practical experiences show that potentials often contain only a few
focal sets, even if their state space is very large. The LS and Hugin architectures
do not profit from these experiences. The time used by these architectures for
computations depends on the structure of the join tree. In contrast to this, the
time used by the SS and FD architectures depend on the information contained
in the join tree.

An important, yet undiscussed aspect is the question of which representation
(see Section 3.2) to use for the computations. For the SS architecture, it is
undoubtedly the best to use the mass function representation, because only
combination and marginalization are needed. For the FD architecture, it is
not possible to use one representation alone, because division is defined for
commonality functions only and marginalization is not defined for commonality
functions. Therefore, we propose to use mainly the mass function representation
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and the commonality function representation only for the division operation.
This is shown in Figure 7.5 below.

[ϕ′
k0
⊗ ϕkmk0 ]m

[ϕk0km ]m

❍❍❍❥

✟✟✟✯

[ϕ′
k0

⊗ϕkmk0
]q

[ϕk0km ]q
= [ϕ↓Dk0 ]q ✲ [ϕ↓Dk0 ]m

Figure 7.5: Changing the Representation in the FD Architecture.

Note that we propose to use the algorithms of Section 3.6 for the transformation
from mass to commonality functions and from commonality to mass functions.
However, transformations are often computationally expensive. This is the
reason why the SS architecture is more efficient than the FD architecture. In
addition, it is simpler and easier to understand. Therefore, the Shenoy-Shafer
architecture, together with binary join trees (see Section 7.5), is best suited for
the propagation of multivariate Dempster-Shafer belief functions.

A comparison of the LS, the Hugin, and the SS architectures for probability
distributions can be found in (Lepar & Shenoy, 1998). The authors conclude
that for probability distributions, the SS architecture is on an average more
efficient than the LS and Hugin architectures.

7.5 Binary Join Trees

The Shenoy-Shafer architecture as it is presented in Subsection 7.3.1 is not
very efficient when multiple marginals have to be computed. The problem is
that many redundant combinations would be recomputed. Therefore, Shenoy
proposes binary join trees (BJT) (Shenoy, 1997) to eliminate this drawback.

To illustrate the problem, let us consider first the join tree on the left side of
Figure 7.6. The node Nk0 has four neighbor nodes Nk1 , . . . , Nk4 . In the SS
architecture, the messages ϕk0k1 , . . . ϕk0k4 would be computed as

ϕk0k1 = (ϕk0 ⊗ ϕk2k0 ⊗ ϕk3k0 ⊗ ϕk4k0)
↓Sk0k1

ϕk0k2 = (ϕk0 ⊗ ϕk1k0 ⊗ ϕk3k0 ⊗ ϕk4k0)
↓Sk0k2

ϕk0k3 = (ϕk0 ⊗ ϕk1k0 ⊗ ϕk2k0 ⊗ ϕk4k0)
↓Sk0k3

ϕk0k4 = (ϕk0 ⊗ ϕk1k0 ⊗ ϕk2k0 ⊗ ϕk3k0)
↓Sk0k4

involving twelve combinations. In addition, the marginal ϕ↓Dk0 would be com-
puted as

ϕ↓Dk0 = ϕk0 ⊗ ϕk1k0 ⊗ ϕk2k0 ⊗ ϕk3k0 ⊗ ϕk4k0

involving four additional combinations. In that way, a node with m neighbor
nodes would need m(m− 1) combinations for the computation of the messages
and m combinations for the marginal. Therefore, m2 combinations would be
needed in total.
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Figure 7.6: Ordinary Join Tree and corresponding Binary Join Tree.

Now, let us consider the join tree on the right side of Figure 7.6. It was con-
structed from the join tree on the left through addition of two nodes. Every
node of the join tree has now three neighbor nodes at most. A join tree with this
property is called a binary join tree. The messages ψ1, . . . , ψ4 are computed
by

ψ1 = ϕk0 ⊗ ϕk1k0

ψ2 = ψ1 ⊗ ϕk2k0

ψ3 = ϕk3k0 ⊗ ϕk4k0

ψ4 = ψ3 ⊗ ϕk2k0

involving four combinations. The messages ϕk0k1 , . . . , ϕk0k4 can then be ob-
tained as

ϕk0k1 = (ϕk0 ⊗ ψ4)↓Sk0k1

ϕk0k2 = (ψ1 ⊗ ψ3)↓Sk0k2

ϕk0k3 = (ψ2 ⊗ ϕk4k0)↓Sk0k3

ϕk0k4 = (ψ2 ⊗ ϕk3k0)↓Sk0k4

involving four additional combinations. Finally, the marginal ϕ↓Dk0 can be
obtained using only one combination. It is

ϕ↓Dk0 = ψ1 ⊗ ψ4 = ψ2 ⊗ ψ3.

Every join tree can be transformed into a binary join tree through addition of
additional nodes. Then, 3m − 4 combinations are needed for the computation
of all messages for a node with m neighbor nodes. Further, one additional
combination is required for the computation of the marginal. Therefore, 3(m−
1) combinations are needed in total.

The number of combinations needed for the computation of the messages and
the marginal is shown in Table 7.2. Without the use of a binary join tree, a lot
of unnecessary combinations would be performed for nodes which have many
neighbor nodes.
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SS without BJT SS with BJT
Neighbors Messages Marginal Total Messages Marginal Total

1 0 1 1 0 1 1
2 2 2 4 2 1 3
3 6 3 9 5 1 6
4 12 4 16 8 1 9
5 20 5 25 11 1 12
6 30 6 36 14 1 15

Table 7.2: The number of combinations needed

The main idea of binary join trees is to store intermediate results for minimizing
the number of combinations. Binary join trees are a significant improvement to
the SS architecture. Nevertheless, it is important to realize that binary join trees
represent a tradeoff between computing time and memory space. By storing
intermediate results, less computing time is needed by the sake of using more
memory space. Whereas memory is usually not a problem for small examples,
it is often the main problem for large examples.

Special care has to be taken for nodes having a large number of neighbor nodes.
For such nodes it can happen that the combination of incoming messages gen-
erate huge mass functions even if the incoming messages were relatively small.
Nevertheless, it is still possible that every outgoing message is relatively small
because a marginalization was performed. In a binary join tree, these huge
mass functions representing intermediate results would have been stored and
therefore much memory space would have been lost.

7.6 Answering Queries

We have already seen in Chapter 2 that

dsp(h, ξ) =
dqs(h, ξ)− dqs(⊥, ξ)

1− dqs(⊥, ξ) . (7.35)

Therefore, it is sufficient to consider only queries of the form dqs(h, ξ). The
formula h is called the hypothesis of the query and ξ represents the knowledge
base. In addition, we say that the set of variables d(h), that is the variables
which appear in h, is the domain of the query. In the following, we will
distinguish the cases, where h ∈ LV and where h ∈ LA∪V . Finally, we will show
what to do if a query cannot be answered on a given join tree.
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7.6.1 Query with hypothesis h ∈ LV

If h ∈ LV and d(h) ⊆ Dk0 , then dqs(h, ξ) can be computed as

dqs(h, ξ) = [ϕ↓Dk0 (H)]b (7.36)

for H = NDk0
(h), where the potential ϕ is constructed from ξ. Therefore, a

query can be answered on a given join tree if it contains at least one node of
which the label is a superset of the domain of the query.

The Shenoy-Shafer architecture computes ϕ↓Dk0 by propagating potentials in
a join tree. The picture on the left side of Figure 7.7 shows that the node Nk0

receives a message from each of its neighbor nodes. If Nk1 , . . . , Nkm are the
neighbor nodes of Nk0 ,

ϕ↓Dk0 = ϕk0 ⊗ ϕk1k0 ⊗ · · · ⊗ ϕkmk0 . (7.37)

If a query dqs(h, ξ) is already known before a join tree is constructed, then the
construction should be organized in such a way that there will be at least one
node of which the label is a superset of d(h). One possibility to do this is the
use of an elimination sequence consisting of variables in d(ξ)− d(h). The root
node of the join tree resulting from Shenoy’s fusion algorithm will then have
the label d(h). Another possibility is to add a neutral potential ιh of which the
domain is d(h). Every join tree constructed from a set of potentials containing
ιh will then have a node of which the label is a superset of d(h). Therefore, an
inward propagation toward this node is then needed.

Of course, the same procedure is also valid if more than one query is known
prior to the construction of a join tree. However, sometimes it is not advisable
to construct a join tree which allows to answer all these queries because the
join tree constructed gets worse with every additional neutral potential added.
Therefore, we propose to split up the queries according to a certain strategie
into several groups and to build a join tree for each group if there are many
queries.

7.6.2 Query with hypothesis h ∈ LA∪V

The computation of dqs(h, ξ) for h ∈ LA∪V is quite similar to the computation of
dqs(h, ξ) for h ∈ LV discussed previously. However, in addition to the potential
ϕi, it is now required to store on every node Ni of the join tree also the symbolic
mass function 2Σ′

i from which ϕi was derived.

Suppose in the following that dA(h) ⊆ A denotes the set of assumptions occuring
in h and d(h) ⊆ V the set of variables. A query, where h ∈ LA∪V can only be
answered if there is a node Nk0 so that

• dA(h) ⊆ dA(2Σ′
k0

),

• d(h) ⊆ Dk0 .



84 Chapter 7. Computing Marginals in Join Trees

If such a node Nk0 does not exist, it is always possible to construct a join tree
which meets the two above requirements. Therefore, we suppose in the following
that such a node Nk0 exists. In any case, note that it is not possible that more
than one node of a join tree satisfies the two above requirements because we
construct join trees in such a way that every assumption a ∈ A occurs only in
one node. A join tree with this property was called an A-disjoint join tree (see
Chapter 4).

The hypothesis h ∈ LA∪V can always be written as

h = h1 ∨ h2

where h1 ∈ LV and h2 ∈ LA∪V . Almost always, there are even several possibili-
ties to decompose h in such a way. It is relatively easy to see that

dqs(h1 ∨ h2, ξ) = dqs(h1,¬h2 ∧ ξ) (7.38)

because

QSA(h1 ∨ h2, ξ) = {s ∈ NA : s ∧ ξ |= h1 ∨ h2}
= {s ∈ NA : s ∧ ¬h2 ∧ ξ |= h1} = QSA(h1,¬h2 ∧ ξ).

This allows to compute dqs(h, ξ) as

dqs(h, ξ) = [ϕ̃↓Dk0 (H1)]b (7.39)

for H1 = N(h1)
↑Dk0 and where the potential ϕ̃ corresponds to ¬h2 ∧ ξ. We

supposed that dA(h) ⊆ dA(2Σ′
k0

) because ϕ̃↓Dk0 can then be computed similar to
ϕ↓Dk0 . The picture on the right side of Figure 7.7 shows that

ϕ̃↓Dk0 = ϕ̃k0 ⊗ ϕk1k0 ⊗ · · · ⊗ ϕkmk0 . (7.40)

Therefore, the only difference is that ϕk0 is replaced by the potential ϕ̃k0 , which
is constructed from ¬h2 and from the symbolic mass function 2Σ′

k0
.
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Figure 7.7: Hypothesis h ∈ LV and Hypothesis h ∈ LA∪V .

Finally, let us summarize the steps which have to be taken in order to answer
a query of the form dqs(h, ξ), where h ∈ LA∪V :
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1. Find a node Nk0 with label Dk0 so that

• d(h) ⊆ Dk0

• dA(h) ⊆ dA(2Σ′
k0

) for the symbolic mass function 2Σ′
k0

of ϕk0

2. Transform h into h = h1 ∨ h2, where h1 ∈ LV and h2 ∈ LA∪V

3. Build the potential ϕ̃k0 from 2Σ′
k0

and ¬h2

4. Compute ϕ̃↓Dk0 = ϕ̃k0 ⊗ ϕk1k0 ⊗ · · · ⊗ ϕkmk0

5. Return dqs(h, ξ) = [ϕ̃↓Dk0 (H1)]b, where H1 = N(h1)↑Dk0

7.6.3 Modifying the Join Tree

The construction of a join tree is computationally very expensive. Therefore, if a
join tree is already given and there is a query which cannot be answered, it is not
always a good idea to construct a new join tree. Another possibility is to modify
the existing join tree in such a way that the query can be answered after the
modifications. Above all, this approach is very interesting if the modifications
involve only a small part of the join tree.

In (Xu, 1995), an algorithm is proposed which modifies a given join tree in
such a way that it contains a new node afterwards which allows to answer
the given query. Therefore, the input values of Xu’s algorithm are a join tree
JT = (N,E) and the domain d(h) of the query. The result of the algorithm is
a new join tree containing a node of which the label is a superset of d(h). The
pseudo code of the algorithm is as follows:

Pseudo-Algorithm Modification Method proposed by Xu

(1) Find a set b = {Nt1 , . . . , Ntk} ⊆ N so that Dti ∩ d(h) �= ∅ and
d(h) ⊆

⋃k
i=1 Dti

(2) Build the (smallest) set a that contains b and all the nodes on the
path among the nodes in b

(3) If |a| = 1, then stop

(4) Select Ni ∈ a so that it has only one neighbor Nj in a

Nj = {Nk ∈ a : (Nk, Nj) ∈ E}
Sj =

⋃
{(Dj ∩Dk) : Nk ∈ a}

(5) Create node N ′ with label D′ = (Di ∪Dj) ∩ (Sj ∪ d(h))

(6) E = E∪ {(Nk, N
′) : Nk ∈ Nj} ∪ {(Nj , N

′)}− {(Nk, Nj) : Nk ∈ Nj}
N = N ∪ {N ′}
a = a ∪ {N ′} \ {Ni, Nj}

(7) Go back to step (3)
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Note that the set of nodes a represents a subtree of the original join tree. The
modifications affect only this subtree, while the rest of the join tree is not
changed. At each pass of the algorithm, there is one node less in a. The set of
nodes a represents always a tree and it is therefore always possible to select a
node Ni ∈ a in step (4) which has only one neighbor node Nj in a. Step (5)
guarantees that the Markov property is satisfied and that there will be a node
of which the label is a superset of d(h). At step (6), the set of nodes of the
original join tree is a subset of the set of nodes of the modified join tree.

To illustrate Xu’s algorithm, let us look at the join tree on the left side of
Figure 7.8. A query with domain d(h) = {a, g} cannot be answered directly,
because there is no node of which the label is a superset of d(h). Therefore, let
us look at how Xu’s algorithm solves the problem.

ab

cde dg

bcd

cehdef

ab

cde dg

bcd

cehdef

abd

adg

Figure 7.8: The original Join Tree and the modified Join Tree.

Example 7.3 The Modification Method proposed by Xu Let us look
again at the join tree on the left side of Figure 7.8. If the domain of the query
is d(h) = {a, g}, then (we denote nodes by their label)

b = {{a, b}, {d, g}}
a = {{a, b}, {b, c, d}, {d, g}}

are obtained in steps (1) and (2). Because |a| is not equal to 1, we continue
with step (4). Here, nodes {a, b} as well as {d, g} could be chosen. If we choose
Ni = {a, b}, Nj = {b, c, d} and, additionally,

Nj = {{a, b}, {d, g}},
Sj = {b, d}.

The newly created node N ′ has the label {a, b, d}. It is connected to the nodes
{a, b} and {b, c, d}, whereas the edges from {b, c, d} to {a, b} and {d, g} are
removed. Finally, set a consists of two nodes and is given by

a = {{a, b, d}, {d, g}}.



7.6. Answering Queries 87

Repeating steps (3) to (7) with the new set of nodes a and choosing Ni =
{a, b, d} and Nj = {d, g} then gives

Nj = {{a, b, d}},
Sj = {d}.

A new node with label {a, d, g} is then created. It is connected to {a, b, d} and
{d, g}, whereas the edges between {a, b, d} and {d, g} is removed. Finally, the
set a is given by

a = {{a, d, g}}

so that the algorithm terminates.

The corresponding join tree obtained by Xu’s algorithm is shown on the right
side of Figure 7.8. The query with domain d(h) = {a, g} can now be answered
because one of the two new nodes has the label {a, d, g}. To answer the query,
an inward propagation phase toward the node {a, d, g} has to be initiated.
However, if the messages were stored in the original join tree, only a partial
inward propagation would be needed, because the changes involve only a small
part of the original join tree.  
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8
An Alternative to Outward

Propagation

An inward propagation phase followed by an outward propagation phase corre-
sponds in a way to a complete compilation of the given knowledge allowing
then to answer queries very quickly. This approach is especially advantageous
when there are a lot of queries distributed over all the nodes of a join tree.

In the following, we propose a new method which is very appropriate when there
are relatively few queries. It corresponds to a partial compilation of the given
knowledge. This partial compilation results from an inward propagation phase,
where intermediate results are stored. Later, instead of performing a complete
outward propagation phase, a partial inward propagation is performed for each
query. A description of this new method can also be found in (Lehmann &
Haenni, 1999).

In this chapter, we will first explain the basic idea on which the new method is
based. Then, we will take a closer look at the new method which consists of a
first inward propagation phase followed by a partial inward propagation phase.
Finally, we will show how the new method can be improved further.

8.1 The Basic Idea

The new method is based on an alternative way for computing degrees of quasi-
support. Suppose that PASV = {ξ,V,A,Π} represents a probabilistic argumen-
tation system. For the knowledge base ξ and every h ∈ LV

ξ |= h ⇐⇒ ξ ∧ ¬h |= ⊥. (8.1)

Using this equivalence, it can be concluded that

QSA(h, ξ) = QSA(⊥, ξ ∧ ¬h). (8.2)

and therefore it is also

dqs(h, ξ) = dqs(⊥, ξ ∧ ¬h). (8.3)

89
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Because computing degree of quasi-support is equivalent to computing unnor-
malized belief in Dempster–Shafer theory (see Chapter 4)

dqs(h, ξ) = [ϕ↓Dh(H)]b (8.4)

for a joint potential ϕ = ϕ1 ⊗ · · · ⊗ ϕn which is equivalent to ξ, Dh = d(h) and
H = NDh

(h). However, by using Equation 8.3, dqs(h, ξ) can alternatively be
computed as

dqs(h, ξ) = [(ϕ⊗ υ)(∅)]b (8.5)

where the potential υ corresponds to ¬h and is given by [υ(Hc)]m = 1.

This alternative way of computing dqs(h, ξ) can also be used for the computa-
tion of dsp(h, ξ). Traditional methods compute dsp(h, ξ) as

dsp(h, ξ) = [ϕ↓Dh(H)]B (8.6)

=
[ϕ↓Dh(H)]b − [ϕ↓Dh(∅)]b

1− [ϕ↓Dh(∅)]b
(8.7)

by computing the marginal ϕ↓Dh on one of the nodes of the join tree. If Dh is
not a subset of the label of the root node, an inward and an outward propagation
phase is needed for this (see Chapter 7). In contrast, the new method computes
dsp(h, ξ) as

dsp(h, ξ) =
[(ϕ⊗ υ)↓Dr(∅)]b − [ϕ↓Dr(∅)]b

1− [ϕ↓Dr(∅)]b
(8.8)

where Dr is the label of the root node.

8.2 The New Method

The new method computes dsp(h, ξ) for a probabilistic argumentation system
PASV = {ξ,V,A,Π} by performing an inward propagation phase followed by a
second partial inward propagation.

8.2.1 The Inward Propagation Phase

The inward propagation phase is used to compute the value c1 = [ϕ(∅)]m and
has to be performed only once even if there are many queries. It is exactly
the same as for traditional methods described in Section 7.1. For the reason of
completeness it is nevertheless described again in the following.

First, a root node Nr has to be selected. Then, an inward propagation toward
Nr is started. Every node Nk0 with neighbor nodes Nk1 , . . . , Nkm , where Nkm

denotes the inward neighbor of Nk0 computes

ϕ′
k0

= ϕk0 ⊗ ϕk1k0 ⊗ . . .⊗ ϕkm−1k0 (8.9)



8.2. The New Method 91

as soon as it has received the messages ϕk1k0 , . . . , ϕkm−1k0 from its outward
neighbors. The message ϕk0km to the inward neighbor Nkm is then computed
by an additional marginalization as

ϕk0km = ϕ′
k0

↓Dk0
∩Dkm . (8.10)

The inward propagation phase is finished as soon as the root node Nr has com-
bined its potential with every incoming message yielding ϕ′

r which is equal to
ϕ↓Dr . The value [ϕ↓Dr(∅)]m is then equal to [ϕ(∅)]m. This value is of particular
interest because afterwards it is used for normalization.

8.2.2 The Partial Inward Propagation

For each query, an additional inward propagation phase is required to com-
pute dqs(h, ξ) (which is equal to [ϕ↓Dh(H)]b). In the following, first only the
very basic things needed to understand the method are explained. Then, two
improvements are given and discussed in detail.

The Basic Approach
First, a potential υ which corresponds to ¬h is constructed in such a way that
d(υ) = d(h) and [υ(Hc)]m = 1 for H = N(h). The potential υ is then added
to the join tree. For this purpose, there must be at least one node in the join
tree of which the label is a superset of d(υ). Suppose that this node is denoted
as Nυ. Now, an inward propagation phase can be started. Every node Nk0

different from Nυ computes as usually

ϕ̃′
k0

= ϕk0 ⊗ ϕ̃k1k0 ⊗ . . .⊗ ϕ̃km−1k0 (8.11)

as soon as it has received the messages ϕ̃k1k0 , . . . , ϕ̃km−1k0 from its outward
neighbors. In contrast, if Nk0 is equal to Nυ, then it computes

ϕ̃′
k0

= ϕk0 ⊗ ϕ̃k1k0 ⊗ . . .⊗ ϕ̃km−1k0 ⊗ υ. (8.12)

In any case, the inward message from Nk0 to Nkm is obtained by an additional
marginalization as

ϕ̃k0km = ϕ̃′
k0

↓Dk0
∩Dkm . (8.13)

The inward propagation phase is finished as soon as the root node Nr has
received all messages and has computed the potential ϕ̃′′

r by combining every
incoming message with its potential. It is then

ϕ̃′′
r = (ϕ⊗ υ)↓Dr . (8.14)

The value c2 = [(ϕ⊗ υ)↓Dr(∅)]m is of particular interest. If c1 = [ϕ↓Dr(∅)]m is
the value obtained after the first inward propagation phase, then the following
theorem holds:
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Theorem 8.1 Suppose that H = N(h) and Dh = d(h). In addition, suppose
that υ corresponds to ¬h. If c1 and c2 are defined as above, then

[ϕ↓Dh(H)]B =
c2 − c1
1− c1

. (8.15)

Proof See Appendix, page 164. !"
This theorem states that only the two values c1 and c2 are needed to compute
the degree of support of a hypothesis h ∈ LV . The value c1 is obtained after
the first inward propagation phase, whereas c2 is obtained after the additional
inward propagation phase.

1. Improvement: Storing Intermediate Results
By comparing the two inward propagation phases described on the previous
pages, it can be seen that unnecessary computations are performed during the
second inward propagation phase. For all nodes which are not on the path from
Nυ to Nr it is always ϕ′

k0
= ϕ̃′

k0
. For these nodes, the computation of ϕ̃′

k0
can

be avoided if intermediate results are stored during the first inward propagation
phase. Only a partial inward propagation from Nυ to the root node Nr is then
necessary. This is of course much more efficient than performing a complete
inward propagation phase.

2. Improvement: Hypothesis represented by several Potentials
The second improvement allows to answer a larger class of queries. It is based on
the fact that the hypothesis h ∈ LV can always be represented as a disjunction
h = h1 ∨ · · · ∨ hk, where for every formula hi it is d(hi) ⊆ d(h). Then ¬h =
¬h1 ∧ · · · ∧¬hk represents the negated hypothesis. For each hi a potential υi is
constructed so that d(υi) = d(hi) and [υi(Hi

c)]m = 1 for Hi = N(hi). In such a
way, υi is equivalent to ¬hi and in addition, υ = υ1 ⊗ · · · ⊗ υk is equivalent to
¬h. Each of the potentials υ1, . . . , υk is then added to the join tree. Therefore,
for each υi there must be at least one node of which the label is a superset of
d(υi).

Example 8.1 Adding Potentials to the Join Tree On the left side of
Figure 8.1, the potentials υ1,υ2, and υ3 are added to three different nodes of
the join tree. However, note that it may also happen that several potentials are
added to the same node.

Then, a partial inward propagation toward the root node can be started. Again,
it is not necessary to perform a complete inward propagation phase if interme-
diate results are stored during the first inward propagation phase. On the right
side of Figure 8.1 it can be seen that actually only the nodes N1, N3, N4, and
N7 have to perform computations.  

Note that the transformation of h into a disjunction is only interesting when
the domain of every formula hi is a strict subset of d(h), that is d(hi) ⊂ d(h)
for 1 ≤ i ≤ k. In this case, it can happen that a query can be answered even
if there is no node in the join tree of which the label is a superset of d(h).
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Figure 8.1: Partial Inward Propagation.

Therefore, a larger class of queries can be answered if h is transformed into a
disjunction h = h1 ∨ · · · ∨ hk.

Note also that the transformation of h into a disjunction h = h1∨· · ·∨hk is not
unique. One possibility is for example to compute the disjunctive normal form
of h. Usually, this can be done efficiently because the hypothesis h is hardly
ever a complicated formula.

Example 8.2 Implications as Queries Suppose that the query h is given by
h = p→ q. The new method first transforms h into the equivalent disjunction
h = ¬p ∨ q. Then, h = h1 ∨ h2 with h1 = ¬p and h2 = q, and therefore
d(h1) = {p} and d(h2) = {q}. Traditional methods cannot answer the query if
there is not at least one node in the join tree of which the label is a superset of
d(h) = {p, q}. However, the query can be answered by the new method because
even if there is no node of which the label is a superset of {p, q} there is always a
node of which the label contains p and another node of which the label contains
q.  

8.2.3 The Algorithm

Suppose that a join tree with nodes N1, . . . , Nn was constructed for a proba-
bilistic argumentation system PASV = {ξ,V,A,Π}. Every node Ni of the join
tree contains a potential ϕi and the joint potential ϕ = ϕ1 ⊗ . . . ⊗ ϕn corre-
sponds to the knowledge base ξ. The following algorithm computes dsp(h, ξ)
for every hypothesis h ∈ {h1, . . . , hm}.
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Algorithm The New Method

Select a node Nr as root node
Inward Propagation : c1 = [ϕ↓Dr(∅)]m
If c1 = 1 then Exit
For each hi in {h1, . . . , hm} do

Transform hi into hi = hi1 ∨ · · · ∨ hik

For j = 1 to k do
Hij = N(hij )
Build υij so that d(υij ) = d(hij ) and [υij (Hij

c)]m = 1
Select node Nυ so that d(υij ) ⊆ Dυ

Add υij to node Nυ

Next j
Partial Inward Propagation : c2 := [(ϕ⊗ υ)↓Dr(∅)]m
Output dsp(hi, ξ) = c2−c1

1−c1
Next hi

If c1 = 1 then the given knowledge is completely contradictory. In this case,
c2 would also be equal to 1 for every hypothesis. Otherwise, each query is
answered by a partial inward propagation.

8.3 The “Communication Line” Example

In the following, the example of Section 2.8 will be used to demonstrate the
new method. The query dsp(x0 → xm, ξ) is answered by a first complete
inward propagation phase and an additional partial inward propagation phase.
Although here, all nodes are involved in the partial inward propagation phase,
it can nevertheless be seen that the new method requires a much simpler join
tree than the one used for traditional methods (see Figure 6.17).

Example 8.3 Communication Line (continued) First, the hypothesis
has to be transformed into an equivalent disjunction. Here, the hypothesis
h = x0 → xm is equivalent to h = h1 ∨ h2, where h1 = ¬x0 and h2 = xm.
Therefore, the query can always be answered on whatever join tree is used.
The join tree constructed by the application of Shenoy’s fusion algorithm using
the elimination sequence 〈x0, x1, . . . , xm〉 is shown in Figure 8.2. In addition,
by using the above elimination sequence, the node labeled {xm−1, xm} will be
the root node denoted by Nr.

x0x1 x1 x1x2 x2 x2x3 x3 xm-1 xm-1xmx3x4 x4

u1 u2

Figure 8.2: Join Tree for the “Communication Line” Example.
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The potentials ϑ1, . . . , ϑm obtained for the knowledge base ξ are distributed
on this join tree. For every potential ϑi with domain {xi−1, xi} there is a
corresponding node with the same label. On the other hand, the nodes with
label {x1}, . . . , {xm−1} contain the neutral potential. If ϕ = ϑ1 ⊗ · · · ⊗ ϑm

denotes the joint potential, then the inward propagation gives

c1 = [ϕ↓Dr(∅)]m = 0.

Then, two potentials υ1 and υ2 equivalent to ¬h1 and ¬h2 have to be con-
structed. It can be verified that d(υ1) = {x0} and d(υ2) = {xm} and that each
of the two potentials has only one focal set given by {f0} and {tm}. The partial
inward propagation toward the root node is then equivalent to the computation
of

((· · · ((υ1 ⊗ ϑ1)
↓{x1} ⊗ ϑ2)

↓{x2}⊗ · · · ⊗ ϑm−1)
↓{xm−1}

⊗ υ2 ⊗ ϑm)
↓∅
.

It can be verified that every intermediate result of the above formula is a po-
tential which has exactly two focal sets. Therefore, the message sent from a
node with label {xi−1, xi} to its neighbor node labeled {xi} is a potential with
focal sets {fi} and Θxi . The masses assigned to these focal sets are 0.9i and
1− 0.9i respectively. Finally, the combination with υ2 determines the result of
the partial inward propagation given by

c2 = [(ϕ⊗ υ)↓Dr(∅)]m = 0.9m.

The values c1 and c2 are sufficent to compute dsp(x0 → xm, ξ) = 0.9m.  

8.4 Differences to Traditional Methods

The main difference between traditional methods and the new method is that
traditional methods compute for a given hypothesis h first the marginal [ϕ↓Dh ]m,
where Dh = d(h). The marginal is then used to compute the value [ϕ↓Dh(H)]b
for H = N(h). In contrast, the new method computes directly the value
[ϕ↓Dh(H)]b. Therefore, traditional methods correspond in a certain way to
a complete compilation of the knowledge, whereas the new method corresponds
only to a partial compilation.

There is also a difference concerning the join tree required by the two sort of
methods. For a given probabilistic argumentation system PASV = (ξ,V,A,Π),
the new method requires often a simpler join tree. This is due to the fact that
traditional methods require the join tree to contain at least one node of which
the label is a superset of the domain of the query. By comparing Figure 6.17
and Figure 8.2 it can be seen that this requirement can lead to a worse join
tree.

Finally, for a given join tree a larger class of queries can be answered by the
new method. If for example the query dsp(x1 → xm) has to be answered, then
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traditional methods cannot use the join tree of Figure 6.17 directly because
there is no node of which the label is a superset of {x1, xm}. Therefore, a new
join tree has to be constructed or the join tree has to be modified as proposed
in Section 7.6. In contrast, by using the new method and by transforming the
query into an equivalent disjunction, the join tree of Figure 8.2 can also be used
to compute dsp(x1 → xm).

Traditional methods are more efficient when there are many queries and when
the domains of these queries do not imply that the join tree used has to be
modified several times.

8.5 Improvements

In the previous section it is shown that an inward propagation phase followed by
a partial inward propagation is sufficient to answer a query. In order to answer
queries as fast as possible it is therefore important that inward propagation is as
fast as possible. For this reason, we present in the following two improvements

8.5.1 Arranging the Combinations

Suppose that Nk0 has outward neighbors Nk1 , . . . , Nkm−1 . During the first com-
plete inward propagation phase, Nk0 has to compute

ϕ′
k0

= ϕk0 ⊗ ϕk1k0 ⊗ . . .⊗ ϕkm−1k0 .

Because of associativity and commutativity there are many ways to compute
this. Although the final result is always the same there may be big differences
in the time needed. This is shown by the following example:

Example 8.4 Arranging the Combinations Suppose that the potentials
ϕ1, ϕ2, and ϕ3 are given. Then,

(ϕ1 ⊗ ϕ2)⊗ ϕ3 = (ϕ1 ⊗ ϕ3)⊗ ϕ2 = (ϕ2 ⊗ ϕ3)⊗ ϕ1

are three possible ways to compute the combination of these potentials. Suppose
now that ϕ1 and ϕ2 both have 2 focal sets, whereas ϕ3 has 100 focal sets. If
ϕ1 is first combined with ϕ2 and then with ϕ3, then one 2× 2-combination and
one 4 × 100-combination is needed in the worst case. In contrast, if ϕ1 is first
combined with ϕ3 and then with ϕ2, then one 2 × 100-combination and one
2 × 200-combination is needed in the worst case. The first case is obviously
much more efficient.  

Therefore, as the time needed to combine two potentials is correlated to the
number of focal sets it seems natural to combine first potentials possessing fewer
focal sets. This heuristic is used in the following algorithm:
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Algorithm Arranging the Combinations

Ψ := {ϕk0} ∪ {ϕkik0 : 1 ≤ i < m}
Repeat

Choose ϑk ∈ Ψ and ϑl ∈ Ψ so that
|FS(ϑk)| ≤ |FS(ϑ)| for all ϑ ∈ Ψ and
|FS(ϑl)| ≤ |FS(ϑ)| for all ϑ ∈ Ψ \ {ϑk}

Ψ = Ψ ∪ {ϑk ⊗ ϑl} \ {ϑk, ϑl}
Until |Ψ| = 1

Every node uses this algorithm to combine its incoming messages with its po-
tential. At the end, the set Ψ contains only one potential which is then equal
to ϕ′

k0
. If Nk0 is the root node Nr, then ϕ′

k0
is equal to ϕ↓Dr . Otherwise, the

inward message ϕk0km to Nkm can easily be computed using Equation 8.10 by
an additional marginalization.

The algorithm can be visualized when for every combination a new node is
created. If Nk0 has m neighbor nodes, then there are exactly m− 1 new nodes
with labels Dk0 created. Each of these newly created nodes serves to store the
corresponding intermediate result. As an example, in Figure 8.3 two trees are
shown for a given node with 4 neighbor nodes. The tree on the left corresponds
to the computation of ((ϕk0 ⊗ ϕk1k0)⊗ ϕk2k0)⊗ ϕk3k0 , whereas the one on the
right corresponds to (ϕk0 ⊗ ϕk1k0)⊗ (ϕk2k0 ⊗ ϕk3k0).

Nk4

Nk0 Nk1 Nk2 Nk3
Nk0 Nk1 Nk2 Nk3

Nk0

Nk1

Nk2

Nk3

Nk4

Nk4

Figure 8.3: Visualizing the Algorithm.

The algorithm presented here is related to the technique of binary join trees
(see Section 7.5) because it also minimizes the number of combinations needed
by storing intermediate results. However, here the nodes of the join tree are
originally not restricted to at most 3 neighbor nodes. But because combination
is a binary operation the visualization of the algorithm leads always to a binary
join tree.

In (Xu, 1991) another method is presented which minimizes the number of com-
binations by saving intermediate results. The messages from outward neighbors
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of Nk0 are combined accumulatively with the potential of Nk0 . The binary join
tree on the left side of Figure 8.3 corresponds to this method. If Nk0 has
m neighbor nodes, then there are

∏m
k=2

(
k
2

)
= m!·(m−1)!

2(m−1) possible sequences of
combinations. Only one of them corresponds to the method presented in (Xu,
1991), whereas our method tries to select a good sequence depending on ϕk0

and the incoming messages ϕk1k0 , . . . , ϕkm−1k0 .

8.5.2 No Need to Store Intermediate Results

For nodes with a lot of neighbor nodes, it can happen that the combination of in-
coming messages generates huge mass functions even if the incoming messages
were relatively small and even if the heuristic of the last Subsection is used.
Nevertheless, outgoing messages can be relatively small in the case, where a
marginalization is performed. Storing these intermediate results can therefore
necessitate a huge amount of memory. In addition, it is advantageous mainly
for the outward propagation phase and it is not that much important in this
approach since the outward propagation is replaced by a partial inward propa-
gation.

8.5.3 Selection of Nodes

In the algorithm presented in Subsection 8.2.3 a node Nυ has to be selected to
which a newly constructed potential υ is then added. As already mentioned,
there may be many nodes which could be used for this purpose. However, it is
best to select the one which is closest to the root node. In such a way, the path
to the root node is then as short as possible.



9
Implementation Aspects

In the previous chapters it was shown that computing degrees of support
is equivalent to computing normalized belief in Dempster-Shafer theory. An
efficient way for computing normalized belief is to use Shenoy’s fusion algo-
rithm which allows to compute the marginal for a given query. If there are
several queries, then it is advisable to use a join tree. The computation of
the marginals is then based on a message-passing scheme in the join tree. The
Shenoy-Shafer architecture describes such a message-passing scheme and is
best suited for Dempster-Shafer theory. The initially given potentials and the
computed messages are then represented as mass functions.

In the following, we will show how the computation of marginals in a join
tree can be implemented efficiently on a computer. For this, no particular
knowledge about programming languages is needed even though we used the
programming language LISP to implement the data structures and algorithms
presented later in this chapter. More precisely, we worked on computers of Ap-
ple Power Macintosh type using the excellent software package Macintosh
Common Lisp from Digitool.

We start with a discussion about storing mass functions. The main part of
this discussion will be about storing an individual focal set of a mass function.
The representation of individual focal sets is important because it determines
heavily the amount of memory and the time used for combination, projection
and extension. However, the representation of mass functions is at least as im-
portant as the representation of an individual focal set. Especially, the amount
of time used for combining mass functions depends strongly on how mass func-
tions are represented.

Finally, a data structure called variable link list will be presented. This data
structure is very appropriate for the fusion algorithm.

9.1 Representing Focal Sets

As shown in Chapter 3, a mass function ϑ on domain D = {x1, . . . , xn} is
completely determined by its focal sets and the masses of these focal sets.

99
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If each variable xj has the set of values Θxj = {1, . . . , kj}, then the set of
configurations ΘD consists of K = k1 · . . . · kn elements. We suppose in the
following that the configuration cr, where r is given by

r =
n∑

j=1

((rj − 1) ·
n∏

i=j+1

ki). (9.1)

corresponds to the assignment of values r1, . . . , rn to the variables x1, . . . , xn,
where 1 ≤ rj ≤ kj for 1 ≤ j ≤ n. This way of enumerating the configurations
is shown on the left side of Figure 9.1.

In the following, different ways of representing a set A ⊆ ΘD will be presented.
We are in particular interested in representations which allow to compute A∩B,
A↓D′

, and A↑D′′
for B ⊆ ΘD and D′ ⊆ D ⊆ D′′ as fast as possible. This is

due to the fact that the basic operations for mass functions make heavy use of
these kind of computations. In addition, it is also important that the coding of
a set A ⊆ ΘD does not need too much memory space. We will see later that
this goal is not easy to achieve.

In order to explain different ways of coding sets, the 3 sets A1, A2, and A3 shown
on the right side of Figure 9.1 will be used. The sets A1 and A3 represent two
extrem cases, where a set consists of only one element and of all elements of
ΘD, respectively.
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Figure 9.1: Representing Sets A ⊆ ΘD.

In the following, we will discuss six different representations. In order not to
mix up a set A ⊆ ΘD with its representation, we use r1(A), . . . , r6(A) to denote
the corresponding representation of A.

9.1.1 List of Configurations

A focal set A of a mass function ϑ defined on domain D is first of all a subset
of ΘD. Therefore, a focal set A can be represented as a list of its elements. As
an example, the 3 sets on the right side of Figure 9.1 are then represented as
follows:

Example 9.1 Representing the Sets of Figure 9.1 r1(A1) = {c7}
r1(A2) = {c2, c3, c5, c6, c7, c8, c10, c11, c12}
r1(A3) = {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12}  
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The above example shows that focal sets with only a few number of elements
can be stored efficiently. If a configuration ci is represented by the number
(i − 1), then 4log2 (K− 1)5 bits are needed for each configuration. A focal set
with h elements then requires h · 4log2 (K− 1)5 bits. Thus, the focal set given
by ΘD represents the worst case and requires K · 4log2 (K− 1)5 bits.

Where the computation of A∩B, A↓D′
, and A↑D′′

for A,B ⊆ ΘD and D′ ⊆ D ⊆
D′′ is concerned, it can be verified that the representation of a focal set as a set
of its elements is not that much appropriate. For example, A ∩ B corresponds
to the computation of the intersection of both sets. If A and B have only a
few number of elements, then the intersection can be computed more or less
efficiently. However, the computation of A∩B needs much more time if A and
B have many elements.

9.1.2 Binary Representation

A representation which was already proposed in (Xu & Kennes, 1994) is to use
bitstrings for representing subsets. If

bi =
{

1 if ci ∈ A,
0 otherwise

then each set A ⊆ ΘD is unequivocally determined by the bitstring %bK . . . b1.
Storing a bitstring is easy because for each bitstring %bK . . . b1 there is a corre-
sponding number r2(A) given by

r2(A) =
K∑
i=1

bi · 2i−1. (9.2)

Therefore, A ⊆ ΘD is represented by a number r2(A) ∈ {0, . . . , 2K − 1}. The
corresponding bitstring %bK . . . b1 is the binary representation of the (decimal)
number r2(A). The i-th bit of a bitstring is assigned to the configuration ci. For
example, the 4th bit is assigned to c4 because c4 is represented by the decimal
number 23 = 8 which is equivalent to the bitstring %1000.

Example 9.2 Representing the Sets of Figure 9.1 r2(A1) = 26 = 64
⇒ %000001000000 = 64
r2(A2) = 21 + 22 + 24 + 25 + 26 + 27 + 29 + 210 + 211 = 3830
⇒ %111011110110 = 3830
r2(A3) = 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + 211 = 4095
⇒ %111111111111 = 4095  

Storing r2(A) for A ⊆ ΘD requires at most K bits. The sets which require
exactly K bits are those which contain the configuration cK. These sets are
identified with a number r2(A) ∈ {2K−1, . . . , 2K − 1}. Therefore, it is cK ∈ A
for half of the sets A ⊆ ΘD.
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The main advantage of the binary representation is that A∩B, A↓D′
, and A↑D′′

for A,B ⊆ ΘD and D′ ⊆ D ⊆ D′′ can be computed very fast. For example,
A∩B is computed as (AND r2(A) r2(B)), where AND represents the operation
which performs the bit-wise logical “and” of two binary numbers. The main
processor of a computer has built-in commands which allow to perform this
kind of operation extremely fast.

9.1.3 Normal Forms

Every set A ⊆ ΘD can be represented as a union of sets which are intersections
of sets Sj ⊆ Θxj for 1 ≤ j ≤ n. Therefore,

r3(A) =
h1⋃
i=1

Ci where Ci =
n⋂

j=1

Si
j , S

i
j ⊆ Θxj (9.3)

corresponds to the disjunctive normal form of propositional logic. Another
possibility for representing A ⊆ ΘD is as an intersection of sets which are
unions of sets Sj ⊆ Θxj . This signifies that

r4(A) =
h2⋂
i=1

Di where Di =
n⋃

j=1

Si
j , S

i
j ⊆ Θxj (9.4)

corresponds to the conjunctive normal form of propositional logic. There are
almost always different possibilities of representing a set in such a way.

Example 9.3 Representing the Sets of Figure 9.1 r3(A1) = ((x1 ∈ {2})∩
(x2 ∈ {3}))
r4(A1) = ((x1 ∈ {2}) ∪ (x2 ∈)) ∩ ((x1 ∈) ∪ (x2 ∈ {3}))
r3(A2) = ((x1 ∈ {1, 2, 3}) ∩ (x2 ∈ {2, 3})) ∪ ((x1 ∈ {2}) ∩ (x2 ∈ {1, 2, 3, 4})) ∪

((x1 ∈ {2, 3}) ∩ (x2 ∈ {2, 3, 4}))
r4(A2) = ((x1 ∈ {2}) ∪ (x2 ∈ {2, 3, 4})) ∩ ((x1 ∈ {2, 3}) ∪ (x2 ∈ {1, 2, 3}))
r3(A3) = ((x1 ∈ {1, 2, 3}) ∩ (x2 ∈ {1, 2, 3, 4}))
r4(A3) = ((x1 ∈ {1, 2, 3}) ∪ (x2 ∈))  

We are particularly interested in short representations. In the above example,
r3(A1) is shorter than r4(A1). On the other hand, r4(A2) is shorter than r3(A2).
Therefore, there are sets A ⊆ ΘD, where r3(A) is shorter and sets A ⊆ ΘD,
where r4(A) is shorter. In the worst case, both representations require at least
k1 · . . . · kn−1 terms if we suppose that kn ≥ kj for all j < n. However, the
construction of such a set representing the worst case is quite complicated.
Much more insteresting is the average case. Therefore, what is the average
number of terms in a real world problem ?

In order to answer this question, we computed |r3(A)| for a collection of subsets
of ΘD obtained by sampling every set A ⊆ ΘD with equal probabilities. a
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uniform law. To simplify things, only sets D composed of binary variables were
considered. Figure 9.2 shows the results of selecting 100,000 sets for |D| = 5
and |D| = 6. It can be verified that around 2|D|−1 terms were used for most of
the sets.
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Figure 9.2: Estimated Number of Terms, |D| = 5 and |D| = 6.

Very often, the situation is even better than shown in Figure 9.2. For example,
Figure 9.3 shows the results of computing |r3(A)| for the focal sets of messages
and potentials of the example “Grid-8”. It can be seen that almost all of these
focal sets can be represented using only a few terms.
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Figure 9.3: Number of Terms for “Grid-8”, |D| = 5 and |D| = 6.

For estimating the memory space needed by these two representations, we sup-
pose in the following that kj ≤ kn for all j ≤ n. In this case, a set Sj ⊆ Θxj can
be represented using kn bits (see Subsection 9.1.2) and n ·kn bits are needed for
Ci and Di respectively. Finally, the representation of A ⊆ ΘD as proposed in
Equations 9.3 and 9.4 requires h1 · n · kn and h2 · n · kn bits respectively. Thus,
short representations require less memory space.

No matter how, sets Si
j which are equal to Θxj are not really needed in Equa-

tion 9.3. Thus, the term Ci can sometimes be represented as an intersection of
less than n subsets Si

j . Therefore, A ⊆ ΘD can be represented as

r5(A) =
h1⋃
i=1

Ci where Ci =
⋂
j∈Ii

Si
j , S

i
j ⊆ Θxj (9.5)



104 Chapter 9. Implementation Aspects

where I1, . . . , Ih1 ⊆ {1, . . . , n}. The same idea is also valid for the representation
proposed in Equation 9.4 because those sets Si

j which are equal to the empty
set can be omited. Therefore, A ⊆ ΘD can be represented as

r6(A) =
h2⋂
i=1

Di where Di =
⋃
j∈Ii

Si
j , S

i
j ⊆ Θxj (9.6)

where I1, . . . , Ih2 ⊆ {1, . . . , n}. Sometimes, this idea can help to decrease mem-
ory requirements.

Concerning the computation of A∩B and A↓D′
for A,B ⊆ ΘD and D′ ⊆ D, it

can be verified that A ∩ B is quite difficult to compute for r3 and r5. On the
other hand, A↓D′

is difficult for r4 and r6. To illustrate this, let us look at the
computation of A ∩B. First, suppose that

r4(A) = A1 ∩ · · · ∩An

r4(B) = B1 ∩ · · · ∩Bm

where each Ai and each Bj is a union of subsets of Θxk
for xk ∈ D. In this

case, the computation of r4(A ∩B) is not very difficult because

r4(A ∩B) = A1 ∩ · · · ∩An ∩B1 ∩ · · · ∩Bm.

Of course, not all these terms are really needed. A term Ai can be removed if
there is another term Bj so that Bj ⊆ Ai. In the same way, Bj can be removed
if there is a term Ai so that Ai ⊆ Bj . In addition, r4(A ∩ B) may contain
intersections of the form Ai ∩Bj which could be replaced by a single term. In
any case, these simplifications are computationaly not very expensive.

Now, let us suppose that

r3(A) = A1 ∪ · · · ∪An

r3(B) = B1 ∪ · · · ∪Bm

where each Ai and each Bj is an intersection of subsets of Θxk
for xk ∈ D.

Then, r3(A ∩B) might be quite difficult to compute as

r3(A ∩B) =
n⋃

i=1


 m⋃

j=1

(Ai ∩Bj)


.

Often, there are terms which are not necessary. A term Ai∩Bj can be removed
if there is another term Ak∩B so that Ai∩Bj ⊆ Ak∩B . In addition, r3(A∩B)
may contain unions (Ai ∩ Bj) ∪ (Ak ∩ B ) which could be replaced by a single
term. This kind of simplification is computationaly expensive if n and m are
large.
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9.1.4 Comparison

It was already mentioned that a representation has the following two main
objectives:

• it should not use too much memory space to store a focal set A ⊆ ΘD,

• it should be able to compute A ∩B, A↓D′
, and A↑D′′

for A,B ⊆ ΘD and
D′ ⊆ D ⊆ D′′ as fast as possible.

The binary representation is the best choice if we consider only operations.
Above all, if the state space of the domain of a mass function is small, then
A ∩ B, A↓D′

, and A↑D′′
can be computed very fast and only a small amount

of memory space is required to store a single focal set. However, the binary
representation can be a bad choice where memory space is concerned. Suppose
for example that the potential ϑ is defined on domain D = {x1, . . . , x12}, where
x1, . . . , x12 are binary variables. Then, ΘD consists of 4096 configurations.
Therefore, each focal set of ϑ requires 512 bytes. If ϑ has 100,000 focal sets,
then almost 50 Mbytes are needed for these focal sets. As a consequence, it
could be advisable to use another representation in the case, where the domain
of the potentials are big.

The current implementation of the propagation framework only disposes of the
binary representation. A hybrid approach, where different representations are
used could help to decrease the amount of memory space needed. For example,
the binary representation could be used to perform the operations, whereas the
disjunctive normal form is used for potentials having a large domain. However,
note that a hybrid approach involves a bigger computational effort.

It could be argued that potentials usually have less than 100,000 focal sets. Of
course, this is true for the initially given potentials ϑ1, . . . , ϑm. However, in
Chapter 11 we will see some relative simple examples, where potentials com-
puted during the propagation phase can have a huge number of focal sets. No
matter how, there are examples, where exact computation is not feasible.
Therefore, approximation methods are needed which avoid the generation
of potentials having a huge number of focal sets.

9.2 Representing Mass Functions

As explained in Chapter 3, a mass function ϑ defined on domain D consists of
a set of pairs (A, [ϑ(A)]m), where A ⊆ ΘD and 0 ≤ [ϑ(A)]m ≤ 1. In any case,
it is impossible to store such a pair for all sets A ⊆ ΘD because there would be
too many. Instead, only the corresponding pairs of focal sets of ϑ are stored,
what means, the pairs (A, [ϑ(A)]m), where [ϑ(A)]m > 0.

In the current implementation of the propagation framework, the binary rep-
resentation presented in Subsection 9.1.2 is used for the focal sets of ϑ. This



106 Chapter 9. Implementation Aspects

means that |ΘD| bits are required for each focal set. The consequence of enu-
merating the configurations of ΘD as proposed in Equation 9.1 is that the
order of the variables of d(ϑ) does matter. Thus, we have to think of d(ϑ) as
an ordered sequence of variables and not as an unordered set.

We do not only suppose that the domain of each mass function is an ordered
sequence of variables. Additionally, we require also that the domain of each
mass function has to respect a global order of the variables. The reason for
this preliminary condition is that the basic operations can be performed much
more efficiently. To illustrate this, imagine that two mass functions ϑ and ϕ
have the same domain. It is easy to verify that ϑ ⊗ ϕ can only be computed
efficiently if the order of the variables in d(ϑ) and d(ϕ) is the same.

The values [ϑ(A)]m are stored in the IEEE-754 floating-point format. This
standard defines conventions for 32- and 64-bit arithmetic. We use double
precision (64 bit) instead of single precision (32 bit) because Macintosh Com-
mon Lisp supports only double precision. However, there are also other reasons
why it is preferable to use double precision:

• the main processor of today’s computer executes operations for double
precision almost as fast as for single precision,

• rounding errors are smaller when double precision is used.

9.2.1 Binary Tree for Combination and Marginalization

The complexity of combination and marginalization depends heavily on the
computer representation of mass functions. Just imagine for example that two
mass function ϕ and ϑ have to be combined and that both mass functions have
a huge number of focal sets. Then, A ∩ B has to be computed for every focal
set A ∈ FS(ϕ) and B ∈ FS(ϑ). Usually, lots of these intersections are equal
and must be merged together. However, this means that for each newly com-
puted intersection we have to look whether the same set was already obtained
previously.

A binary tree can be used to minimize the amount of time needed for this
lookup. If the binary representation is used to represent the focal sets, then
the branching of the tree is determined in a natural way by the bitstrings of
the focal sets. Every branch of the binary tree has a bitstring for label. The
concatenation of all bitstrings on the path from the root to a leaf is the binary
representation of a focal set. Therefore, it is sufficient to store the corresponding
mass in the leaf. Figure 9.4 shows the insertion of four focal sets represented
by %0010, %1110, %0011 and %1111 with masses of 0.48, 0.12, 0.32 and 0.08.

A binary tree is valuable for combination and marginalization, but it is not
useful for extension. Therefore, if the last element has been inserted into the
binary tree, then we have to go through the tree and store the elements in an
array. This means that binary trees are only used temporarily. In the rest of
the time arrays are used to store the elements of mass functions.
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Figure 9.4: Binary Tree for Combination and Marginalization.

9.2.2 Hash Table for Combination and Marginalization

Another, very promising idea is to use a hash table when combining two mass
functions and when marginalizing a mass function to a smaller domain. A hash
table is a data structure which is used to store for given keys key1, . . . , keyn the
corresponding values value1, . . . , valuen. For this purpose, a hash function
computes for the key the hash value which is then used as an offset in the
hash table. Finally, some of the entries of the hash table contain a linked list
with all values where the hash value of the corresponding keys were the same.
Figure 9.5 shows an example of a hash table. Of course, hash functions should
produce a uniform distribution of the values in the hash table, which means
that all linked lists are of more or less the same size. Note that it may be
necessary to rebuild a larger hash table if there are already too many values in
the hash table. In this case, a new hash value has to be computed for each of
the entries of the former hash table.

Figure 9.5: An Example of a Hash Table.

Now, suppose that the combination ϑ = ϑ1 ⊗ ϑ2 of two mass functions has
to be computed. Therefore, for each pair (Ai, [ϑ1(Ai)]m) of ϑ1 and each pair
(Bj , [ϑ2(Bj)]m) of ϑ2, the intersection Ck = Ai ∩ Bj and the corresponding
product ck = [ϑ1(Ai)]m · [ϑ2(Bj)]m have to be computed. If the binary repre-
sentation (see Subsection 9.1.2) is used, then Ck is a (large) binary number.
Using a hash table, the value ck can be stored using Ck as corresponding key.
The main advantage of a hash table is that it represents a very efficent way
to test whether the same binary number Ck was already obtained previously.
If Ck was already obtained, the corresponding mass ck has to be added to the
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already existing mass, otherwise, ck is added for the key Ck to the hash table.
If n = |FS(ϑ1)| · |FS(ϑ2)| denotes the number of intersections to be computed
and s the size of the hash table, the average length of the linked lists is then
at most n/s. By using a very big hash table (s very large), the computation
of ϑ1 ⊗ ϑ2 can be done quite fast. Using a hash table, the time complexity of
combination is still O(n2). In contrast, using binary trees as described in the
previous subsection, the time complexity of combination is only O(n · log2(n)).
Nevertheless, for mass functions which are not too big, hash tables are often
much more efficient than binary trees.

A hash table is also very appropriate for marginalization because it allows to
test efficiently whether a given focal set was already obtained or not.

9.3 Bitmasks for Marginalization and Extension

It was already mentioned that the binary representation is very appropriate for
combining mass functions. In the following, we show that it is also appropriate
for marginalization and extension.

9.3.1 Bitmasks

In the following, suppose that D = {x1, . . . , xn} and that E ⊆ D. Suppose in
addition that Θxj = {1, . . . , kj} for 1 ≤ j ≤ n. By enumerating the configura-
tions as proposed in Equation 9.1 we obtain

ΘD = {c1, . . . , cK} where K =
∏

xj∈D

kj , (9.7)

ΘE = {c′1, . . . , c′L} where L =
∏

xj∈E

kj . (9.8)

First, let us look at the operation marginalization. Suppose that the mass
function ϑ is defined on domain D. In order to build ϑ↓E , we have to compute
A↓E for all A ∈ FS(ϑ). For this purpose, we will use the sequence of sets
CD

E = 〈C1, . . . , CL〉, where Ci ⊆ ΘD is given by

Ci = {c ∈ ΘD : c↓E = c′i} = c′i ×ΘD−E . (9.9)

CD
E = 〈C1, . . . , CL〉 allows to compute A↓E for an arbitrary set A ⊆ ΘD as

A↓E = {c′i ∈ ΘE : A ∩ Ci �=, Ci ∈ CD
E }. (9.10)

To illustrate the computation of A↓E , let us look at the example shown in
Figure 9.6, where D = {x1, x2}. The case E = {x1} is shown on the left and
E = {x2} is on the right. The corresponding sequences CD

E are given by

C
{x1,x2}
{x1} = 〈{c1, c2, c3, c4}, {c5, c6, c7, c8}, {c9, c10, c11, c11}〉,

C
{x1,x2}
{x2} = 〈{c1, c5, c9}, {c2, c6, c10}, {c3, c7, c11}, {c4, c8, c12}〉.
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Now, suppose that A = {c7, c10, c11}. A↓E is computed as the set of all c′i ∈ ΘE ,
where the intersection of the corresponding set Ci ∈ CD

E with A is not empty.
In this way, A↓{x1} = {c′2, c′3} and A↓{x2} = {c′2, c′3} is obtained.
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Figure 9.6: The Computation of A↓E using the Sequence CD
E .

Now, let us turn to the operation extension. Suppose that d(ϕ) = E. In order
to build ϕ↑D, we compute B↑D for all sets B ∈ FS(ϕ) as

B↑D =
⋃

c′i∈B

{Ci ∈ CD
E }. (9.11)

The binary representation is used for each Ci ∈ CD
E . MD

E = 〈M1, . . . ,ML〉,
where Mi = r2(Ci) is therefore an ordered sequence of bitstrings. For example,
the sequences MD

E for the previous example are given by

M
{x1,x2}
{x1} = 〈%000000001111, %000011110000, %111100000000〉,

M
{x1,x2}
{x2} = 〈%000100010001, %001000100010, %010001000100, %100010001000〉.

The term bitmask is used to denote such a sequence MD
E . Note that MD

E is
completely determined by the sets D and E. In addition, MD

E is all what is
needed to compute A↓E and B↑D for A ⊆ ΘD, B ⊆ ΘE , and E ⊆ D.

9.3.2 Operations for Binary Numbers

The main processor of today’s computer has built-in commands which are ex-
ecuted extremely fast and which play an important role in the construction of
bitmasks. The bit-wise logical “and”, the bit-wise logical “or” and the logical
shift left are three such built-in commands.

Syntax: (AND num1 num2) ; (OR num1 num2)
num1, num2 as well as the result of both commands are binary numbers. As
an example, Figure 9.7 shows the results of applying these two commands to
the operands %0001101101110011 and %0111000101010001.

Syntax: (LSL num pos)
The binary number num is shifted pos positions to the left. This corresponds
to the multiplication of num with the value 2pos . As an example, Figure 9.8
shows the result of shifting %0001101101110011 one position to the left.
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AND : %0001101101110011 OR : %0001101101110011
%0111000101010001 %0111000101010001
%0001000101010001 %0111101101110011

Figure 9.7: Bit-Wise Logical “And” and Bit-Wise Logical “Or”.

LSL : %0001101101110011
%0011011011100110

Figure 9.8: Logical Shift Left.

9.3.3 Constructing Bitmasks

In the following, we show how a bitmask MD
E can be constructed for given sets

of variables D and E ⊆ D. To this purpose, let us first look at the special case
where E = D−{xj} for an arbitrary variable xj ∈ D. The set D = {x1, . . . , xn}
can then be divided into three parts:

D = {x1, . . . , xj−1︸ ︷︷ ︸
left

, xj︸︷︷︸
middle

, xj+1, . . . , xn︸ ︷︷ ︸
right

}

The size of the state space of these sets will be denoted by the numbers ul, uj

and ur, respectively. Therefore, these numbers are defined as follows:

ul = |Θ{x1,...,xj−1}|, (9.12)
uj = |Θ{xj}|, (9.13)
ur = |Θ{xj+1,...,xn}|. (9.14)

Figure 9.9 shows that M1 ∈ MD
E is completely determined by these numbers.

In particular, M1 consists of uj identical blocks containing ur bits. In each of
these blocks, only the first bit is set to 1.

00...0100...01...........00...0100...01
urururur

uruj

M1 = %

Figure 9.9: The Structure of M1 ∈MD
E .
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The sequence MD
E consists of exactly L = ul · ur bitstrings. Each of these

bitstrings can be constructed from M1. For 1 ≤ i < L, this is done by

Mi+1 =

{
LSL(Mi, 1) if i �= k · ur,

LSL(Mi, (uj − 1) · ur + 1) otherwise.
(9.15)

Now, let us look at the general case. Suppose that D−E = {xr1 , . . . , xr�
}. The

construction of MD
E can be described as a serie of transformations

MD
D ⇒ MD

D−{xr1}
⇒ MD

D−{xr1 ,xr2}
⇒ · · · · · · ⇒ MD

E

where MD
D corresponds to the sequence of configurations of ΘD, thus Mi ∈

MD
D is given by r2(ci) for ci ∈ ΘD. Therefore, it is sufficient to study the

transformation of MD
E′ into MD

E′′ for E′′ = E′ − {xkj
} and E′ ⊆ D. We will see

that this transformation is similar to the special case discussed above.

So the sequence MD
E′ is given for a set E′ = {xk1 , . . . , xkh

} ⊆ D. If xkj
∈ E′,

then E′ can be divided into three parts:

E′ = {xk1 , . . . , xkj−1︸ ︷︷ ︸
left

, xkj︸︷︷︸
middle

, xkj+1
, . . . , xk�︸ ︷︷ ︸
right

}

As previously, u′l, u
′
j and u′r denote the size of the state space of these sets.

MD
E′ = 〈M ′

1, . . . ,M
′
K〉 consists of K = u′lu

′
ju

′
r bitstrings, whereas MD

E′′ =
〈M ′′

1 , . . . ,M
′′
L〉 will have a length of L = u′lu

′
r. It is always possible to write

the index i of M ′′
i ∈MD

E′′ unequivocally as i = i1u
′
r + i2, where 0 ≤ i1 < u′l and

0 < i2 ≤ u′r. M
′′
i ∈MD

E′′ is then given by

M ′′
i = OR{M ′

s+ku′
r
∈MD

E′ : 0 ≤ k < u′j} (9.16)

where s = i1u
′
ju

′
r + i2. Therefore, M ′′

i ∈ MD
E′′ is the bit-wise logical “or” of u′j

bitstrings of MD
E′ . In any case, it is more efficient to treat the transformation

MD
D ⇒MD

D−{xr1}
as proposed at the beginning of this subsection.

9.3.4 Optimizations

There are two optimizations which are worth performing: the first optimization
prevents that the same bitmask is constructed several times, whereas the second
speeds up the construction of bitmasks.

Using a Cache for the Bitmasks

It is a waste of time if the same bitmask is constructed several times. This can
be prevented if a cache is used. Prior to the construction of a bitmask MD

E , we
search the cache for bitmasks MD

F , where E ⊆ F . If several such bitmasks are
found, then the one, where |ΘF | is smallest, is used as starting point for the
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construction of MD
E . Thus, if MD

E is already in the cache, then there is nothing
to do.

It is worthwhile to handle the special case where all variables are binary vari-
ables. In this case, the cache is a hierarchical data structure indexed by

• the state space of D, thus |ΘD|,

• the bitstring which represents E ⊆ D.

In the general case of variables with an arbitrary finite state space, we have in
addition a list containing the state space of every variable of D.

Speeding up the Construction of Bitmasks

Suppose that {xj1 , . . . , xj2} ⊆ D − E and that D can be written as

D = {x1, . . . , xj1−1︸ ︷︷ ︸
left

, xj1 , . . . , xj2︸ ︷︷ ︸
middle

, xj2+1, . . . , xn︸ ︷︷ ︸
right

}.

The construction of MD
E is improved significantly if this block of variables is

replaced by a new variable of which the state space has the size |Θ{xj1
,...,xj2

}|.
Proceeding further by replacing such blocks of variables, a new setD′ is obtained
from D, where every pair of variables of D′ − E is separated by at least one
variable of E. Most important is the fact that MD′

E is equal to MD
E and that

MD′
E can be constructed much faster than MD

E .

9.4 Implementing the Fusion Algorithm

The fusion algorithm presented in Chapter 5 and the different heuristics for
selecting the variable to eliminated next (see Section 6.4) can be implemented
efficiently if the appropriate data structure is used. Practical experience (see
Chapter 11) proved that a particular data structure which we called variable-
potential link list (VPLL) is well suited for this purpose.

9.4.1 Initial State of the VPLL

Initially, the set of potentials Φ0 = {ϑ1, . . . , ϑm} is given. The fusion algorithm
then eliminates at each step i of the elimination process a variable from the
current set of potentials Φi−1. For the selection of the variable to eliminate
next, it is important that the set of potentials Φi−1(x) = {ϑ ∈ Φi−1 : x ∈ d(ϑ)}
containing x in their domain, can be constructed rapidly for every remaining
variable x. The VPLL is especially suited for this task because it contains for
every variable x a list of pointers to potentials ϑ ∈ Φi−1(x). Similarly, every
ϑ ∈ Φi−1 has access to the variables in d(ϑ) through a list of pointers.
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Example 9.4 Initial State of the VPLL Let Φ0 = {ϑ1, ϑ2, ϑ3} be the
initially given set of potentials. If we suppose that d(ϑ1) = {a, c}, d(ϑ2) = {b, c},
and d(ϑ3) = {a, c, d}, then the initial state of the VPLL is shown in Figure 9.10.

 

a

b

c

d

u1

u2

u3

Figure 9.10: Initial State of the VPLL.

9.4.2 Reorganizing the VPLL

If the variable xi is eliminated at step i of the elimination process, then the
variable xi, all potentials in Φi−1(xi) and all links to these potentials have to
be removed. In addition, a new potential ϑm+i has to be added. The following
example shows these operations for the previous example.

Example 9.5 Eliminating a Variable from the VPLL Suppose that the
variable d has to be eliminated. Because Φ0(d) = {ϑ3}, the potential ϑ3 and
links pointing to ϑ3 have to be removed from the VPLL together with the
variable d. This operations are shown on the left side of Figure 9.11. After the
removal, a new potential ϑ4 with d(ϑ4) = {a, c} has to be added. Therefore,
links from a and c to ϑ4 must be inserted. This operation is shown on the right
side of Figure 9.11.  

a

b

c

d

Step 1 : Removing d

u1

u2

u3

a

b

c

Step 2 : Adding u4

u1

u2

u4

Figure 9.11: Reorganizing the VPLL.
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9.4.3 Computing the Criterions

The heuristics presented in Section 6.4 use at step i of the elimination process
the following criterions to select the variable to eliminate next:

CR1(x) = |FI(x,G−x1...xi−1)| (9.17)
CR2(x) = |Cl(x,H−x1...xi−1)| (9.18)
CR3(x) = |ΘCl(x,H−x1...xi−1 )| (9.19)

CR4(x) =
∏

ϑ∈Φi−1(x)

|FS(ϑ)| (9.20)

The elimination of a variable changes the values CR1(x), . . . , CR4(x) only for a
small subset of variables. Therefore, it is advantageous to compute these values
for all variables once at the beginning of the elimination process. When the
variable xi has been eliminated, then CR2(x) to CR4(x) have to be recomputed
only for the set of variables Cl(xi,H−x1...xi−1)− {xi}.
The computation of CR1(x) is not as easy because the set of variables for which
CR1(x) has to be recomputed after the elimination of the variable xi is not
as small as for the other criterions. The recomputation is necessary for the
set of variables {z ∈ Cl(y,H−x1...xi−1), y ∈ Cl(xi,H−x1...xi−1)} − {xi}. This is
illustrated by the following example.

Example 9.6 Recomputing the Criterions Suppose that ϑ1, ϑ2, ϑ3, and
ϑ4 are potentials with domains {a, b}, {a, c}, {b, d}, and {c, d}. The hypergraph
H given by these domains and the corresponding 2-section graph G are shown
in Figure 9.12.

a

b

c

dd

b

c

a

Figure 9.12: Hypergraph H and corresponding 2-Section Graph G.

The value of the criterions CR2(x) to CR4(x) is determined by the closure of
the variables a, b, c, and d. Initially, we have

Cl(a,H) = {a, b, c} Cl(c,H) = {a, c, d}
Cl(b,H) = {a, b, d} Cl(d,H) = {b, c, d}

The elimination of the variable a changes some of these values. It is then

Cl(b,H−a) = {b, c, d} ; Cl(c,H−a) = {b, c, d} ; Cl(d,H−a) = {b, c, d}

Above all, note that Cl(d,H) = Cl(d,H−a). It is therefore not necessary to
recompute CR2(d) to CR4(d) after the elimination of the variable a.
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Now, let us look at the first criterion CR1(x). Initially, we have

|FI(a,G)| = 1 |FI(c,G)| = 1
|FI(b,G)| = 1 |FI(d,G)| = 1

After the elimination of the variable a, we obtain

|FI(b,G−a)| = 0 ; |FI(c,G−a)| = 0 ; |FI(d,G−a)| = 0

Therefore, the value of CR1(d) has changed from 1 to 0. In contrast, there was
no change for the corresponding value of the other three criterions.  
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10
The Software Package ABEL

The predecessor of ABEL was a language called ABL (Lehmann, 1994) and
was based on the idea of assumption-based reasoning (Kohlas & Monney,
1993; Kohlas & Monney, 1995). As ABL was restricted to propositional logic
it was not powerfull enough to express a wide range of interesting problems.
This lack of expressive power leads to the more general language ABEL which
is the shorthand expression for Assumption-Based Evidential Language.
We refer to (Anrig et al., 1997a; Anrig et al., 1997b) and especially to (Anrig
et al., 1999) for more information about ABEL.

ABEL is not only a language, it is also the name of a software package which
includes a solver part for doing inference. At the time of writting these lines,
the current version of the software package ABEL is version 2.2.

The continuous development is the reason why we recommend to check the
homepage of ABEL at

http://www-iiuf.unifr.ch/tcs/abel

There is the main source of up-to-date information about ABEL. Among other
things, there is a tutorial which is especially helpfull for people which are
not yet familiar with ABEL. There is also a collection of examples which
show that ABEL is a general language and can be used to treat problems
from different areas. Finally, the source code of ABEL as well as stand-alone
applications can be downloaded for several operating systems including Apple
Macintosh, Windows 95/98/NT and UNIX.

In this chapter, we will give a short description of the language ABEL. Finally,
the “Communication Line” example will show that the task of modeling is not
as easy as it may be thought at first sight.

10.1 ABEL - the Language

The language ABEL is based on three other languages: from Common LISP
it adopts prefix notation, from Pulcinella it uses the idea of the commands

117
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tell, ask, and empty, and from ABL it inherits the concept of modules and
the syntax of queries.

Working with ABEL usually involves three sequential steps. First, the given
information is expressed using the command tell. The resulting model is called
basic knowledge base. It describes the part of the available information
that is relatively constant and static in course of time. Second, actual facts
or observations about the concrete, actual situation are specified using the
command observe. The basic knowledge base completed by observations is
called actual knowledge base. Finally, queries about the actual knowledge
base are expressed using the command ask.

10.1.1 Modeling Information

The command tell is used to build the basic knowledge base. Its syntax is as
follows:

(tell [:key]
<instruction-1>
<instruction-2>

...
<instruction-n>)

The sequence of instructions after the keyword tell is interpreted conjunctively
and in parallel. Each instruction is one of the following:

(1) a definition of a type
(2) a definition of variables or assumptions
(3) a definition of a module
(4) a statement
(5) an instance of a module

Optionally, a key can be assigned to a tell command. This key is used by the
command empty, which will be explained later in Subsection 10.1.4.

The type (or the domain) of variables and assumptions is defined using the
command type. Of course, there are already pre-defined types, namely integer,
real, and binary. The following examples show that it is also possible to define
subsets of pre-defined types:

(type test (passed failed))
(type colors (red green blue yellow))
(type month (1 2 3 4 5 6 7 8 9 10 11 12))
(type year integer)
(type month (integer 1 12))
(type pos-integer (integer 0 *))
(type neg-real (real * 0))

Variables are defined using the command var. For every variable a type has
to be declared. The syntax of the command var is as follows:
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(var <var-1> <var-2> ... <var-n> <type>)

The following examples show that the type of a variable is either a pre-defined
type, a user-defined type or a new type specification:

(var c1 c2 colors)
(var a b n integer)
(var language (french german spanish english))
(var p q r binary)

Assumptions are defined in a similar way using the command ass. In con-
trast to variables, probabilities can optionally be specified. The syntax of the
command ass is as follows:

(ass <ass-1> <ass-2> ... <ass-n> <type> [<probabilities>])

Probabilities are given as a list of values between 0 and 1 summing to 1. The
order in which the probabilities appear in the list corresponds to the order in
which the values for the given type are defined. If there are no probabilities
specified, then ABEL assumes equal probabilities for the values. Examples of
defining assumptions are:

(ass test1 test2 test (0.8 0.2))
(ass weather (sun clouds rain) (0.5 1/3 1/6))
(ass c1 c2 c3 colors)
(ass ok? binary 0.75)

The last example shows that if the type of an assumption is binary, it is
sufficient to specify the probability p of the positive literal. The probability of
the negative literal is given implicitly by 1− p.

In the current version of ABEL, assumptions must have finite domains. In any
case, the methodes presented in this thesis are only applyable if all variables and
assumptions have finite domains. In the following, we therefore don’t discuss
models where variables are of type integer, real or a subtype of these two
pre-defined types. Instead, we concentrate on models where variables are of
type binary or have a finite set of values.

Constraints always compare two expressions and are used to restrict the pos-
sible values of variables and assumptions. The syntax is as follows:

(<operator> <expression-1> <expression-2>)

ABEL provides the operators =, <>, <=, >, >=, and in. For variables with a
finite set of values, only the operators =, <>, and in can be used. In the case of
the operator in, the first expression must be a variable or an assumption and
the second expression must be a subdomain of the corresponding domain. The
following examples show a few constraints:

(= c1 blue)
(in language (german spanish))
ok?
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The last example shows that variables and assumptions of type binary are
considered as (atomic) constraints. In addition, there are two pre-defined con-
straints tautology and contradiction which have the constant logical values
� and ⊥, respectively.

Statements are build of constraints using the logical connectors and, or, not,
->, <->, and xor. A constraint itself is considered as an (atomic) statement.
Examples of statements are:

(and (= c1 red) (= c2 blue))
(-> ok? (in language (german spanish)))
ok?

A module represents a step of abstraction in the modeling process. The basic
idea is that similar parts of the given information are modeled only once. Each
module has a name and consists of a set of parameters and a body. Parameters
are variables or assumptions, the body of a module is a sequence of ABEL
instructions. The syntax for a module definition is:

(module <name> (<param-1> <param-2> ... <param-n>)
<instruction-1>
<instruction-2>

...
<instruction-n>)

Note that a type has to be specified for each of the parameters. The parameter
list is therefore a sequence of variable and assumption definitions. An example
of a definition of a module is as follows:

(module AND-GATE ((var in1 in2 out binary))
(ass ok binary 0.99)
(-> ok (<-> out (and in1 in2))))

An instance of a module is obtained by using the following syntax:

(<name> [:key] <arg-1> <arg-2> ... <arg-n>)

For example, the following command creates an instance of the above module:

(AND-GATE :A1 in1 in2 v3)

The types of the arguments are implicitly given by the parameter specification
of the module definition. It is therefore not necessary to specify the types of
the arguments outside the module. In addition, note that a key can be assigned
to an instance of a module.

10.1.2 Modeling Observations

Usually, observations are added to the basic knowledge base in order to obtain
the actual knowledge base. Observations describe the actual situation and my
change in course of time. Therefore, it is important to separate them from the
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basic knowledge base which is constructed using the command tell. ABEL
provides the command observe to specify observations. Its syntax is as follows:

(observe [:key]
<statement-1>
<statement-2>

...
<statement-n>)

The sequence of ABEL statements after the keyword observe is interpreted
conjunctively. Examples of observations are:

(observe (= c1 blue))
(observe (in language (german spanish)))
(observe ok?)

Similar to the command tell, a key can be assigned to an observe command.
This key is used by the command empty, which will be explained later in Sub-
section 10.1.4.

10.1.3 Formulating Queries

Queries about the actual knowledge base, that is the information modeled by
tell and observe commands, are expressed with the command ask. In that
way, symbolic or numerical arguments in favor or against a hypothesis can be
obtained. The syntax of the ask command is as follows:

(ask <query-1>
<query-2>

...
<query-n>)

For a given hypothesis, different kinds of arguments may be of interest: sup-
port, quasi-support, plausibility, or doubt. The corresponding queries are:

(sp <statement>)
(qs <statement>)
(pl <statement>)
(db <statement>)

The result of such a query is a sequence of arguments, that is, a sequence of
conjunctions of normal or negated ABEL constraints over assumptions.

It is also possible to ask for numerical arguments like degree of support,
degree of quasi-support, degree of possibility, or degree of doubt. The
corresponding queries are:

(dsp <statement>)
(dqs <statement>)
(dpl <statement>)
(ddb <statement>)
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The result of such a query is a number which is between 0 and 1. This number
represents the probability of the result obtained from the corresponding sym-
bolic query. It is computed using the a priori probabilities which were assigned
to the assumptions.

10.1.4 Further Facilities

Sometimes, it is necessary to delete the actual knowledge base or parts of it.
For this purpose, ABEL provides the command empty. If empty is called with-
out arguments, the actual knowledge base is deleted. If the keyword observe is
supplied, only the observations are deleted. Moreover, by supplying one or sev-
eral keywords used within tell or observe commands, only the corresponding
parts of the actual knowledge base are deleted.

(empty)
(empty observe)
(empty :part1 :part2)
(empty :first-measure)
(empty :second-measure)

To obtain more readable ABEL code, comments can be introduced into the
code. There are two different ways to write comments:

#| This is a comment over one
or several lines |#

; This is another comment

10.2 The “Communication Line” Example

In this section, we will take a look at the “Communication Line” example,
which has already been used in previous chapters. The main goal is to show
how this example can be modeled in ABEL.

We will consider the case of four computers connected as shown in Figure 10.1.
The point of interest will be whether a mail which is send from the first computer
on the left reaches the last computer on the right.

Figure 10.1: A Communication Line with 4 Computers.

The first step is to determine the variables and assumptions. Following the
train of thought of Section 2.8, four variables and six assumptions are required.
The binary variables x0, . . . , x3 represent the information whether or not the
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corresponding computer has received the mail. For example, x2 is true rep-
resents the situation, where the third computer from the left has received the
mail. In contrast, x2 is false represents the situation, where it has not received
the mail.

We know that two wires of different quality were used when setting up the
connections and that these wires are not completely reliable. To express this
uncertainty, a binary assumption is needed for each of the six wires. a1, a2,
and a3 are used for the wires which are of better quality, whereas b1, b2, and
b3 are used for the wires which are of lower quality. The definition of these
variables and assumptions in ABEL is as follows:

(tell
(var x0 x1 x2 x3 binary)
(ass a1 a2 a3 binary 0.8)
(ass b1 b2 b3 binary 0.5))

It is often not easy to justify the a priori probabilities which are assigned to
the assumptions. Here, however, we don’t want to concentrate on this subject.
Therefore, just keep in mind that these values express the fact that two wires
of different quality were used.

Now that we have defined the variables and assumptions, we can turn towards
the connections between the four computers. In order that a computer receives
the mail, note that at least one of the two incoming wires should be working
correctly. Furthermore, the computer on its left must also have received the
mail. These rules are expressed in ABEL as follows:

(tell
(-> (and x0 a1) x1)
(-> (and x1 a2) x2)
(-> (and x2 a3) x3)

(-> (and x0 b1) x1)
(-> (and x1 b2) x2)
(-> (and x2 b3) x3))

For example, (-> (and x1 a2) x2) means the following: if the second com-
puter from the left has receive the mail and the wire represented by a2 is working
correctly, then also the third computer receives the mail.

By adding observations, the basic knowledge base could now be completed to
reflect the concrete situation. For example, we could have observed that a
particular wire is broken or that a particular computer has received the mail.
Here, however, we do not perform any observations. Therefore, the actual
knowledge base is equal to the basic knowledge base.

We have already mentioned that the main point of interest is whether or not
the mail from the first computer on the left reaches the last computer. For
this, the set of supporting arguments for the hypothesis (-> x0 x3) has to be
computed. The corresponding query is the following:
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(ask (sp (-> x0 x3)))

The result consists of the following eight arguments:

QUERY: (SP (-> X0 X3))
23.3% : A1 A2 A3
14.6% : A2 A3 B1
14.6% : A1 A3 B2
14.6% : A1 A2 B3
9.1% : A1 B2 B3
9.1% : A3 B1 B2
9.1% : A2 B1 B3
5.7% : B1 B2 B3

Each one of these arguments describes a situation where the mail from the first
computer reaches the last computer. For example, this is the case if the wires
represented by a1, a2, and a3 are working correctly.

It may also be interesting to compute the probability that the mail reaches the
last computer. For this, the following query is used:

(ask (dsp (-> x0 x3)))

The resulting value 0.729 can be interpreted as the strength of belief that the
mail reaches the last computer.

QUERY: (DSP (-> X0 X3))
0.729

Sometimes, modeling is not as easy as it may be thought at first sight. We
can also be surprised by the result of a query if we expected a different result.
For example, let us consider the hypothesis (-> x3 x0) instead of (-> x0 x3).
This hypothesis corresponds to a situation where a mail is send from right to
left instead from left to right.

(ask (dsp (-> x3 x0)))

Intuitively, we may have expected that the result will be the same as the pre-
vious one. However, this is not at all the case:

QUERY: (DSP (-> X3 X0))
0.000

Therefore, the mail which is send from the computer on the right never reaches
the first computer on the left. This is not what we might have expected. There-
fore, what is wrong ?

Of course, the result is correct and it is not a fault of ABEL. If we look carefully
at how we have modeled a connection, we notice that it was modeled as a
directed connection from left to right. As an example, the implication (-> (and
x1 a2) x2) says something about mails which are send from left to right, but
nothing about mails which are send from right to left.
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The model has to be reformultated if we want to consider also situations, where
mails are send from right to left. The new model still consists of the same
variables and assumptions, however, the connections are modeled differently.
Therefore, we should first delete the old knowledge base:

(empty)

The ABEL code for the new model is as follows:

(tell
(var x0 x1 x2 x3 binary)
(ass a1 a2 a3 binary 0.8)
(ass b1 b2 b3 binary 0.5)

(-> a1 (<-> x0 x1))
(-> a2 (<-> x1 x2))
(-> a3 (<-> x2 x3))

(-> b1 (<-> x0 x1))
(-> b2 (<-> x1 x2))
(-> b3 (<-> x2 x3)))

For example, (-> a2 (<-> x1 x2)) can be interpreted as follows: if the wire
represented by a2 is working correctly, the second and the third computer share
the same information. Thus, each computer passes mails which it has received
to a connected computer if the corresponding wire is working correctly.

Let us now compute the same queries again:

(ask (dsp (-> x0 x3))
(dsp (-> x3 x0)))

The result of these queries is as we have expected:

QUERY: (DSP (-> X0 X3))
0.729

QUERY: (DSP (-> X3 X0))
0.729
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11
Applications

In the previous chapter, the modeling language ABEL was presented. In the
following, we will consolidate and extent the knowledge about ABEL by con-
sidering examples in the domain of Medical Diagnostic, Digital Circuits,
Communication Networks, Public-key Cryptography, and Informa-
tion Retrieval respectively. For example, we will show that large digital
circuits can be expressed by using of the module concept.

The main goal of this chapter is to build a bridge between the modeling lan-
guage ABEL and the computational theory presented in previous chapters. For
this reason, we will look at the four heuristics to determinate the variable
elimination sequence which have been discussed in Section 6.4. We will see
that there is no “best” heuristic. Nevertheless, there may be huge differences
in the needed time by each one of the heuristics. For some examples, computa-
tions are even not feasible for some of the four heuristics. By the application of
such a heuristic, a corresponding join tree is constructed. We will show how
unnecessary nodes can be eliminated by using the simplifications proposed in
Section 6.5. Furthermore, we will look at the method described in Chapter 8
which consists of an inward propagation phase followed by a second partial
inward propagation.

The algorithms were implemented in the programming language Lisp using the
software package Macintosh Common Lisp. The times required for computa-
tions were measured on computer of Apple Power Macintosh G3 type running
with 400 MHz and having 128 MByte built-in memory.

In the following, we will start with a fictitious example which was first in-
troduced in (Lauritzen & Spiegelhalter, 1988) in order to illustrate the use of
Bayesian networks. This example will be treated by assumption-based rea-
soning. The main objective will be to show that assumption-based reasoning
is non-monotone, in the sense that additional information can decrease the
belief of a hypothesis.

127
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11.1 Medical Diagnostic

A doctor has to decide whether a patient, who complains about shortness-
of-breath, suffers from bronchitis, lung cancer, or tuberculosis. The doctor’s
medical knowledge is summarized as follows:

“Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung
cancer, or bronchitis, or none of them, or more than one of them.
A recent visit to an under-developed country increases the chances
of tuberculosis, while smoking is known to be a risk factor for both
lung cancer and bronchitis. The results of a single chest X-ray do
not discriminate between lung cancer and tuberculosis; nor does the
presence or absence of dyspnoea.”

In Figure 11.1, this small piece of medical knowledge is shown as a causal
network. Causal relations are described by uncertain implications and direction
of causality is from top to bottom. Note that some effects have more than one
cause and that some causes produce more than one effect.

lung cancer?
l

dyspnoea?
d

bronchitis?
b

smoking?
s

visit to an under-
developed country?

v

positive X-ray?
x

tuberculosis?
t

(1) (2)

(4)

(3)

(5)

Figure 11.1: Causal Network for the “Chest Clinic” Example.

All causal relations of Figure 11.1 are uncertain. Therefore, for each of the eight
causal relations an assumption is needed. In addition, another five assumptions
are needed because it is furthermore assumed that for all effects there are also
other (unknown) causes. The fictitious medical knowledge is modeled with the
thirteen assumptions a1, . . . , a13 as follows:

(1) v ∧ a1 → t, a2 → t, t→ (v ∧ a1) ∨ a2;
(2) s ∧ a3 → �, a4 → �, �→ (s ∧ a3) ∨ a4;
(3) s ∧ a5 → b, a6 → b, b→ (s ∧ a5) ∨ a6;
(4) t ∧ a7 → x, � ∧ a8 → x, a9 → x,

x→ (t ∧ a7) ∨ (� ∧ a8) ∨ a9;
(5) t ∧ a10 → d, � ∧ a11 → d, b ∧ a12 → d, a13 → d

d→ (t ∧ a10) ∨ (� ∧ a11) ∨ (b ∧ a12) ∨ a13.



11.1. Medical Diagnostic 129

If the probabilities

p(a1) = 0.1, p(a2) = 0.01, p(a3) = 0.2, p(a4) = 0.01, p(a5) = 0.3,
p(a6) = 0.1, p(a7) = 0.9, p(a8) = 0.8, p(a9) = 0.1, p(a10) = 0.9,
p(a11) = 0.8, p(a12) = 0.7, p(a13) = 0.1,

are supposed, then the knowledge base can be written as follows:

(tell
(var visit tuberculosis x-ray lung-cancer

smoker bronchitis dyspnoea binary)
(ass a1 a6 a9 a13 binary 0.1)
(ass a2 a4 binary 0.01)
(ass a3 binary 0.2)
(ass a5 binary 0.3)
(ass a7 a10 binary 0.9)
(ass a8 a11 binary 0.8)
(ass a12 binary 0.7)

(-> (and visit a1) tuberculosis)
(-> a2 tuberculosis)
(-> tuberculosis (or (and visit a1) a2))

(-> (and smoker a3) lung-cancer)
(-> a4 lung-cancer)
(-> lung-cancer (or (and smoker a3) a4))

(-> (and smoker a5) bronchitis)
(-> a6 bronchitis)
(-> bronchitis (or (and smoker a5) a6))

(-> (and lung-cancer a7) x-ray)
(-> (and tuberculosis a8) x-ray)
(-> a9 x-ray)
(-> x-ray (or (and lung-cancer a7) (and tuberculosis a8) a9))

(-> (and tuberculosis a10) dyspnoea)
(-> (and lung-cancer a11) dyspnoea)
(-> (and bronchitis a12) dyspnoea)
(-> a13 dyspnoea)
(-> dyspnoea (or (and tuberculosis a10)

(and lung-cancer a11)
(and bronchitis a12) a13)))

The fact that the patient is suffering from dyspnoea can be introduced using
the command observe:

? (observe dyspnoea)

Degrees of support and degrees of plausibility for tuberculosis, lung cancer, and
bronchitis can then be computed:
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? (ask (dsp tuberculosis) (dsp lung-cancer) (dsp bronchitis))
(dpl tuberculosis) (dpl lung-cancer) (dpl bronchitis))

QUERY: (DSP TUBERCULOSIS)
0.118

QUERY: (DSP LUNG-CANCER)
0.270

QUERY: (DSP BRONCHITIS)
0.486

QUERY: (DPL TUBERCULOSIS)
0.206

QUERY: (DPL LUNG-CANCER)
0.367

QUERY: (DPL BRONCHITIS)
0.591

The differences between degrees of support and degrees of plausibility are rela-
tively large. Also, none of the three hypotheses are strongly supported or very
plausible. This is a sign that additional observations are required. From a
discussion with the patient the doctor then learns that the patient has recently
visited an under-developed country.

? (observe visit)

This additional fact increases the degree of support for tuberculosis:

? (ask (dsp tuberculosis) (dsp lung-cancer) (dsp bronchitis)
(dpl tuberculosis) (dpl lung-cancer) (dpl bronchitis))

QUERY: (DSP TUBERCULOSIS)
0.206

QUERY: (DSP LUNG-CANCER)
0.270

QUERY: (DSP BRONCHITIS)
0.486

QUERY: (DPL TUBERCULOSIS)
0.206

QUERY: (DPL LUNG-CANCER)
0.367

QUERY: (DPL BRONCHITIS)
0.591

It is still not sufficient for the doctor to make a decision. After he observes that
the patient is a smoker he obtains more support for lung cancer and bronchitis:

? (observe smoker)

? (ask (dsp tuberculosis) (dsp lung-cancer) (dsp bronchitis)
(dpl tuberculosis) (dpl lung-cancer) (dpl bronchitis))

QUERY: (DSP TUBERCULOSIS)
0.206

QUERY: (DSP LUNG-CANCER)
0.367

QUERY: (DSP BRONCHITIS)
0.591
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QUERY: (DPL TUBERCULOSIS)
0.206

QUERY: (DPL LUNG-CANCER)
0.367

QUERY: (DPL BRONCHITIS)
0.591

Degrees of support and degrees of plausibility are now equal. But the doctor
is not yet satisfied as he is not able to discriminate between lung cancer and
bronchitis. So, he orders a chest X-ray test which turns out to be negative:

? (observe (not x-ray))

? (ask (dsp tuberculosis) (dsp lung-cancer) (dsp bronchitis)
(dpl tuberculosis) (dpl lung-cancer) (dpl bronchitis))

QUERY: (DSP TUBERCULOSIS)
0.062

QUERY: (DSP LUNG-CANCER)
0.062

QUERY: (DSP BRONCHITIS)
0.760

QUERY: (DPL TUBERCULOSIS)
0.062

QUERY: (DPL LUNG-CANCER)
0.062

QUERY: (DPL BRONCHITIS)
0.760

Now, the doctor is satisfied because he is able to state a very clear diagnosis.
Bronchitis has a quite strong degree of support, whereas lung cancer and tu-
berculosis are very unplausible. Figure 11.2 summarizes the process of finding
the diagnosis.
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Figure 11.2: Degree of Support and Degree of Plausibility.

Note that the last observation decreases the degrees of support and the degrees
of plausibility of lung-cancer and tuberculosis significantly. This shows that
assumption-based reasoning is non-monotone, in the sense that additional
information can decrease the belief of hypotheses.
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Concerning computations, this example is interesting in the sense that obser-
vations are added one after another to the basic knowledge base given by the
doctor’s medical knowledge. Usually, such observations allow to construct
better join trees. Therefore, we proposed in Section 6.5 a special treatment of
observations. However, a join tree obtained in that way does not necessarily
have less nodes. For example, the first join tree on the left side of Figure 11.3
corresponds to the doctor’s medical knowledge. It has less nodes than the other
join trees which were obtained by such a special treatment of observations. No
matter how, the quality of a join tree is mainly determined by the size of its
nodes and not by the number of nodes. From this point of view, the first join
tree on the left side of Figure 11.3 is worse than the others.

t

b

x

l

d

tl

tlb

v

s

ls

txl

t

d

lsb

tlb

sb

v

l

txl

t

b

d

lb

tlb

v

s

ls

txl

vt

sb

d

lsb

tlb

ls

tlb

lsb

txlvt

tlbd

sb

(observe v)(observe d) (observe s) (observe (not x))

Figure 11.3: Join Trees for the “Chest Clinic” Example.

Looking at the join trees of Figure 11.3, the question could be asked whether
it is a good idea to reconstruct the join tree if additional observations become
available. Of course, here for this small example, it does not really matter
because the reconstruction of the join tree does not need much time. However,
just imagine a situation, where several thousand variables were used to express
a certain medical knowledge. In this case, the reconstruction of the join tree is
probably not possible because this would need too much time. Therefore, it is
much more efficient to perform then only a so-called updating of the join tree
by adding the corresponding observation to one of the nodes and by performing
an outward propagation phase afterwards.

11.2 Diagnostics of Digital Circuits

Nowadays, digital circuits are used in a wide range of products. For example,
digital circuits are used in cars amoung others for the air-conditioning system,
the brake system and for measuring the current speed. Moreover, a television
set is today almost a computer and can be considered in some sense as a huge
digital circuit.

In the following, we will see that digital circuits can be formulated as a propo-
sitional argumentation system ASP = (ξ,P,A). We will see that ABEL’s con-
cept of modules is very appropriate in this case because it allows to describe
complex digital circuits. Further, we will look at the different heuristics for de-
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terminating the elimination sequence which have been discussed in Section 6.4.
Finally, the five simplifications proposed in Section 6.5 are discussed.

A digital circuit is build by connecting very simple gates together. Three ex-
amples of such gates are shown in Figure 11.4. Each of these gates computes
the value of its output out as a function of its two inputs in1 and in2. For
example, the and-gate on the left side of Figure 11.4 computes the value 1 only
if its two inputs are 1 as well. Otherwise, if either in1 or in2 is 0, then the
value of out is 0 as well. If we identify 0 with false and 1 with true, then this
corresponds to the computation of the logical and of in1 and in2. Similarly,
the or-gate computes the logical or and the xor-gate the logical exclusive
or of the corresponding two inputs.

xor out
in1

in2

in1
or out

in2

and
in1

out
in2

Figure 11.4: Three simple Gates.

It can happen that a simple gate is defective. In this case, we assume that
anything could be obtained for the corresponding output out. However, note
that simple gates are rarely defective. We may even be able to a priori assign
corresponding probabilities to the three simple gates. These probabilities may
be obtained for example from statistical investigations about failure rates of
these gates. In the following, the probabilities 0.99, 0.98, and 0.95, respectively,
will be assigned to simple gates. In ABEL, the definition of the simple gates is
as follows:

(tell
(module AND-GATE ((var in1 in2 out binary))
(ass ok binary 0.99)
(-> ok (<-> out (and in1 in2))))

(module OR-GATE ((var in1 in2 out binary))
(ass ok binary 0.98)
(-> ok (<-> out (or in1 in2))))

(module XOR-GATE ((var in1 in2 out binary))
(ass ok binary 0.95)
(-> ok (<-> out (xor in1 in2)))))

The parameter list of each module contains for both inputs in1 and in2 as
well as for the output out a corresponding binary variable. In addition, a local
assumption ok with the corresponding probability is created each time a module
is initiated. Finally, note that the behaviour of a gate is only specified in the
case, where it is working correctly.

By connecting simple gates together, more complex digital circuits are ob-
tained. Usually, such a digital circuit implements a certain input-output re-
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lation. Therefore, it computes the values of its outputs as a function of its
inputs. For example, consider the digital circuit on the left side of Figure 11.5.
It is a so-called 1-BIT-ADDER and has three input wires in1, in2, and inc,
respectively, and two output wires out and outc, respectively.
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Figure 11.5: Two Digital Circuits for Binary Addition.

The digital circuit on the left side of Figure 11.5 can be modeled in ABEL as
follows:

(tell
(XOR-GATE :X1 in1 in2 v1)
(XOR-GATE :X2 inc v1 out)
(AND-GATE :A1 in1 in2 v3)
(AND-GATE :A2 inc v1 v2)
(OR-GATE :O1 v2 v3 outc))

It is not necessary to define the variables explicitly because the definition is
already given implicitly by the parameter list of the modules. In addition, note
that a key is assigned to each instance of a module. In that way, we will be
able to access later the local assumption ok of the corresponding module.

The input-output relation implemented by the digital circuit on the left side
of Figure 11.5 is given in Table 11.1. For each possible configuration of the
inputs, the corresponding values of the outputs are given. No matter how,
different digital circuits can implement the same input-output relation. For
example, the digital circuit on the right side of Figure 11.5 implements also the
input-output relation of Table 11.1. Both digital circuits of Figure 11.5 are very
similar. The only difference is the renaming of the inputs.

Suppose now that in1 = 0, in2 = 0, and inc = 0. Normally, it should then
be out = 0 and outc = 0. However, suppose that out = 1 and outc = 0 are
measured instead. In this case, it is not possible that all five gates are working
correctly. Instead, one or several gates must be defective. The main goal in
diagnostics of digital circuits is to find the set of defective gates.

To find the set of defective gates, let us first introduce the observations:

? (observe (not in1) (not in2) (not inc) out (not outc))

Given these observations, it is now interesting to compute the degree of belief
that each of the five simple gates is not working correctly. This is done as
follows:



11.2. Diagnostics of Digital Circuits 135

in1 in2 inc out outc
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table 11.1: Binary Addition

? (ask (dsp (not X1.ok)) (dsp (not X2.ok)) (dsp (not A1.ok))
(dsp (not A2.ok)) (dsp (not O1.ok)))

QUERY: (DSP (NOT X1.OK))
0.513

QUERY: (DSP (NOT X2.OK))
0.513

QUERY: (DSP (NOT A1.OK))
0.010

QUERY: (DSP (NOT A2.OK))
0.010

QUERY: (DSP (NOT O1.OK))
0.020

Therefore, the two xor-gates have quite a high support that they are not working
correctly. In contrast, the other three gates have a very low support (but it is
still possible that one or even all of them are defective). In order to discriminate
between the xor-gates, a second measurement yields v1 = 1:

? (observe v1)

We obtain then the following results:

? (ask (dsp (not X1.ok)) (dsp (not X2.ok)) (dsp (not A1.ok))
(dsp (not A2.ok)) (dsp (not O1.ok)))

QUERY: (DSP (NOT X1.OK))
1.000

QUERY: (DSP (NOT X2.OK))
0.050

QUERY: (DSP (NOT A1.OK))
0.010

QUERY: (DSP (NOT A2.OK))
0.010

QUERY: (DSP (NOT O1.OK))
0.020
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The first xor-gate must be defective. However, again, note that it can still be
that one or several of the other gates are defective.

The above example has illustrated the process of finding defective gates. In the
following, we will take a look at larger digital circuits. The problem of finding
sets of defective gates is then not that easy anymore. The 1-BIT-ADDER will
be used as building block for constructing larger circuits. For example, consider
the digital circuit on the left side of Figure 11.6. It was obtained by connecting
two 1-BIT-ADDER together and represents thus a 2-BIT-ADDER which is
used to compute the sum of two binary numbers. These numbers are given by
(in1, in3) and (in2, in4), respectively.
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Figure 11.6: Digital Circuit for Binary Addition.

In order to use the 1-BIT-ADDER as building block for larger digital circuits,
we have to formulate it as a module. This is done as follows:

(tell
(module 1-BIT-ADDER ((var in1 in2 inc out outc binary))
(var v1 v2 v3 binary)
(XOR-GATE :X1 in1 in2 v1)
(XOR-GATE :X2 inc v1 out)
(AND-GATE :A1 in1 in2 v3)
(AND-GATE :A2 inc v1 v2)
(OR-GATE :O1 v2 v3 outc)))

Thus, it has five input-output variables and three additional local variables.
The initiation of a 2-BIT-ADDER would then be as follows:

(tell
(1-BIT-ADDER :A1 in1 in2 inc out1 c1)
(1-BIT-ADDER :A2 in3 in4 c1 out2 outc))

In the following, we will consider a N-BIT-ADDER for N = 64, 128, 192, and
256, respectively. We will even consider two different types of N-BIT-ADDER:
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the first type is constructed using 1-BIT-ADDER shown on the left side of
Figure 11.5, whereas 1-BIT-ADDER shown on the right side of Figure 11.5
are used for the second type. To each one of these digital circuits, the four
heuristics for determinating the variable elimination sequence discussed in
Section 6.4 will be applied. Furthermore, the five simplifications proposed in
Section 6.5 will be discussed.

We will consider the particular situation, where 0 + 0 gives 2N−1 as result.
Thus, the highest bit represented by outN has an incorrect value. For each
digital circuit, a propositional argumentation system ASP = (ξ,P,A) is con-
structed. Table 11.2 shows that ASP involves many variables and assumptions.
Furtermore, the set of clauses Σ which is obtained for the knowledge base ξ is
quite big.

Example |P| |A| |Σ|
64-BIT-ADDER 449 320 1282
128-BIT-ADDER 897 640 2562
192-BIT-ADDER 1345 960 3842
256-BIT-ADDER 1793 1280 5122

Table 11.2: Characteristics of the Examples, (both types)

The four heuristics for determinating the variable elimination sequence have
been applied to these examples. The corresponding time needed for the inward
propagation is shown in Table 11.3 for the first type of N-BIT-ADDER and
in Table 11.4 for the second type of N-BIT-ADDER. Note that binary trees
as described in Subsection 9.2.1 were used for computations. The use of hash
tables (see Subsection 9.2.2) would result in even shorter response times.

Heuristic (One Step Look Ahead)
SC SC-FFS SC-FFS-IS FFI

64-BIT-ADDER 0.256 0.267 0.266 0.526
128-BIT-ADDER 0.618 0.664 0.644 1.834
192-BIT-ADDER 1.069 1.147 1.159 4.287
256-BIT-ADDER 1.587 1.731 1.717 8.318

Table 11.3: Time [sec] used for Inward Propagation, (1st type)

Thus, more or less the same time is spent for both types of N-BIT-ADDER.
Almost always, the least amount of time is needed for the heuristic OSLA -
Smallest Clique, whereas OSLA - Fewest Fill-ins is much worse than the other
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Heuristic (One Step Look Ahead)
SC SC-FFS SC-FFS-IS FFI

64-BIT-ADDER 0.250 0.247 0.256 0.492
128-BIT-ADDER 0.589 0.611 0.619 1.734
192-BIT-ADDER 0.981 1.076 1.039 4.052
256-BIT-ADDER 1.476 1.601 1.563 7.879

Table 11.4: Time [sec] for Inward Propagation, (2nd type)

heuristics. The reason is that the elimination of a variable necessitates a recom-
putation for a certain subset of the variables. This recomputation is performed
fastest for the former heuristic whereas the latter heuristic needs much more
time. Here, it was not advantageous that OSLA - Fewest Fill-ins spends much
more time to determine the variable elimination sequence. The variable elim-
ination sequences obtained by the other heuristics are not really that much
worse. However, it is often valuable to spend more time for determinating a
better variable elimination sequence because the variable elimination sequence
determinates heavily the time needed for the inward propagation. The recom-
putation is also the reason why the remaining three heuristics are a little bit
slower than OSLA - Smallest Clique.

In Section 6.5, we proposed five simplifications to eliminate unnecessary nodes
of the join tree. Figure 11.7 shows the results obtained for the two types of 256-
BIT-ADDER and the four heuristics. There are always six columns which go
together. The first column represents the number of nodes if no simplification is
performed. Similarly, the i-th column represents the number of nodes if the first
i − 1 simplifications are performed. Thus, the last column corresponds to the
situation, where all five simplifications are performed. Here, there are always
5635 nodes if no simplification is performed. If only the first simplification is
performed, the join tree has 1540 nodes less. Finally, the join tree consists
of about 2560 nodes if all simplifications are performed. The least number of
nodes obtained is 2304 for the heuristic OSLA - Smallest Clique, Fewest Focal
Sets, Initial Structure.

Figure 11.8 shows the size of nodes of the join tree obtained for the two types
of 256-BIT-ADDER in the case where all five simplifications are performed.
Especially, note that the largest nodes are of size three.

A size of three for the largest nodes is pretty small. The small size is one of
the reasons why the inward propagation phase took not much time. Another
important reason is the linear structure of a N-BIT-ADDER. Such a linear
structure is also recognizable in the corresponding join tree (see Figure 11.6).
In addition, each node of the join tree has only a few neighbor nodes and
incoming messages have only a few focal sets. Therefore, each node of the join
tree can compute the message to its inward neighbor quite fast.
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Figure 11.7: Five Simplifications of the Join Tree.
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Figure 11.8: Size of the Nodes of the Join Tree.

11.3 Communication Networks

A communication network consists of nodes which are connected by com-
munication wires. If one or several nodes or communication wires are not
working correctly, then some point-to-point connections may be impossible. For
the purpose of simplification, we will suppose that only communication wires
can break down. If the probability that a wire breaks down is given for each
of the communication wires, the problem is then to compute the reliability of
the communication between two different nodes.

Communication networks can easily be described by directed graphs. For
example, consider the communication network shown on the left side of Fig-
ure 11.9. It consists of the nodes u, v, w, x, and y. These nodes are connected
by communication wires w1, . . . , w6. Note that the communication wires w1,
w3, and w6, respectively, are bi-directed, whereas w2, w5, and w5, respectively,
are directed.

The problem of this example is to compute the reliability of the communication
between the nodes u and y. This corresponds to compute all possible com-
munication paths between these two nodes and then derive the reliability
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Figure 11.9: Size of the Nodes of the Join Tree.

by using the given failure probabilities. Here, the four possible communication
paths between nodes u and y are the following:

〈w1−w5〉 ; 〈w1−w3−w6〉 ; 〈w2−w4−w6〉 ; 〈w2−w4−w3−w5〉

Similarly, 〈w6−w3−w1〉 is the only possible communication path for the inverse
communication, thus between y and u.

A communication network can easily be modeled in ABEL. For example, the
communication network shown on the left side of Figure 11.9 can be formulated
in ABEL by defining binary variables for the nodes and by defining binary
assumptions for the communication wires:

(tell
(var u v w x y binary)
(ass ok1 binary 0.8)
(ass ok2 binary 0.7)
(ass ok3 binary 0.9)
(ass ok4 binary 0.6)
(ass ok5 binary 0.8)
(ass ok6 binary 0.9))

Assumptions ok1, . . . , ok6 represent the communication wires w1, . . . , w6. Note
that above we have assumed that independent probabilities are given for the six
communication wires. Finally, the network can also be modeled very easily. For
each directed communication wire an implication of the form oki → (n1 → n2)
is needed. Similarly, an implication of the form oki → (n1 ↔ n2) is required
for each bi-directed communication wire:

(tell
(-> ok1 (<-> u v))
(-> ok2 (-> u w))
(-> ok3 (<-> v x))
(-> ok4 (-> w x))
(-> ok5 (-> v y))
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(-> ok6 (<-> x y)))

The reliability of the communication between the nodes u and y can now be
obtained by the following query:

? (ask (dsp (-> u y)))
QUERY: (DSP (-> U Y))
0.857

This result can be interpreted as the probability that a message which is sent
from node u reaches the node y assuming that the communication wires break
down according to the given failure probabilities. In a similar way, the reliability
of the inverse communication can be computed:

? (ask (dsp (-> y u)))
QUERY: (DSP (-> Y U))
0.648

The communication between y and u is therefore less reliable then the commu-
nication between u and y. This is also what we have expected since there is
only one possible communication path between y and u.

In the following, we will consider communication networks as shown on the
right side of Figure 11.9. The nodes are arranged as a grid so that each node
is connected with its neighbor nodes by bi-directed communication wires. In
particular, we will look at communication networks where each line and each
column consists of n = 4, 5, 6, 7, and 8 nodes. Such a communication network
has n2 nodes and 2n(n − 1) commmunication wires. The modeling in ABEL
for n = 2 is for example as follows:

(tell
(var k11 k12 k21 k22 binary)
(ass ok1 ok2 ok3 ok4 binary 0.8)

(-> ok1 (<-> k11 k12))
(-> ok2 (<-> k11 k21))
(-> ok3 (<-> k12 k22))
(-> ok4 (<-> k21 k22)))

Thus, the reliability of each communication wire is assumed to be 0.8. Above
all, we will be interested in the reliability of a communication between the two
nodes in opposite corners. For n = 2, the query is as follows:

? (ask (dsp (-> k11 k22)))

In order to answer the query, first, a probabilistic argumentation system PASP =
(ξ,P,A,Π) is constructed. The method presented in Chapter 8 is then used.
Thus, an inward propagation phase is performed during which a join tree is
constructed. In that way, the value dqs(⊥, ξ) is obtained on the root node.
Next, the negated hypothesis is added to appropriate nodes and a partial in-
ward propagation is performed afterwards. The resulting value dqs(h, ξ) allows
then to compute dsp(h, ξ).
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Table 11.5 shows for each of the four heuristics presented in Section 6.4 the
time needed for the (complete) inward propagation. Table 11.6 contains the
time used for the partial inward propagation. For the computations, binary
trees as described in Subsection 9.2.1 were used. Notice especially the strong
increase of the amount of time. In addition, there are huge differences between
the heuristics. Apparently, OSLA-SC-FFS is not well suited for this example
here. Clearly, all heuristics eliminate first the variables which represent the
four nodes in the corners. Then, variables representing nodes on the border
are elimininated. The main difference in the generated variable elimination
sequence is if the size of the domain for all remaining variables is five. Obviously,
the choice of the variable to eliminate next determines heavily the time needed
for the propagation.

Heuristic (One Step Look Ahead)
SC SC-FFS SC-FFS-IS FFI

GRID-4 0.023 0.026 0.025 0.045
GRID-5 0.117 0.289 0.117 0.124
GRID-6 0.954 2.371 0.932 0.990
GRID-7 15.495 36.576 58.823 32.043
GRID-8 892.008 5163.437 103.169 886.401

Table 11.5: Time [sec] used for (Complete) Inward Propagation

Heuristic (One Step Look Ahead)
SC SC-FFS SC-FFS-IS FFI

GRID-4 0.057 0.076 0.104 0.081
GRID-5 0.732 1.454 0.738 0.729
GRID-6 11.218 26.701 11.043 4.408
GRID-7 128.889 563.246 1184.306 750.416
GRID-8 ------- ------- 1222.213 -------

Table 11.6: Time [sec] used for Partial Inward Propagation

We might conclude that OSLA - Smallest Clique is well suited for this example.
However, note that the corresponding numbers in Table 11.5 are in some sense
misleading: OSLA-SC-FFS is a special case of OSLA - Smallest Clique. As a
consequence, the latter heuristic could also generate one of the two (bad) elimi-
nation sequences obtained by the former heuristic. Therefore, OSLA - Smallest
Clique has a wide margin concerning the elimination sequence generated.
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Table 11.10 shows the size of the nodes of the join tree which is obtained
for each of the four heuristics for the example GRID-7. Table 11.11 contains
the corresponding chart for the example GRID-8. The best join tree for GRID-7
was obtained by OSLA-SC and OSLA-FFI. The two corresponding join trees
contain only one node which has a label of size nine. Consistently, these two
heuristics are faster than the others. However, for the example GRID-8, there
is no correlation between the size of the nodes and the time used for the prop-
agation: here, OSLA-SC-FFS-IS generates the best join trees. Surprisingly,
the former heuristic is much slower than each one of the other heuristics (see
Table 11.5).
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The partial inward propagation requires much more time than the (complete)
inward propagation. At first sight, this seems contradictory as some of the
previously computed messages were reused and only a part of the join tree is
involved in the partial inward propagation. The reason why propagation takes
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so much time is that messages have many focal sets. For example, Figure 11.12
shows the number of focal sets of messages which are sent in the join tree
obtained by OSLA-SC-FFS-IS for the example GRID-8. On the left side, the
(complete) inward propagation is shown, whereas the partial inward propaga-
tion is shown on the right side. The number in each node represents the size
of the corresponding label. Above all, note that most of the time is spend
for combining messages and that huge mass functions are created in that way.
Nevertheless, the message which is sent to an inward neighbor contains much
less focal sets because an additional marginalization is performed.
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Finally, this example points out that the binary representation which has
been proposed in Section 9.1 is not really appropriate if the label of a node is
large. In that case, much memory space is needed to store a mass function. For
the example GRID-8, the partial inward propagation failed for almost all four
heuristics because there was not enough memory available.

11.4 Web of Trust

The increasing importance of computer networks requires secure communication
techniques. For that purpose, messages are encrypted. One way of encoding
messages is to use public key algorithms like RSA (Rivest et al., 1978). The
idea behind public key systems is shown in Figure 11.13: a pair of keys is
defined where one key is public and the other is secret. Everyone can encrypt
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a message with the public key. However, the encrypted message can only be
decrypted with the secret key.

Figure 11.13: Public Key Cryptography.

The problem using these systems is to get the public key of the receiver. If
another key than the real public key of the receiver is used to encrypt the mes-
sage, then the owner of the wrong public key can read the message. Therefore,
the sender is interested in the authenticity of the public key.

A solution is the Public Key Infrastructure (PKI for short) presented in
(Maurer, 1996) and (Bütikofer, 2000). The problem is as mentioned above: the
sender (called Alice in the rest of the text) has a public key of the receiver (called
Bob), but she does not know, whether the public key is authentic. Alice also
has some public keys of other people, but she is not sure, whether they are all
authentic or not. Furthermore, she trusts only some of the people. Suppose that
Alice also gets certificates and recommendations of the other people she knows.
Certificates concern the authenticity of other public keys, and recommendations
influences the trust in other people. Based of this information she wants to
decide, whether the public key of Bob is authentic or not.

The authenticity of a public key is always relative to a possible sender. It
is noted as a predicate AutA,X , where X is the expected owner of the public
key, and A is the point of view, from which the public key is authentic or not.
Another predicate CertX,Y says that X confirms the authenticity of Y . With
certificates, another problem arises: why should the receiver A of the certificate
trust X? For that purpose, a predicate TrustA,X is introduced into the PKI.
Finally, the predicate RecX,Y represents a request of X to trust Y .

The following two rules express the relation between authenticity, certificate,
trust, and recommendation. The first rule tells us, that a certificate from X for
Y implies the authenticity of Y , if (1) X is authentic, and (2) A trusts X. The
second rule is analogous for the relation between recommendation and trust.

(AutA,X ∧ TrustA,X)→ (CertX,Y → AutA,Y ),
(AutA,X ∧ TrustA,X)→ (RecX,Y → TrustA,Y ).

Because trust is not a question of yes or no, it should be graded as a value in
[0, 1]. The graduation of the trust influences all the other values. The problem
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then is to calculate the authenticity of Bob’s public key, which is also a value
in [0, 1].

The problem of computing authenticity is illustrated for the simple situation
shown in Figure 11.14. Alice wants to send a confidential message to Bob, but
she is not sure about the authenticity of Bob’s public key. However, she trusts
Dan and Conny whose public keys are known (but possibly not authentic). Dan
and Conny give her both the same public key for Bob. Furthermore, Conny
certificates the public key of Dan.

0.7
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Alice 0.9

0.85

0.8
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0.8

0.9

Certificate
Recommendation

Figure 11.14: A Trust and Authenticity Network.

First, the variables for the trust and authenticity of each person including Alice,
are defined.

(tell
(var Aa Ta Ac Tc Ad Td Ab Tb binary))

Second, the recommendations and certificates are defined as binary assump-
tions.

(tell
(ass Cac binary 0.9)
(ass Rac binary 0.7)
(ass Cad binary 0.8)
(ass Rad binary 0.85)
(ass Ccd binary 0.9)
(ass Ccb binary 0.8)
(ass Cdb binary 0.9))

The relations between the variables can then be written as follows:

(tell
(-> (and Aa Ta Cac) Ac)
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(-> (and Aa Ta Rac) Tc)
(-> (and Aa Ta Cad) Ad)
(-> (and Aa Ta Rad) Td)
(-> (and Ac Tc Ccd) Ad)
(-> (and Ac Tc Ccb) Ab)
(-> (and Ad Td Cdb) Ab))

Because Alice knows and trusts herself, the two variables Aa and Ta are always
true:

(observe Aa Ta)

Now, Alice’s view of the situation is defined and the computation of the sup-
port for the authenticity of Bob’s public key can begin. To get a quantitative
judgment, the following numerical query has to be used:

? (ask (dsp Ab))
QUERY: (DSP AB)
0.825

11.5 Information Retrieval

The information retrieval problem consists in selecting from a collection of doc-
uments the relevant documents according to a given query. The selection of the
documents should

(1) contain all relevant documents, and

(2) contain no irrelevant documents.

Satisfying just one of the above criteria is very simple. The first criterion,
for example, can be completely satisfied by selecting the entire collection of
documents. Similarly, the second criterion is completely satisfied when no doc-
uments are returned. Therefore, the information retrieval problem consists in
satisfying both criteria at the same time.

As an example consider the collection of documents shown in Figure 11.15. The
collection consists of books about geography and biology. The lower part of the
picture shows the relations between the books, the middle part the relations be-
tween the terms appearing in the books, and the upper part represents possible
queries. For each query, the most relevant books must be selected.

The information retrieval problem can be solved by a corresponding ABEL
model (Picard & Haenni, 1998; Picard, 2000). First, the nodes appearing in
the graph of the database are defined as binary variables.

(tell
(var query1 query2 binary)
(var valley lake mountain plankton fish binary)
(var book1 book2 book3 book4 book5 binary))
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Figure 11.15: A simple Literature Database.

The links between the different nodes of the graph in Figure 11.15 are of different
strength. From the point of view of probabilistic argumentation systems we say
that the links are uncertain. Therefore, an assumption with a probability as
indicated in Figure 11.15 is defined for every link:

(tell
(ass query1-valley binary 0.7)
(ass query1-lake binary 0.8)
(ass query2-lake binary 0.5)
(ass query2-fish binary 0.9)

(ass valley-mountain binary 0.9)
(ass lake-mountain binary 0.7)
(ass lake-plankton binary 0.3)
(ass mountain-valley binary 0.5)
(ass plankton-fish binary 0.8)
(ass fish-plankton binary 0.9)

(ass valley-book1 binary 0.9)
(ass mountain-book2 binary 0.6)
(ass plankton-book3 binary 0.85)
(ass fish-book4 binary 0.6)
(ass fish-book5 binary 0.9)

(ass book2-book1 binary 0.5)
(ass book4-book5 binary 0.8)
(ass book5-book4 binary 0.9))
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The uncertain relations between the nodes of the graph can now be expressed
by corresponding ABEL rules.

(tell
(-> (and query1 query1-valley) valley)
(-> (and query1 query1-lake) lake)

(-> (and query2 query2-lake) lake)
(-> (and query2 query2-fish) fish)

(-> (and valley valley-mountain) mountain)
(-> (and lake lake-mountain) mountain)
(-> (and lake lake-plankton) plankton)
(-> (and mountain mountain-valley) valley)
(-> (and plankton plankton-fish) fish)
(-> (and fish fish-plankton) plankton)

(-> (and valley valley-book1) book1)
(-> (and mountain mountain-book2) book2)
(-> (and plankton plankton-book3) book3)
(-> (and fish fish-book4) book4)
(-> (and fish fish-book5) book5)

(-> (and book2 book2-book1) book1)
(-> (and book4 book4-book5) book5)
(-> (and book5 book5-book4) book4))

To obtain a measure for selecting the most relevant books of the first query, let
us compute the following degrees of support:

? (ask (dsp (-> query1 book1)) (dsp (-> query1 book2))
(dsp (-> query1 book3)) (dsp (-> query1 book4))
(dsp (-> query1 book5)))

QUERY: (DSP (-> QUERY1 BOOK1))
0.753

QUERY: (DSP (-> QUERY1 BOOK2))
0.502

QUERY: (DSP (-> QUERY1 BOOK3))
0.204

QUERY: (DSP (-> QUERY1 BOOK4))
0.177

QUERY: (DSP (-> QUERY1 BOOK5))
0.182

The first two books are obviously the most relevant documents in the collection.
In a similar way we can compute the results for the second query:

? (ask (dsp (-> query2 book1)) (dsp (-> query2 book2))
(dsp (-> query2 book3)) (dsp (-> query2 book4))
(dsp (-> query2 book5)))

QUERY: (DSP (-> QUERY2 BOOK1))
0.215

QUERY: (DSP (-> QUERY2 BOOK2))
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0.210
QUERY: (DSP (-> QUERY2 BOOK3))
0.713

QUERY: (DSP (-> QUERY2 BOOK4))
0.843

QUERY: (DSP (-> QUERY2 BOOK5))
0.865

Now, the situation has changed: the first two books are rather irrelevant, while
the other three books seem to fit well for the second query.
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Future Work

Research is an ongoing process. In the following, we will present some ideas
which show the direction future research could take. Above all, we think that
it is most important to look at approximation methods because exact nu-
merical computation is not possible for some examples. In any case, an approx-
imated numerical result which is close to the exact value may often be sufficent
for a user. We will present such an approximation method. One of the advan-
tages of this method is that it computes besides the approximated result also
an interval as a bound of the exact value.

A topic which has not been addressed in this work is the usability of numerical
computations for obtaining symbolic results. Especially, it can happen that it
is impossible to compute the set of all arguments in favor of a hypothesis of
interest. In that case, numerical computations may still be possible and could
help finding important arguments. The sketch of such a method will be given
later in this chapter.

12.1 Approximation for Dempster-Shafer Theory

The previous chapter has shown that exact computation is sometimes not possi-
ble. For example, consider the type of communication network which has been
discussed in Section 11.3. The nodes of such a communication network are
arranged in a grid as shown on the right of Figure 11.9. It has been shown that
there is a strong increase in the time needed for propagation. For the example
GRID-8 and the heuristic OSLA-SC-FFS-IS, the first (complete) inward propa-
gation took almost two minutes, the partial inward propagation even more than
twenty minutes.

The reason for this is shown in Figure 11.12. Above all, this figure points out
that some of the messages which are sent in the join tree have a large number
of focal sets. As a consequence, much time is required for the combination of
these messages.

In the following, we will take a closer look at messages which are sent in the
join tree obtained from applying the heuristic OSLA-SC-FFS-IS to the example
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GRID-8. In particular, we will consider the messages m1, . . . ,m6 and m′
1, . . . ,m

′
6

shown in Figure 12.1.
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Figure 12.1: Messages m1, . . . ,m6 and m′
1, . . . ,m

′
6.

The messages m1, . . . ,m6 are sent during the first (complete) inward propaga-
tion. From the Figure 11.12 it can be seen that each one of these messages
contains a large number of focal sets. In Figure 12.2, a pie chart represents the
masses for each one of the messages m1, . . . ,m6.

132 Focal Sets 417 Focal Sets 132 Focal Sets 1430 Focal Sets 429 Focal Sets 429 Focal Sets

Figure 12.2: Masses of the Messages m1, . . . ,m6.

The sum of the masses is equal to 1 for each of the messages m1, . . . ,m6.
Nevertheless, Figure 12.2 shows clearly that there are masses which are much
bigger than others. In other words, masses assigned to only a few focal sets
represent almost the total of all masses. This is also shown in Table 12.1. For
example, the collection consisting of the 16 largest masses of the message m1

represents more than ninety percent of the total of all masses.

The situation is similar for the messages which are sent during the partial
inward propagation. In Figure 12.3, each one of the messages m′

2, m
′
4, m

′
5, and
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0.900 0.990 0.999 1.000

m1 16 Sets 61 Sets 97 Sets 132 Sets
12.12 % 46.21 % 73.48 % 100.00 %

m2 16 Sets 112 Sets 251 Sets 417 Sets
3.83 % 26.85 % 60.19 % 100.00 %

m3 14 Sets 50 Sets 80 Sets 132 Sets
10.60 % 37.87 % 60.60 % 100.00 %

m4 19 Sets 142 Sets 449 Sets 1430 Sets
1.32 % 9.93 % 31.39 % 100.00 %

m5 13 Sets 62 Sets 149 Sets 429 Sets
3.03 % 14.45 % 34.73 % 100.00 %

m6 20 Sets 114 Sets 244 Sets 429 Sets
4.66 % 26.57 % 56.87 % 100.00 %

Table 12.1: Masses of the Messages m1, . . . ,m6.

m′
6 is represented by a corresponding pie chart. The messages m′

1 and m′
3 are

not recomputed during the partial inward propagation. Therefore, m′
1 and m′

3

are equal to m1 and m3 respecively.

1340 Focal Sets 1430 Focal Sets 1428 Focal Sets4862 Focal Sets

Figure 12.3: Masses of m′
2,m

′
4,m

′
5, and m′

6.

Again, the masses which are assigned to a few focal sets represent almost the
total of all masses. For example, Table 12.2 shows that the 24 largest masses
of m′

2 represent more than ninety percent of all masses of m′
2.

Where the messages m1, . . . ,m6 is concerned, m1⊗m2, m3⊗m4, and m5⊗m6 is
computed during the first inward propagation phase. Similarly, m′

1⊗m′
2, m

′
3⊗

m′
4, and m′

5⊗m′
6 is computed afterwards during the partial inward propagation.

The time needed to combine two mass functions (messages are represented
as mass functions) is determinated by the number of focal sets of the mass
functions. In order to speed up computations, it is a natural approach to
consider only the most important focal sets for each combination.

The easiest approach for this is to consider only the k focal sets with the largest
masses for a fixed k. From Figure 12.4 it can be seen that in that way less focal
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0.900 0.990 0.999 1.000

m′
2 24 Sets 214 Sets 619 Sets 1340 Sets

1.79 % 15.97 % 46.19 % 100.00 %
m′

4 27 Sets 251 Sets 947 Sets 4862 Sets
0.55 % 5.16 % 19.47 % 100.00 %

m′
5 18 Sets 101 Sets 304 Sets 1430 Sets

1.25 % 7.06 % 21.25 % 100.00 %
m′

6 29 Sets 219 Sets 588 Sets 1428 Sets
2.03 % 15.33 % 41.17 % 100.00 %

Table 12.2: Masses of the Messages m′
2, m

′
4, m

′
5, and m′

6.

sets are taken into account for combination. It was obtained for the example
GRID-8 and k = 200. Therefore, whenever two potentials were combined only
the 200 focal sets with the largest masses were considered. The result of this is
that messages send in the join tree have much less focal sets compared to case
where no approximation is performed.
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Figure 12.4: Number of Focal Sets for GRID-8, k = 200.

As a consequence, propagation is performed much faster than previously: about
25 seconds are required for the first inward propagation and less than 45 seconds
for the partial inward propagation. Nevertheless, an important question to



12.1. Approximation for Dempster-Shafer Theory 155

answer is whether or not the obtained numerical result is a good approximation
for the exact value.

12.1.1 Approximating Degree of Quasi-Support

For exact computation, the root node contains after the first inward propagation
a potential ϕ. If for combination only the k most important focal sets are taken
into account, the root node then contains instead of ϕ an approximation ϕ̃.
Usually, the sum of the masses of ϕ̃ is less than 1. We therefore define ε as
follows:

ε = 1−
∑

A⊆ΘDr

[ϕ̃(A)]m

There is a strong correlation between ϕ and ϕ̃ because

[ϕ̃(A)]m ≤ [ϕ(A)]m

for all sets A ⊆ ΘDr , Dr = d(ϕ̃). As a consequence, FS(ϕ̃) ⊆ FS(ϕ). Most
important is the fact that the exact value [ϕ(A)]b can be bound by an interval.
For all sets A ⊆ ΘDr , the following condition holds:

[ϕ̃(A)]b ≤ [ϕ(A)]b ≤ [ϕ̃(A)]b + ε

This allows to approximate dqs(h, ξ) because unnormalized belief corresponds
to degree of quasi-support. If dqsa(h, ξ) corresponds to [ϕ̃(H)]b and denotes
the approximation for dqs(h, ξ), then

dqsa(h, ξ) ≤ dqs(h, ξ) ≤ dqsa(h, ξ) + ε.

12.1.2 Approximating Degree of Support

The first inward propagation yields the value [ϕ̃()]m and the error ε1. Simi-
larly, the value [ϕ̃(H)]m and the error ε2 are obtained from the partial inward
propagation. Therefore, we have the following two inequalities:

[ϕ̃()]b ≤ [ϕ()]b ≤ [ϕ̃()]b + ε1

[ϕ̃(H)]b ≤ [ϕ(H)]b ≤ [ϕ̃(H)]b + ε2

The (exact) normalized belief in the hypothesis is computed as

[ϕ(H)]B =
[ϕ(H)]b − [ϕ()]b

1− [ϕ()]b
.

Using the above inequalities, an approximation for [ϕ(H)]B can be given. For
this, the following lower and upper bounds will be used:

LBound =
[ϕ̃(H)]b − ([ϕ̃()]b + ε1)

1− ([ϕ̃()]b + ε1)

UBound =
([ϕ̃(H)]b + ε2)− [ϕ̃()]b

1− [ϕ̃()]b
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The approximation of the (exact) normalized belief is then given by

LBound ≤ [ϕ(H)]B ≤ UBound

This allows to approximate dsp(h, ξ) because normalized belief corresponds to
degree of support. The following inequality is valid:

LBound ≤ dsp(h, ξ) ≤ UBound

Example 12.1 Approximation for GRID-8 and k = 200 The first inward
propagation yields the value dqsa(⊥, ξ) = 0 and the error ε1 = 0.019994. Simi-
larly, dqsa(x11 → x88, ξ) = 0.838848 and ε2 = 0.064518 result from the partial
inward propagation. Therefore,

0 ≤ dqs(⊥, ξ) ≤ 0.019994
0.838848 ≤ dqs(x11 → x88, ξ) ≤ 0.903367

are the corresponding two inequalities to approximate degrees of quasi-support.
The approximation for degree of support is then given as follows:

0.835560 ≤ dsp(x11 → x88, ξ) ≤ 0.903366

 

This kind of approximation is quite similar to other approximation methods
(Tessem, 1993; Bauer, 1996). Nevertheless, there are important differences.
Above all, we think that an approximation method should not only compute
an approximated value. Instead, it should also give bounds for the exact value.

The presented approximation method does not work in the case where the
masses of focal sets are uniformely distributed. In addition, the interval used
as a bound for the exact value is not that usable if the knowledge base is almost
contradictory. Note that Monto-Carlo methods (Wilson, 1991; Kreinovich et al.,
1994) suffer from the same problem.

12.2 Numerical Precomputations

The set of symbolic arguments in favor of a certain hypothesis of interest is
sometimes huge and cannot be computed explicitly. However, in such a situa-
tion, we are often not interested in the complete set of arguments. Instead, the
most important arguments may be sufficient. In the following, we will sketch
a method for computing important arguments. The main idea is to construct
from the initially given probabilistic argumentation system PASV = (ξ,V,A,Π)
another argumentation system. For that purpose, a numerical precomputation
is performed as if we were to answer a quantitative query for PASV . However,
the numerical precomputation is then used for the construction of the (smaller)
argumentation system.
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Suppose that the set of (symbolic) arguments QS(h, ξ) has to be computed for a
hypothesis h ∈ LA∪V . Note that QS(h, ξ) is equal to QS(⊥, ξ ∧ ¬h). Therefore,
we construct a join tree which corresponds to ξ ∧ ¬h and perform a numerical
inward propagation followed by an outward propagation. A node Nk0 of the join
tree has then received the messages Nk1k0 , . . . , Nkmk0 from its neighbor nodes
N1, . . . , Nm and could compute its marginal ϕ↓Dk0 as explained in Chapter 7
by

ϕ↓Dk0 = ϕk0 ⊗ ϕk1k0 ⊗ · · · ⊗ ϕkmk0 , (12.1)

where ϕk0 is the potential which is stored on the node Nk0 .

jk2k0

jk1k0

jk3k0

jk6k0

jk5k0

jk4k0

Nk2

Nk1 Nk6

Nk5

Nk4Nk3

jk0

Figure 12.5: Messages for the Node Nk0 .

The value [ϕ↓Dk0 ()]m corresponds to dqs(h, ξ) and represents the probability
of the set QS(h, ξ). It can be obtained on every node of the join tree if a
numerical inward propagation followed by an outward propagation is performed.
It might be interesting to compute for each node Nk0 the importance of the
corresponding potential ϕk0 . For that purpose, we compute for each node Nk0

ϕ̃↓Dk0 = ϕk1k0 ⊗ · · · ⊗ ϕkmk0 , (12.2)

as usually, but without considering the potential ϕk0 . If [ϕ̃↓Dk0 ()]m is small,
then ϕk0 is more important. In contrast, if it is close to [ϕ↓Dk0 ()]m, then ϕk0

has only a marginal influence.

The next step is to consider only those potentials ϕk0 for which [ϕ̃↓Dk0 ()]m
is small. This corresponds to selecting a subset of all potentials which are
contained in the join tree. In that way, also a set of variables V ′ ⊆ V and a set
of assumptions A′ ⊆ A are determinated. Note that the set of all potentials is
equivalent to ξ∧¬h. Similarly, the selected subset of potentials is equivalent to a
certain formula ξ′h, where ξ∧¬h |= ξ′h. The probabilistic argumentation system
PASV ′ = (ξ′h,V ′,A′,Π′) is often much smaller than the original argumentation
system. In addition, PASV ′ contains only information which is important for the
given hypothesis h ∈ LA∪V . Perhaps, PASV ′ is small enough in order to perform
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symbolic computations. In that way, only a subset of QS(h, ξ) is obtained.
However, there is a big chance that this subset contains the most important
arguments.

12.3 Modular Join Tree Construction

Large digital circuits are usually composed of several smaller digital circuits.
Each one of these smaller digital circuits consists itself of even smaller digital
circuits. To express such a digital circuit in ABEL, the module concept can
be used. A a digital circuits then contains calls to other modules representing
smaller digital circuits. Therefore, the calls to modules representing digital
circuits define a hierarchical structure. This hierarchical structure can be
considered as an added value and constructing the join tree without taking the
hierarchical structure into account is of course not optimal.

The construction of a join tree can be improved in such a situation if an ap-
propriate method is used. We have performed some tests for such a method.
This method goes through the hierarchical structure from top to down and con-
structs at each step a corresponding join tree. Therefore, each call to a module
results in a join tree constructed from the contents of the module. Of course, it
is important that the Markov property (see Chapter 6) is not violated. For
that reason, the set of seperators of a call to a module is taken into account
when the join tree for the corresponding call to the module is constructed later.
These seperators are also used to connect the different join trees together such
that only one single join tree is finally obtained.



A
Abbreviations

Abbreviation Meaning

ABEL Assumption-Based Evidential Language
BJT Binary Join Tree
CNF Conjunctive Normal Form
DNF Disjunctive Normal Form
FD architecture Fast–Division architecture
JT Join Tree
LS architecture Lauritzen–Spiegelhalter architecture
MVL Many-valued Logic
OSLA-FFI One Step Look Ahead - Fewest Fill-ins
OSLA-SC One Step Look Ahead - Smallest Clique
OSLA-SC-FFS OSLA - Smallest Clique, Fewest Focal Sets
OSLA-SC-FFS-IS OSLA - Smallest Clique, Fewest Focal Sets, Initial

Structure
PKI Public Key Infrastructure
SCL Set Constraint Logic
SS architecture Shenoy–Shafer architecture
VPLL Variable-Potential Link List
VN Valuation Network
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B
Proof of Theorems

Proof of Theorem 2.5

QSA(h, ξ′) = QSA(h, ξ ∧ ξ̃) = {s ∈ NA : s ∧ ξ ∧ ξ̃ |= h}
= {s ∈ NA : s↑A∪P ∩NA∪V(ξ ∧ ξ̃) ⊆ NA∪V(h)}
= {s ∈ NA : s↑A∪P ∩NA∪V(ξ) ∩NA∪V(ξ̃) ⊆ NA∪V(h)}
⊇ {s ∈ NA : s↑A∪P ∩NA∪V(ξ) ⊆ NA∪V(h)} = QSA(h, ξ) !"

Proof of Theorem 5.1

(φ1 ⊗ φ2)↓D3 = (φ1 ⊗ φ↑D3
2 )↓D3 = φ↓D1∩D3

1 ⊗ φ↑D3
2 = φ↓D3

1 ⊗ φ2. !"

Proof of Theorem 5.2

Axiom A1 (Neutrality)
The mass function ϕ on D with [ϕ(ΘD)]m = 1 corresponds to the neutral
element.

Axiom A2 (Commutativity)
Suppose that d(ϕ1) = D1 and d(ϕ2) = D2. Then, d(ϕ1 ⊗ ϕ2) = D1 ∪D2. For
every A ⊆ ΘD1∪D2 it is

[ϕ1 ⊗ ϕ2(A)]q = [ϕ1(A↓D1)]q · [ϕ2(A↓D2)]q
= [ϕ2(A↓D2)]q · [ϕ1(A↓D1)]q = [ϕ2 ⊗ ϕ1(A)]q

Axiom A2 (Associativity)
Suppose that d(ϕ1) = D1, d(ϕ2) = D2, and d(ϕ3) = D3. If D is defined as
D = D1 ∪D2 ∪D3 then d(ϕ1 ⊗ ϕ2 ⊗ ϕ3) = D. For every A ⊆ D it is

[ϕ1 ⊗ (ϕ2 ⊗ ϕ3)(A)]q = [ϕ1(A↓D1)]q · [ϕ2 ⊗ ϕ3(A↓D2∪D3)]q

161
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= [ϕ1(A↓D1)]q · ([ϕ2(A↓D2)]q · [ϕ3(A↓D3)]q)
= ([ϕ1(A↓D1)]q · [ϕ2(A↓D2)]q) · [ϕ3(A↓D3)]q
= ([ϕ1 ⊗ ϕ2(A↓D1∪D2)]q) · [ϕ3(A↓D3)]q
= [(ϕ1 ⊗ ϕ2)⊗ ϕ3)(A)]q

Axiom A3 (Transitivity of marginalization)
Suppose that d(ϕ) = D and F ⊆ E ⊆ D. For every A ⊆ ΘF

[ϕ↓F (A)]b = [ϕ(A↑D)]b

because of Equation 3.10. On the other hand,

[(ϕ↓E)
↓F

(A)]b = [ϕ↓E(A↑E)]b = [ϕ((A↑E)↑D)]b = [ϕ(A↑D)]b

since (A↑E)↑D = A↑D. Therefore, finally it is

[ϕ↓F (A)]b = [(ϕ↓E)
↓F

(A)]b.

Axiom A4 (Distributivity of marginalization over combination)
Suppose d(ϕ1) = D1 and d(ϕ2) = D2. In addition, suppose D = D1 ∪D2. In
the following, let A1 ∈ FS(ϕ1) and A2 ∈ FS(ϕ2). Then, it is sufficient to prove
that

(A↑D
1 ∩A↑D

2 )
↓D1 = A1 ∩ (A↓D1∩D2

2 )
↑D1

.

• First, we show that (A↑D
1 ∩A↑D

2 )
↓D1 ⊆ A1 ∩ (A↓D1∩D2

2 )
↑D1 :

Let x ∈ (A↑D
1 ∩A↑D

2 )
↓D1 . Then, there exists y = (x, r) so that y ∈ A↑D

1 and
y ∈ A↑D

2 . First, y ∈ A↑D
1 implies x ∈ A1. On the other hand, y ∈ A↑D

2

implies (x↓D1∩D2 , r) ∈ A2. Therefore, it is x↓D1∩D2 ∈ A↓D1∩D2
2 and also x ∈

(A↓D1∩D2
2 )

↑D1 . Finally, we have x ∈ A1 ∩ (A↓D1∩D2
2 )

↑D1 .

• Second, we show that (A↑D
1 ∩A↑D

2 )
↓D1 ⊇ A1 ∩ (A↓D1∩D2

2 )
↑D1 :

Let x ∈ A1 ∩ (A↓D1∩D2
2 )

↑D1 . Therefore, it is x ∈ A1 and x ∈ (A↓D1∩D2
2 )

↑D1 .

First, x ∈ (A↓D1∩D2
2 )

↑D1 implies x↓D1∩D2 ∈ A↓D1∩D2
2 . Given this, there exists

y = (x↓D1∩D2 , r) so that y ∈ A2. Then, it is (x, r) ∈ A↑D
2 . On the other hand,

x ∈ A1 implies (x, r) ∈ A↑D
1 . Thus, (x, r) ∈ (A↑D

1 ∩ A↑D
2 ) and as consequence,

we have x ∈ (A↑D
1 ∩A↑D

2 )↓D1 . !"

Proof of Theorem 7.1

The theorem is proved by induction over the join tree. First, if Nk0 is a leaf
node, then φk0km = ϕk0 and it is trivially

φ
↓Dk0
k0km

= ϕk0
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and

ϕk0km =
(
φ
↓Dk0
k0km

)↓Dk0
∩Dkm

= φ
↓Dk0

∩Dkm

k0km
.

Otherwise, it is φk0km = ϕk0 ⊗ φk1k0 ⊗ · · · ⊗ φkm−1k0 and therefore

φ
↓Dk0
k0km

= (ϕk0 ⊗ φk1k0 ⊗ · · · ⊗ φkm−1k0)
↓Dk0 .

With Si = d(φkik0) and U = Dk0 ∪
⋃
{Si : 1 ≤ i ≤ �} it is U0 ⊆ · · · ⊆ Um−2

and

φ
↓Dk0
k0km

=
(((

ϕk0 ⊗ φk1k0 ⊗ · · · ⊗ φkm−1k0

)↓Um−2
)↓Um−3

· · ·
)↓U0

.

Applying the third axiom of the valuation network framework to the innermost
marginal gives

φ
↓Dk0
k0km

=
(((

ϕk0 ⊗ · · · ⊗ φkm−2k0

)
⊗ φ

↓Sm−1∩Um−2

km−1k0

)↓Um−3

· · ·
)↓U0

.

At this point of the proof the Markov property of the join tree is used.
Whenever for a variable x ∈ Sm−1 it is also x ∈ Um−2 then by the Markov
property it is also x ∈ Dk0 and x ∈ Dkm−1 . Conversely, for every variable x
with x ∈ Dk0 and x ∈ Dkm−1 it is also x ∈ Um−2 and x ∈ Sm−1. Therefore,
Sm−1 ∩ Um−2 = Dk0 ∩Dkm−1 . In addition, the result of Theorem 5.1 can then
be applied so that

φ
↓Dk0
k0km

=
(((

ϕk0 ⊗ · · · ⊗ φkm−2k0

)↓Um−3
)↓Um−4

· · ·
)↓U0

⊗ φ
↓Dk0

∩Dkm−1

km−1k0
.

Proceeding further this way we finally obtain

φ
↓Dk0
k0km

= ϕk0 ⊗ φ
↓Dk0

∩Dk1
k1k0

⊗ · · · ⊗ φ
↓Dk0

∩Dkm−1

km−1k0
.

From the initial assertion of induction we finally can conclude that

φ
↓Dk0
k0km

= ϕk0 ⊗ ϕk1k0 ⊗ · · · ⊗ ϕkmk0 .

The message ϕk0km is then given by

ϕk0km =
(
φ
↓Dk0
k0km

)↓Dk0
∩Dkm

= φ
↓Dk0

∩Dkm

k0km
.

!"

Proof of Theorem 7.2

Although Nk0 has no inward neighbor we think of Nk0 as if it has an inward
neighbor Nkm . Then, the statement follows from

Φk0km = {ϕ1, . . . , ϕn} (B.1)

and from Theorem 7.1. !"
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Proof of Theorem 7.3

If Nk0 is the root node, then by Theorem 7.2 proved above

ϕ′′
k0

= ϕ↓Dk0 .

Otherwise, it is easy to see that in the Shenoy–Shafer architecture a node Nk0

receives the same messages regardless which node is set as root node. Therefore,
Nk0 is set as root node and then Theorem 7.2 can be applied again. !"

Proof of Theorem 8.1

[ϕ↓DH (H)]B is given by

[ϕ↓DH (H)]B =
[ϕ↓DH (H)]b − [ϕ↓DH ()]b

1− [ϕ↓DH ()]b
. (B.2)

If υ is so that [υ(Hc)]m = 1 and d(υ) = DH , then

[ϕ↓DH (H)]b =
∑
A⊆H

[ϕ↓DH (A)]m =
∑

A∩Hc=

[ϕ↓DH (A)]m (B.3)

=
∑

A∩B=

([ϕ↓DH (A)]m · [υ(B)]m) = [(ϕ↓DH ⊗ υ)()]m. (B.4)

Therefore,

[ϕ↓DH (H)]B =
[(ϕ↓DH ⊗ υ)()]m − [ϕ↓DH ()]m

1− [ϕ↓DH ()]m
(B.5)

=
[(ϕ⊗ υ)↓DH ()]m − [ϕ↓DH ()]m

1− [ϕ↓DH ()]m
(B.6)

=
[(ϕ⊗ υ)()]m − [ϕ()]m

1− [ϕ()]m
(B.7)

=
[(ϕ⊗ υ)↓Dr()]m − [ϕ↓Dr()]m

1− [ϕ↓Dr()]m
(B.8)

=
c2 − c1
1− c1

(B.9)

!"
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