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Principal component analysis (PCA) is used to reduce dimensionality of electrocardiogram
(ECG) data prior to performing independent component analysis (ICA). A newly developed
PCA variance estimator by the author has been applied for detecting true, actual and false
peaks of ECG data files. In this paper, it is felt that the ability of ICA is also checked for
parameterization of ECG signals, which is necessary at times. Independent components (ICs)
of properly parameterized ECG signals are more readily interpretable than the measurements
themselves, or their ICs. The original ECG recordings and the samples are corrected by
statistical measures to estimate the noise statistics of ECG signals and find the reconstruction
errors. The capability of ICA is justified by finding the true, false and actual peaks of around
25–50, CSE (common standards for electrocardiography) database ECG files. In the present
work, joint approximation for diagonalization of the eigen matrices (Jade) algorithm is
applied to 3-channel ECG. ICA processing of different cases is dealt with and the R-peak
magnitudes of the ECG waveforms before and after applying ICA are found and marked. ICA
results obtained indicate that in most of the cases, the percentage error in reconstruction is
very small. The developed PCA variance estimator along with the quadratic spline wavelet
gave a sensitivity of 97.47% before applying ICA and 98.07% after ICA processing.

Keywords: Electrocardiogram; Parameterization; Quadratic spline wavelet; PCA variance
estimator; Feature extraction; Validation; Principal component analysis; Independent
component analysis

1. Introduction

Principal component analysis (PCA) and independent component analysis (ICA) occupies a

definite place in higher order statistical techniques for better feature extraction and

electrocardiogram (ECG) interpretation [1,3]. PCA finds a set of the most representative

projection vectors such that the projected samples retain the most information about original

ECG samples [2,7,31]. ICA captures both second and higher-order statistics and projects the

input ECG data onto the basis vectors that are as statistically independent as possible [3].

ICA opens new and useful windows into phenomena contained in multi-channel ECG

records by separating ECG data recorded at multiple electrodes into a sum of independent
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components. ICA is a new technique suitable for separating independent components from

ECG complex signals. In many cases, the independent ICA components are also functionally

independent. In particular, ICA appears to be a generally applicable and effective method for

removing a wide variety of artifacts and noise from ECG records. However, PCA cannot

completely separate artifacts and noise completely from ECG signals, especially when they

have comparable amplitudes. ECG is oscillatory in nature, although not periodic in the strict

mathematical sense. The analysis of ECG signal is extensively used as a diagnostic tool to

provide information on the heart function. ECG signals are largely employed as a diagnostic

tool in clinical practice in order to assess the cardiac status of an object. The ICA may

actually be regarded as a refinement on the PCA results which provides a remarkable

improvement in the source estimation [3,4,7]. Figure 1 shows the basic ECG waveform.

A number of ICA algorithms that incorporate the temporal structure of the ECG sources

have been developed in the past and are available in literature. The most commonly used ICA

algorithms are: Fast-ICA, Temporal Fast-ICA and Temporal decorrelation source separation

[5,6,11,29,30].

In this paper, it is suggested that the ability of ICA for parameterization of ECG signals

may be necessary at times for removal of redundancy if available in the ECG data. Properly

parameterized ECG signals provide a better view to the extracted ECG signals, while

reducing the amount of ECG data preserving diagnostic morphology [4,12,20,21].

In the present work, Jade algorithm is applied to three-channel ECG and three CSE

database files, and the ECG waveforms are separated as independent components. jKurtj and

Varvar denote respectively the modulus of kurtosis and variance of variance as first proposed

in [1] and used as an application in this study. It is verified and reimplemented in this analysis

that the independent components whose jKurtjkKurt (Threshold) and VarvarlVarvar
(Threshold) is taken as a noise or artifact component [2–4,31].

Thresholds for Kurtosis ¼ 4.3 and Varvar ¼ 0.4 are obtained after checking on around

20 CSE database files after parameterization of ECG signals, which show improvements

Figure 1. ECG Waveform (Courtsey: Wouter. A.Th. Manintveld, UK, 1996, Thesis).
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in results when compared to those presented in [1]. This study is a reimplementation of [1] as

far as thresholds for kurtosis and variance of variance (Varvar) are concerned.

It is also confirmed after various case studies that ICA yields Independent Components

(ICs) displaying more clearly the investigated properties of the original ECG sources. ICs of

properly parameterized ECG signals [21] may also be more readily interpretable than the

measurements themselves, or their ICs. The applied ICA algorithm in this study estimates the

independence of the original signal, and the optimization based on the estimation searches an

optimum-restoring matrix. In the proposed model, estimated results are in good agreement

with the physiological view [4,9,10,21].

1.1 Existing classical ECG techniques: a review

In past years, several ECG analysers based on statistical methods, clustering methods, expert

systems and Markov models have been developed and implemented to solve the problem of

the time consuming ECG analysis. Their lesser reliability, together with their high sensitivity

to noise and their failure to deal with new or ambiguous patterns, leads the research towards

investigation of new analysis techniques.

Recently, there have been many approaches introduced involving techniques for computer

processing of 12 lead ECG, in order to diagnose a certain disease. A first group of methods to

interpret the ECG significance uses amorphological analysis. A second group of techniques for

computer analysis ofECGuses statisticalmodels.A third category ofmethods corresponding to

neural models becomes a powerful concurrent to statistical ones for ECG signal classification.

By integrating statistical and knowledge-based techniques, a system can be developedwhich is

more robust than a system consisting of only the individual techniques [22–24].

Artificial neural networks have been often proposed as good classifiers when non linear

separation borders are required and incomplete or ambiguous input ECG patterns can be

found. In the last few years, the connectionist approach has been applied to the ECG analysis

with promising results [18,20].

PCA can be used for reducing dimensionality in a dataset while retaining those

characteristics of the dataset that contribute most to its variance by eliminating the later

principal components (by a more or less heuristic decision). These characteristics may be

the ‘most important’, but this is not necessarily the case, depending on the application.

The linear PCA can be implemented with powerful, robust techniques as the singular value

decomposition (SVD) that guarantees numerical accuracy and stability. A relatively

successful method to deal with these problems is the use of patient-adaptive algorithms based

on PCA. PCA is expected to set a milestone in this effort. PCA can provide descriptive

contributions from each ECG lead and can represent a global measure of the atrial and

ventricular activity [2,7,10,14].

Some undesired signals may be superimposed on ECG signals of interest and must be

considered artifacts. These artifacts may have a biological origin, like reciprocal

contaminations of muscle activity and heart cycles respectively in ECG and electromyogram

(EMG) recordings. These motion artifacts produce base line drifts which can compromise

vital signs parameters extrapolation [1,7,8].

1.2 Motivation of higher order statistics

The main motivation behind the use of higher order statistics (HOS) lies in their ability to

suppress noise under certain conditions, without having to know the exact probability density
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function governing the noise samples [7,10–12]. The limitations of second order statistics

could significantly be reduced by the application of HOS to ECG, to facilitate accurate

interpretation of the spatial sampled signal. However, the application of HOS to finite length

and noisy ECG data poses a problem of its own and the use of particular order cumulant can

help to investigate this problem [15,16]. One limitation that keeps the standard (3 or 12-lead

system) ECG from providing a more comprehensive and transparent description of the

electrical state of the heart is that it is a very sparse sampling of a complicated, spatially

varied distribution of potential on the body surface. Another limitation is to do with the fact

that the application of second-order statistics to ECG signals definitely presents a shortfall in

analyzing and interpreting complicated interactions between the mechanical function of the

heart, its internal electrical behavior, and externally recorded potentials.

1.3 Limitations of standard ICA

ICA is a multidimensional signal processing technique to separate signals from different

‘sources’ into distinct components. Once separated, components classified as noise may be

discarded and the remaining components used to reconstruct the ‘pure’ signal [1,4].

However, due to the imperfect nature of the ICA technique, substantial data may be lost when

the ‘noise’ components are removed or discarded [7,12,31].

When interpreting the ECG results using ICA, it is to be noted that:

(1) At times the energies of the ICs are undetermined; contributions of the ICs to the

measurements can nevertheless be assessed by examining the corresponding elements

of the mixing matrix A.

(2) On the contrary determined minor ICs may display results that produce otherwise hard

to observe desired or expected information.

1.4 ICA classifiers

The purpose of this study was to evaluate the ability of the ICA technique to extract the noise-

free ECG signal from ECG recordings, after removing artifacts and noise. The clean ECG

signals are reconstructed dropping those components related to the artifacts and noise [1–3].

ICA is an extensive technique that extracts independent components from ECG mixed

signals. A hypothetical clinical application is to remove artifacts and noise from ECG using

ICA [11,12,22,25].

Why is ICA preferred in ECG analysis when compared to the other classifiers? The answer

to this question is:

i) ICA is a form of blind source separation

ii) It can solve and handle time delay and ambiguity problems in the ECG data.

iii) ICA assumes the ECG sources as linear mixtures

iv) ICA allows physicians an alternative higher order statistical technique for better ECG

interpretation.

v) It performs better at times in yielding a cleaned ECG signal when compared to higher

order digital filters and gives comparable performance.

vi) ICA is better at recovering specific points on the ECG such as the R-peak, RR interval

which is necessary for obtaining the heart rate.
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The above six points (i)–(vi), indicates the reasons and advantages of using ICA classifiers

for ECG analysis [2–4,22].

2. Basics of ICA and need of parameterization

Based on trivial properties of convolution, some common signal parameters also fulfil the

ICA mixing model, given that the original ECG measured signals comply with it. By ECG

signal parameterization, it is meant that the construction of a new ECG signal is possible

from any local or global properties, i.e. parameters, of the original ECG signal [4,22]. These

properties may be related to a priori known features of the ECG sources. Even with proper

ECG parameterizations, it may sometimes be hard or impossible to make an ICA algorithm

converge, because of missing or otherwise bad ECG data due to, for example, bad electrode

contacts [2–4]. It is also, otherwise, possible that the ICA does not converge, or that several

runs of ICA are needed. R-wave reflects the intensity and direction of progressing ventricular

heart muscle depolarization, i.e. contraction [11,12,22,31].

ICA is a statistical technique for obtaining independent sources, s, from their linear

mixtures, x, when neither the original sources nor the actual mixing matrix [15–17,22],A are

known as given by equation (1). This model is easily applied by exploiting higher order

signal statistics and optimization techniques.

The basic noisy ICA ECG model is denoted by (1) as

x ¼ Asþ N ð1Þ

For a set of p random variables,

xðtÞ ¼ ½x1; x2; x3; . . .; xp�
T

assumed to be a linear combination (represented by a mixing matrix A) of q unknown

statistically independent sources,

sðtÞ ¼ ½s1; s2; s3; . . . sq�
T

where, q , p such that:

xðtÞ ¼ A sðtÞ ð2Þ

ICA aims to find the de-mixing matrix w, such that

sðtÞ ¼ wxðtÞ ð3Þ

where w ¼ unmixing matrix.

The de-mixing matrix thus helps to find the sources s(t). To simplify the estimation of

these independent sources, we start by decorrelating the mixtures, (whitening or sphering).

This makes the covariance matrix of x diagonal and its components of unit variance. ICA

then uses higher order statistical information (kurtosis, negentropy, etc.) to estimate the

independent sources [1,4,22]. The prime requirement for applying ICA is that a number of

simultaneously measured ECG signals carry linear combinations of the original source ECG

signals, where
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A is m £ n complex mixing matrix

s represent the source ECG signals

N is a noise vector

Equation (3) can be reduced to equation (1), if N is zero or made to zero.

In certain situations, it is desired that the ICs of the parameterization of ECG signals is to

be done in order to display diagnostic information carried by the parameters more clearly

than what is observable from the original ECG measurements or their ICs. It is to be noted

that in order for the ICA mixing model (1) to be valid, the parameters have to be derived from

the ECG signal amplitudes. ECG parameters describing time durations, e.g. the time periods

between consecutive R-waves, do not comply with the ICA mixing model [2,3,22,31].

In some cases, the appropriate ECG parameterization may be such that it greatly decreases

the amount of ECG data, thus lowering the computational burden on the subsequent ECG

analysis. As readily stated by the mixing model (1), each and every measured sample is a

linear combination of the samples of the source ECG signals at the same time. Therefore, a

set of ECG signals, in which each signal consists of samples from the corresponding original

ECG measurement at the time points ‘s’, i.e.

y0 ¼ yðsÞ ð4Þ

also satisfies the ICA mixing model (1). Also, it can be shown that ECG signals constructed

from time averages of the original measurement ECG samples, or signals resulting from

finite impulse response (FIR) filtering, fulfil the ICA signal model, and may thus be subjected

to ICA. However, it is to be noted that even if the ICA algorithm converged and produced

ICs, averaging will make the components more Gaussian. Thus, one must pay special

attention to the proper interpretability of the components, and avoid lengthy averaging

windows [4,21,22,31].

2.1 PCA preprocessing

Signal processing in general has tremendously changed during the last 20 years and it is

expected to change even more in the years to come. What was earlier visualized as digital

signal processing now forms only a small part of the new concept of signal processing which

might be more adequately explained as the methods of analyzing, manipulating and

conveying natural information. Feature extraction is basically reduction of the available

information maintaining ECG morphology. Features are representatives of identification to a

particular subject or specimen. Analysis and feature extraction from electrocardiograms is

difficult until and unless artifacts and noise from the ECG are removed; there are many

techniques available in the literature [1,2,13,14]. Figure 2(a) shows PCA based scheme for

ECG data compression whereas figure 2(b) depicts the PCA scheme for ECG processing.

The ECG features of interest are the various intervals and segments of ECG.

A preprocessing step based on PCA is recommended, since after pre-whitening, the real ECG

sources and the whitened vectors are just related through an orthogonal transformation

[2,7,10]. As long as the imposed conditions are fulfilled by the real ECG data, this method

provides better performance than traditional ICA techniques because the new information is

included in the proposed algorithm. The proposed method is tested on real ECG and CSE

database signals. At times in the beginning of the ECG processing, PCA is used for base line

wander removal, which could be better choice. In the present work, PCA offers significant

advantages in removing base-line wander (BLW) from ECG as compared to the
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Figure 2. (a) PCA scheme for ECG data compression. (b) PCA scheme for ECG processing. (c) Basis for PCA
vectors. (d) Combined PCA-ICA transformation scheme. (e) PCA based ICA scheme for dimension reduction and
segment classification.
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aforementioned methods [7,14,22,31]. Figure 2(d) depicts the PCA transformation scheme

for ECG classification and figure 2(e) illustrates a PCA based scheme for ECG data

dimension reduction.

In this paper, for classification purposes, a feature vector from ECG time samples is

constructed from each ECG lead of a data set. This vector is of definite length and the R-wave

peak is used as the reference point of this vector. The R-wave peak is the point where the

difference between the next slope and the previous slope in QRS region is a maximum. Some

QRS detection methods reduced the amount of information that medical practitioners needed

to process in time but had to suffer critic scenarios, loosing diagnostic features. In the

proposed method, first the peak of the QRS complex is detected with its high dominated

amplitude in the signal using PCA variance estimator, followed by detection of Q and

S-waves [2,7,22].

2.2 Modeling steps of PCA

PCA is the optimal linear technique which retains the maximum amount of variance

(amongst all linear projections) within the projected feature space. The main drawback of

PCA lies in its global linearity; since the algorithm finds only a linear subspace of the original

data space, it is sub-optimal when the underlying structure in the data is inherently nonlinear.

PCA uses projections onto an ‘orthogonal basis’ set to separate the ECG signal from the noise

[3,7,22]. Figure 2(c) shows the basis for PCA vectors.

The initial stage referred to as PCA has three main purposes:

1. To estimate the number of ECG signals.

2. To remove the second order correlations between the temporal ECG waveforms.

3. To normalize the temporal ECG waveform vectors.

To estimate the number of ECG signals, the eigen values or singular values are compared

against a detection threshold. The vectors relating to the noise subspace are then ignored.

If the number of ECG temporal samples is large, it may be computationally more efficient to

implement spatial eigen decomposition than SVD. The orthonormal temporal vectors can be

constructed from the spatial eigenvectors [2,7,8].

The following simplified steps are required in modeling [7,22], the PCA based ECG

analysis:

Step 1: get the ECG data

Step 2: subtract the mean

Step 3: calculate the ECG covariance matrix

Step 4: calculate eigenvectors and eigenvalues of the covariance matrix

Step 5: Choose principal components and form ECG feature vectors

Feature vector v ¼ ðeig1; eig2; eig3; · · ·eigpÞ

.

Step 6: deriving the new ECG data set

Final data ¼ Row feature vector £ Rowdata adjust
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Step 7: getting the old ECG data back, i.e. reconstruction of ECG data

Step 8: reconstruct the original dimensionality of the ECG data.

2.3 Extraction of independent components

An ICA method is proposed where additional knowledge about the time and statistical

structure of the ECG sources is incorporated. ICAyields equations describing the behavior of

the various ECG segments as a function of cardiac cycle time. ICA can be used to synthesis an

ECG signal which is a realistic reproduction of the original signal, and also can control

parameters such as QRS complex amplitude, rise-time, fall-time and the relative amplitudes

of the P- and T-waves. The duration of each component will automatically track the selected

heart rate in a non-linear fashion, reflecting its true behavior. This will provide an invaluable

as well as cost-effective tool for testing, calibrating and maintaining electrocardiographic

equipment in hospitals and clinics, and for the design/improvement of new and existing

instrumentation [17–19].

PCA is not a very appropriate technique for the visualization of ECG data and nonlinear

dimensionality reduction algorithm from the ECGmorphological point of view. This is due to

the fact that it can only uncover linear relationships in the ECG data, and is designed to find

the directions in the ECG data with the highest variance, which may not always be the most

informative directions. The resulting low-dimensional PCA descriptors can be used for

exploratory ECG data analysis, visualization and subsequent ECG data modeling. It has been

reported in the literature that the ICA source estimates promote some inverse process, acting

on the ECG observations. In a standard ICA model, this inverse function is a generalized

linear function, i.e. a function of the pseudo-inverse of the mixing matrix, the so-called

unmixing matrix and the inferred noise model. ICA is expected to remove noise from the

ECG with known characteristics [20–22]. Figure 3 shows the proposed scheme of ICA for

ECG analysis.

In this paper, a method for removing artifacts and noise from ECG signals acquired by

blind source separation (BSS) and ICA is presented. Since in some situations, both artifacts

and signals of interest show common features in different ECG channels, hence correction of

ECG signals by ICA was felt for diagnostic information.

3. ICA steps

First step involves the determination of independent components by removing the mean

values of the variables also known as ‘centering the ECG data’. The second step is to ‘whiten

the ECG data’ also known as ‘sphering the ECG data’. In the third step, independent

components are obtained by applying a linear transformation to the whitened ECG data

[1,22–24].

Figure 3. Basic understanding of ICA application for ECG analysis.
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To estimate one of the independent components, a linear combination of the xi is

considered. Let us denote this by

y ¼ wTx ¼
Xn

i¼1

wixi; ð5Þ

Where the column vector w is to be determined [2,19,22,31].

The independent components are determined by applying a linear transformation to the

whitened data. A given component can be obtained using the linear transformation

ic ¼ bTi x; ð6Þ

where

ic gives independent components which is an estimate of the original signal.

b is an appropriate vector to reconstruct the independent components [25–27].

In order to employ the ECG signal for facilitating interpretation and medical diagnosis,

ICA is used to clean the ECG signal by removing some or all the sources of noise. By using

ICA, the basic idea is to ‘project out’ the noise and artifacts from ECG signals and to

represent noise and artifacts as independent components [22,28–30].

The ICA algorithmic principle is

y ¼ EstðsÞ ¼ wICAx; ð7Þ

y ¼ wx: ð8Þ

The idea of ICA is to recover the original signals by assuming that they are statistically

independent. y is independent and it is desired to find how wmaximizes the independence of

y. After estimating A, computation of w ¼ A21 is done, which gives

s ¼ wx ¼ A21x: ð9Þ

Using ICA, it is required to derive a ‘clean ECG signal’ from the source ECG signal to find

the noise reduction factor and compare the proposed model with the existing methods and

algorithms [2,22,30]. ICA steps for artifacts/noise removal and feature extraction is depicted

in figure 5.

4. Simulations

The simulation results of this paper suggest that the integration of PCA and ICA techniques

can efficiently remove the noise and artifacts from the ECG signals. The results of PCA and

ICA when used together showed good efficacy and informative ECG classification.
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4.1 PCA results

The idea behind PCA is to have an effective linear coding method for multivariate ECG data

[2,7,22]. The various algorithmic steps used are:

Step 1: Pre-process the input ECG data and identify features as ECG segments.

Step 2: Choose the initial set of ECG features.

Step 3: Select features as essential and non-essential features based on PCA scatter or

scree plots for ECG data set.

Step 4: Find variances with ECG data set for different combinations of features.

Step 5: Choose the best possible set of ECG features based on the ability to reach the

desired mean square error (MSE), by developed PCA variance estimator.

Step 6: Vary the threshold for the chosen ECG feature set.

Step 7: Choose the best principal components based on morphological basis and an

ability to reach the predefined MSE.

Step 8: Final choice is based on generalization ability of the variance estimator to the test

ECG data and separate noise and artifacts.

Step 9: Test performance of variance estimator for more noisy data and check the ability

of PCA to separate useful ECG components from noisy components.

Figure 4. (a) Representation of principal components in an ECG lead in the order of their variance magnitudes.
(b) Plot of no of QRS PCs obtained in a lead of an ECG database file.
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Step 10: Select the useful ECG components which have more variance as compared to

noisy components.

A different newly developed algorithm known as ‘PCA variance Estimator’ is suggested

by the author, based on the decreasing values of eigen vectors/eigen values [7,22]. This

variance estimator works on the principle that detection of various segments of an ECG is

done in the following sequence:

(1) First QRS complex is detected.

(2) T-wave detection is the second step.

(3) P-wave detection is based on the fact that first positive slope is found followed by

negative slope.

(4) Lastly, BLW and noise components if available in the ECG signal are detected.

Figure 5. ICA flowchart for R-peak detection.
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The performance of the PCA variance Estimator is evaluated on the ECG data sets by

computing the percentages of:

(1) Sensitivity (SE)

(2) Specificity (SP)

(3) Correct classification (CC)

The calculations of sensitivity, specificity and classification will indicate the appearance of

false positive and negative peaks, which can be evaluated using PCA. The results of the PCA

variance estimator is validated by calculating the correct classification, sensitivity and

specificity for leads AF and AR of various CSE based ECG data records before and after

applying PCA for detection of true and false peaks. These validation parameters are defined

as:

Sensitivity ðSEÞ ¼
TP

TPþ FN
Specificity ðSPÞ ¼

TN

TNþ FP

Correct classification; i:e:Accuracy ðACÞ ¼
TN þ TP

TN þ FP þ TP þ FN

where, TP is true positive, FN is false negative, TN is true negative and FP is false positive

respectively of the R-peaks.

Tables 1(A) and (B) give the results of correct classification, sensitivity and specificity for

two leads of an ECG database file for noise conditions, baseline wander and their

combinations using PCA variance estimator.

4.2 ICA results

In this work, an approach of ICA to separate the 3-channel ECG waveforms is discussed and

reimplemented as first discussed in [1]. Jade algorithm is applied to remove noise and

artifacts from ECG recordings. Jade algorithm is a statistically based technique for better

visualization of any ECG data. Before applying the algorithm to the ECG data, the data is to

be centered and the whitening of the data is done by the algorithm itself, which is the main

reasoning of using it in this analysis. The reconstructed ECGs after cleaning using ICA are

Table 1(B). Values of correct classification, sensitivity and specificity for other lead of the same ECG database file.

Conditions of ECG data sets Correct classification (%) Sensitivity (%) Specificity (%)

Free of noise and base-line wander 93.81 85.77 94.47
With noise only 90.55 80.38 90.89
With noise and base-line wander both 87.49 75.917 87.91

Table 1(A). Values of correct classification, sensitivity and specificity for one lead of an ECG database file.

Conditions of ECG data sets Correct classification (%) Sensitivity (%) Specificity (%)

Free of noise and base-line wander 94.83 86.63 94.42
With noise only 91.34 81.33 91.92
With noise and base-line wander both 88.25 76.17 88.95
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compared with the source ECG signals. The noisy ECG recordings were cleaned using

statistical measures kurtosis and variance of variance to find out the noise characteristics.

In the present work, Jade algorithm for ICA is applied to obtain the independent components.

It is proposed that the independent component whose jKurtjkKurt (Threshold) and

VarvarlVarvar (Threshold) is taken as a noise or artifact component [1].

For the three special cases of the CSE database discussed, the R-Peak magnitudes of the

ECG waveforms before and after applying ICA are shown in respective tables. From these

tables, it is clear that in most of the cases, the percentage error in the reconstruction is very

small.

Case studies: Three different case studies are discussed to show the capability of ICA in

removing artifacts and noise as well a competent tool for ECG feature extraction in

collaboration with other tools like PCA and wavelet transforms.

Case 1: 3-channel ECG with baseline drift in one channel and noise in other channel.

Case 2: 3-channel ECG with baseline drift in two channels.

Case 3: 3-channel ECG with high frequency noise in one of the channels.

The simulation and graphical results are shown in the respective figures. The results have

been obtained as: Number of points ¼ 5000, Sampling frequency ¼ 500Hz.

Thresholds for Kurtosis ¼ 4.3 and Varvar ¼ 0.4 were obtained after checking on around

20 CSE database files after parameterization of ECG signals, which shows improvements in

results as compared to those presented in [1]. This study is reimplementation of [1] as far as

thresholds for kurtosis and variance of variance (Varvar) are concerned.

Case 1: CSE data file for leads L1, L2 and L3 of an ECG are used in the simulation. This

case deals with 3-channel ECG with baseline drift in one channel and noise in other channel.

It is apparent that channel-2, i.e. figure 8(b) is having baseline wander and channel-3, i.e.

figure 8(c) is having noise. It is obvious from figure 8 and table 2 that ICA-2 is noise

component since it is having jKurtjk4.3, and ICA-3 is an artifact component that it is having

Varvarl0.4, after parameterization of source ECG signals, hence these components are made

zero [1].

Figure 6. 3-channel ECG for case-1.
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Case 2: A CSE data file for leads L1, L2 and L3 of an ECG are used in the simulation. ECG

leads are having baseline drift in two out of the three channels.

Table 3 indicates that ICA-1 is noise component that is having jKurtj , 4.3, and ICA-3 is

an artifact component having Varvar . 0.4, hence these components are made zero.

Figure 7. Plot of extracted independent components.

Figure 8. Plot of reconstructed clean ECG signals.

Table 2(A). jKurtj and Varvar for the three ICA components for case-1.

Index ICA1 ICA2 ICA3

jKurtj 39.1544 3.3999 (Noise) 8.3203
Varvar 0.0254 0.1683 0.6913 (Artifact)
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Case 3: A CSE data file for leads L1, L2 and L3 of an ECG are used in the simulation. This

case deals with 3-channel ECG with high frequency noise in one of the channels L1, L2

and L3.

Independent components extracted after ICA processing are shown in figure 13. It is

apparent from table 4, ICA-3 is a high frequency noise component that is having jKurtj , 4.3

Table 2(B). R-Peak magnitudes before and after ICA processing of case-1.

ECG lead
Original ECG in mV
{Peak–Peak} (R-wave)

Reconstructed ECG in mV
{Peak–Peak} (R-wave) (%) Reconstruction error

L1 1.224 1.220 0.326
L2 0.999 0.989 1.001
L3 0.335 0.330 1.492

Figure 9. 3-channel ECG for case-2.

Figure 10. Plot of extracted independent components.
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Figure 11. Plot of reconstructed clean ECG signals.

Figure 12. ECGs with high frequency noise in one channel for case-3.
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Table 3(A). jKurtj and Varvar for the three ICA components of case-2.

Index ICA1 ICA2 ICA3

jKurtj 2.1111(Noise) 11.9471 6.5778
Varvar 0.0017 0.0812 0.5196 (Artifact)

Table 3(B). R-Peak magnitudes before and after ICA processing of case-2.

ECG lead
Original ECG in mV
{Peak–Peak} (R-wave)

Reconstructed ECG in mV
{Peak–Peak} (R-wave) (%) Reconstruction error

L1 0.858 0.842 1.864
L2 0.571 0.565 1.050
L3 0.607 0.600 1.153

Figure 13. Extracted independent components.

Table 4(B). R-Peak magnitudes before and after ICA processing of case-3.

ECG Lead
Original ECG in mV
{Peak–Peak} (R-wave)

Reconstructed ECG in mV
{Peak–Peak} (R-wave) (%) Reconstruction error

L1 0.389 0.378 2.827
L2 1.212 1.212 0
L3 0.612 0.610 0.326

Table 4(A). jKurtj and Varvar for each of the three ICA components for case-3.

Index ICA1 ICA2 ICA3

jKurtj 19.5467 10.3303 3.1682(Noise)
Varvar 0.1085 0.9487(Artifact) 0.0246
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and ICA-2 is an artifact component that is having Varvar . 0.4. Clean ECG signals are

reconstructed after making ICA-2 and ICA-3 equal to zero as shown in figure 14.

5. Validation of ICA simulations

The results of the proposed method is validated by calculating the sensitivity to the various

CSE based ECG data records before and after applying ICA for detection of true and false

peaks using quadratic spline wavelet along with the PCA variance estimator.

Figure 14. Plot of reconstructed clean ECG signals for case-3.

Table 5. Results of QRS detection and R-peaks before applying quadratic spline wavelet along with PCA variance
estimator to various ECG data records.

Lead name
Number

of ECG records
Total number
of samples

Actual number
of R-peaks

True
positive (TP)

False
positive (FP)

False
negative
(FN)

AvF 50 250,000 502 422 17 10
AvL 50 250,000 502 418 19 5
AvR 50 250,000 502 412 12 17
L1 50 250,000 502 417 18 10
L2 50 250,000 502 406 17 10
L3 50 250,000 502 409 5 9
V1 50 250,000 502 405 12 12
V2 50 250,000 502 408 4 14
V3 39 250,000 502 403 7 13
V4 50 250,000 502 405 10 9
V5 50 250,000 502 400 6 8
V6 50 250,000 502 403 8 10

Total 4908 135 127
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5.1 Estimation of sensitivity before applying ICA

Sensitivity ðSEÞ ¼
TP

TPþ FN
¼

4908

4908þ 127
¼ 97:47%

5.2 Estimation of sensitivity after applying ICA

Sensitivity ðSEÞ ¼
TP

TPþ FN
¼

2553

2553þ 50
¼ 98:07%

Jade algorithm and quadratic spline wavelet along with PCA variance estimator gave a

sensitivity of 97.47% before applying ICA and 98.07% after ICA processing to several CSE

based ECG data files.

6. Discussions

PCA gives optimal compression performance, and exceeds wavelet transform performance,

though it requires marginally more processing overheads. The performance is slightly poorer

than neural-network compression but the processing overhead is significantly lower. For

PCA, the measure which is used to discover the axes is ‘variance’ and leads to a set of

orthogonal axes. ICA decomposition gives constant correlation coefficient whereas PCA

decomposition exhibits varying correlation coefficient. In ICA, since some components are

more emphasized or some components are either hidden or reduced, it can be used as a good

potential framework for automated heart monitoring. Abnormal signals are more easily

detected in the independent components compared to the original measured ECG signals,

reducing the need for trained doctors’ opinions. Additional benefits indicate the PCA

approach is more suitable as the basis for a complete ECG analysis, classification and

diagnosis. It is expected by the authors after this comparative analysis that ECG researchers

Table 6. Results of QRS detection and R-peaks after applying ICA to ECG data using quadratic spline wavelet and
PCA variance estimator to various ECG data records.

Lead name
Number of
ECG records

Total number
of samples

Actual number
of R-peaks

True
positive (TP)

False
positive (FP)

False
negative (FN)

AvF 25 125,000 227 214 6 4
AvL 25 125,000 227 207 9 5
AvR 25 125,000 227 212 7 6
L1 25 125,000 227 212 6 4
L2 25 125,000 227 217 2 3
L3 25 125,000 227 216 3 3
V1 25 125,000 227 212 4 4
V2 25 125,000 227 215 3 3
V3 25 125,000 227 214 5 4
V4 25 125,000 227 212 4 6
V5 25 125,000 227 209 4 4
V6 25 125,000 227 213 4 4

Total 2553 57 50
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will use the proposed methods and algorithms as a convenient platform to integrate new

research into ECG triggering, compression, clustering, analysis, presentation, classification,

and interpretation techniques.

In this paper, the author has reimplemented a method for cleaning of ECG signals by ICA

approach, a special case of blind source separation technique. Starting from the multi-

channel nature of the ECG acquisitions, ECG signals as a convolutive mixture of

independent components are modeled in this study. The ECG, noise and artifacts components

are separated from multi-channel acquisitions by exploiting the well known Jade algorithm

available for instantaneous ICA model. The original ECG data and the results achieved by

this method are also used to find the reconstruction errors of R-peaks.

The important assumptions made in applying the ICA are: components are independent

and have non-Gaussian distributions. The ambiguities of ICA on the other hand, such as

energies of the extracted ICs at times which cannot be determined, and their order remaining

undetermined, are taken care in this analysis. ICs of parameterized ECG signals display the

desired aspects of the question at hand much more clearly than the ICs of the original ECG

signals, while possibly reducing the amount of ECG data to a fraction of the original ECG

signal preserving morphology. Therefore, author feels to conclude that employing the time

structure information in ICA calculations can potentially improve artifacts and noise removal

and enhance the overall ECG classification and feature extraction.

7. Conclusion

The proposed method provided a cleaning procedure for the noisy and corrupted ECG

signals. Jade algorithm to the 3-channel ECG data is applied and it is observed that the

approach is quite effective in identifying and removing noise/artifacts. The present study

deals with the capability of ICA in general to identify and remove baseline wander, abrupt

baseline changes, high frequency noise, dc drifts, sudden spikes, etc. from the ECG. ICA

processing of four cases has been discussed graphically as well as computationally. The

results demonstrate that there is significant improvement in signal quality, i.e. signal to noise

ratio is improved. In all the cases discussed, it is found that the independent components

whose jKurtjkKurt (Threshold) and VarvarlVarvar (Threshold) are taken respectively as

noise and artifact components. From the results presented in tabular form, it is clear that in

most of the cases, the percentage error in the ECG reconstruction is very small maintaining

diagnostic morphology. However, standard ICA fails to separate the mixtures if more than

one of the sources has a Gaussian amplitude distribution. The capability of the proposed ICA

algorithm is validated by finding the true, false and actual peaks for about 25–50 CSE

database ECG files. Jade algorithm with PCA variance estimator gave a sensitivity of 97.47%

before applying ICA and 98.07% after ICA processing to several CSE based ECG data files.
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