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Abstract

Within the decoherent histories formulation of quantum mechanics, we consider arbitrarily long

histories constructed from a fixed projective partition of a finite-dimensional Hilbert space. We

review some of the decoherence properties of such histories including simple necessary decoherence

conditions and the dependence of decoherence on the initial state. Here we make a first step

towards generalization of our earlier results [Scherer and Soklakov, e-print: quant-ph/0405080,

(2004) and Scherer et al., Phys. Lett. A 326, 307, (2004)] to the case of approximate decoherence.
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I. INTRODUCTION

The formalism of decoherent histories was introduced to provide a self-contained descrip-

tion of closed quantum systems that does not rely on either the external observer nor on the

existence of classical devices [3, 4, 5, 6, 7]. It has been successfully applied in various fields of

quantum theory including quantum cosmology [8], derivation of effective classical dynamics

from the fundamental quantum dynamical laws [6, 7, 9], and the study of the coarse-grained

evolution of iterated quantum maps [10]. Recently the formalism of decoherent histories has

also been applied for investigating classicality in quantum information processing [11].

The decoherent histories formalism predicts probabilities for quantum histories, i.e. or-

dered sequences of quantum-mechanical “propositions”. Mathematically, these propositions

are represented by projectors. In particular, an exhaustive set of mutually exclusive propo-

sitions corresponds to a complete set of mutually orthogonal projectors. Due to quantum

interference, however, one cannot always assign probabilities to a set of histories in a con-

sistent way. For this to be possible, the set of histories must be decoherent. Decoherence of

histories ensures that the assigned probabilities obey the standard probability sum rules.

In Refs. [1, 2] a special, but very important class of histories was introduced, namely, the

class of histories that are constructed from a fixed projective partition of a finite-dimensional

Hilbert space. In the context of exact decoherence a number of results were obtained re-

garding decoherence properties of such histories. In particular, simple necessary decoherence

conditions were derived and the dependence of decoherence on the initial state was inves-

tigated. In this paper we give a brief review of these results and make a first step towards

generalizations of these results to the case of approximate decoherence.

The paper is organized as follows. After introducing our framework we first review

the results obtained in [1, 2] for the case of exact decoherence. In the second part of the

paper approximate decoherence of histories is introduced and the corresponding implications

examined.

II. OUR SETTING

Definition 1: A set of projectors {Pµ} on a Hilbert space H is called a projective partition

of H, if ∀µ, µ′ : PµPµ′ = δµµ′Pµ and
∑

µ Pµ = 1lH. Here, 1lH denotes the unit operator.
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We call a projective partition fine-grained if all projectors are one-dimensional, i.e., if ∀µ
dim

(

supp(Pµ)
)

= 1, and coarse-grained otherwise.

Definition 2: Given a projective partition {Pµ} of a Hilbert space H, let us denote by

K[{Pµ} ; k ] :=
{

h~α : h~α = (Pα1
, Pα2

, . . . , Pαk
) ∈ {Pµ}k

}

the corresponding exhaustive set of

mutually exclusive histories of length k. Histories are thus defined to be ordered sequences

of projection operators, corresponding to quantum-mechanical propositions. Note that we

restrict ourselves to histories constructed from a fixed projective partition: the projectors

Pαj
within the sequences are all chosen from the same partition for all “times” j = 1, . . . , k.

Definition 3: Given a Hilbert space H and a projective partition {Pµ} of H, we denote by

S the set of all density operators on H and by S{Pµ} the discrete set of “partition states”

induced by the partition {Pµ} via normalization: S{Pµ} :=
{

Pν/Tr [Pν ] : Pν ∈ {Pµ}
}

.

Furthermore, a state ρ ∈ S is called classical with respect to (w.r.t.) the partition {Pµ} if it

is block-diagonal w.r.t. {Pµ}, i.e., if ρ =
∑

µ Pµ ρPµ . The set of all such classical states is

denoted by Scl
{Pµ}

.

An initial state ρ ∈ S and a unitary dynamics generated by a unitary map U : H → H
induce a probabilistic structure on the event algebra associated with K[{Pµ} ; k], if certain
consistency conditions are fulfilled. These are given in terms of properties of the decoherence

functional DU, ρ [·, ·] on K[{Pµ} ; k ]×K[{Pµ} ; k ] , defined by

DU, ρ [h~α, h~β
] := Tr

[

C~α ρC
†
~β

]

, (1)

where

C~α :=
(

U † kPαk
Uk

) (

U † k−1Pαk−1
Uk−1

)

. . .
(

U †Pα1
U
)

= U † kPαk
UPαk−1

U . . . Pα2
UPα1

U (2)

The set K[{Pµ} ; k ] is said to be decoherent or consistent with respect to a given unitary

map U : H → H and a given initial state ρ ∈ S, if

DU, ρ [h~α, h~β] ∝ δ~α~β ≡
k
∏

j=1

δαjβj
(3)

for all h~α, h~β
∈ K[{Pµ} ; k ]. These are the consistency conditions. If they are fulfilled,

probabilities may be assigned to the histories and are given by the diagonal elements of
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the decoherence functional, p[h~α] = DU, ρ [h~α, h~α]. The conditions given above are known

as medium decoherence [7]. It has recently been shown that consideration of the weaker

consistency conditions that had been proposed in the literature [3, 4] is problematic [12].

III. MOTIVATION

Whether the decoherence condition (3) is fulfilled or not depends on the initial state,

the unitary dynamics of the system and the propositions from which the histories are con-

structed. The dependence on the initial state is connected to one of the central questions of

the decoherence programme: the question of how the classical features of our world emerge

from the initial quantum state of the Universe.

A rather more technical motivation for the research presented in this paper comes from

the need of simpler decoherence conditions. In general, it is very difficult to decide whether

a given set of histories is decoherent. With increasing length of the histories checking the de-

coherence conditions (3) soon becomes extremely cumbersome. This is especially true when

the system dynamics is difficult to simulate as, e.g., in the case of chaotic quantum maps,

for which typically only the first iteration is known in closed analytical form. Establishing

decoherence directly, by computing the off-diagonal elements of the decoherence functional,

would require enormous computational resources in the case of large history lengths. It

would therefore be of great practical importance to have a simple decoherence criterion that

uses only a single iteration of the unitary map. Sufficient conditions of this type can trivially

be found. Our analysis concentrates on necessary single-iteration decoherence conditions.

IV. RESULTS FOR EXACT DECOHERENCE

In [2] we have proven the following theorem.

Theorem 1: Let a projective partition {Pµ} of a finite dimensional Hilbert space H and a

unitary map U on H be given. Then the following three statements are equivalent:

(a) ∀ ρ ∈ S{Pµ} ∀ k ∈N ∀h~α, h~β ∈ K[{Pµ} ; k ] : DU, ρ [h~α, h~β] ∝ δ~α~β

(b) ∀Pµ′ , Pµ′′ ∈ {Pµ} ∀n ∈ N :
[

UnPµ′(U †)n , Pµ′′

]

= 0

(c) ∀ ρ ∈ S ∀ k ∈N ∀h~α, h~β
∈ K[{Pµ} ; k ] : DU, ρ [h~α, h~β

] ∝ δ
~α~β

.
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The implication (a)⇒(c) of the theorem leads to an interesting conclusion concerning

the dependence of decoherence on the initial state: the decoherence of histories of arbitrary

length for all initial states from the set S{Pµ} implies decoherence of such histories for arbi-

trary initial states ρ ∈ S. Note that the set S{Pµ} can be viewed as the smallest natural set

of states that is associated with our framework. It is discrete and may consist of just two

elements (in the case of “yes-no” propositions). The set S, on the other hand, contains the

continuum of all possible states.

The above theorem also provides a necessary single-iteration decoherence condition that

is applicable to arbitrary coarse-grainings. This generalizes the simple condition derived in

an earlier paper [1] for the case of fine-grained histories. In [1] it was shown that, in the

case of fine-grained partitions, sets of histories of arbitrary length decohere for all classical

initial states ρ ∈ Scl
{Pµ}

only if the unitary dynamics preserves the classicality of states, i.e.

only if

∀ρ ∈ Scl
{Pµ} : UρU † ∈ Scl

{Pµ}. (4)

Unfortunately, condition (4) fails to be necessary[13] in the coarse-grained case [1]. The

above theorem provides a necessary single-iteration condition that now applies to arbitrary

coarse-grainings and is equivalent to (4) in the fine-grained case. According to the implica-

tion (a)⇒(b) of the theorem the medium decoherence condition is satisfied for all classical

initial states ρ ∈ Scl
{Pµ}

and arbitrarily long histories, i.e.,

∀ ρ ∈ Scl
{Pµ} ∀ k ∈N ∀h~α, h~β

∈ K[{Pµ} ; k ] : DU, ρ [h~α, h~β
] ∝ δ

~α~β
, (5)

only if the following necessary condition is fulfilled:

∀Pµ′ , Pµ′′ ∈ {Pµ} :
[

UPµ′U † , Pµ′′

]

= 0 . (6)

V. GENERALISATION TO APPROXIMATE DECOHERENCE

Condition (3) is the condition for exact decoherence. In most of physical models, however,

decoherence of histories can be established only approximately (cf. e.g. [6]). It is therefore

desirable to generalise the above results to the case of approximate decoherence. Let us first

explain what is meant by approximate decoherence. An absolutely consistent assignment of

probabilities to a given set of histories requires that whenever we bundle up the given his-

tories to coarser-grained histories then the probability for each such coarser-grained history
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must be equal to the sum of the probabilities for its constituent finer-grained histories, and

this has to be true for all possible coarse-grainings. If these probability sum rules are fulfilled

only approximately, for all possible coarse-grainings of a given set of finer-grained histories,

then we get an approximately consistent assignment of probabilities and call the given set of

histories approximately decoherent. Quantitatively, one requires that the probability sum

rules are satisfied to some order ǫ, meaning that the interference terms are suppressed by a

very small factor ǫ ≪ 1 compared to the sums over the probabilities, for all possible coarse-

grainings. A condition that proved to be useful for approximate decoherence is (cf. Ref. [6]

and [14])

∣

∣

∣
DU, ρ [h~α, h~β

]
∣

∣

∣
< ǫ

(

DU, ρ [h~α, h~α]DU, ρ [h~β
, h~β

]
)

1

2

for h~α 6= h~β
. (7)

In [6] it was shown that with this condition most (in a statistical sense) probability sum

rules are satisfied to order ǫ provided the number of all possible histories h~α is large. Here

we assume a stronger condition, which guarantees that all probability sum rules are satisfied

to the order ǫ, for all possible coarse-grainings, namely,

∣

∣

∣
DU, ρ [h~α, h~β

]
∣

∣

∣
< ǫ

(

DU,ρ [h~α, h~α]DU, ρ [h~β
, h~β

]
)

1

2

|K[{Pµ} ; k ] |
for h~α 6= h~β

, (8)

where |K[{Pµ} ; k ] | denotes the number of elements in the set K[{Pµ} ; k ], which is the

number of all possible histories h~α. It is bounded from above by dk with d being the

dimension of the Hilbert space, d = dimH.

The only difficult part in the proof of Theorem 1 was to show the implication “(a)⇒(b)”.

As a first step towards proving analogous results for approximate decoherence, we confine

ourselves to generalizing just this part of Theorem 1. Instead of exact decoherence we now

assume approximate decoherence of histories for arbitrary history lengths k and for all initial

states ρ ∈ S{Pµ}, i.e., we replace in the statement (a) of Theorem 1 the exact decoherence

condition (3) by our approximate decoherence condition (8). The task now is to show that

the statement (b) of Theorem 1 is still implied in some approximate sense. The derivation

of this implication can only be sketched in this paper. It is based on a Lemma on uniform

recurrence in finite dimensional Hilbert spaces [1] and is done in a similar way as in the proof

of Theorem 1 in Ref. [2]. Using the trivial relation

(

DU,ρ [h~α, h~α]DU,ρ [h~β
, h~β

]
)

1

2 ≤ 1

2

(

DU,ρ [h~α, h~α] +DU,ρ [h~β
, h~β

]
)

(9)
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together with the techniques of Ref. [2] we can show that the modified assumption (a)

necessarily implies that

∀n ∈ N ∀µ0, µ
′, µ′′ with µ′ 6= µ′′ : (10)

∣

∣Tr
[

Pµ′′(UnPµ0
U †n)Pµ′(UnPµ0

U †n)Pµ′′

]
∣

∣ < dǫ .

This condition is equivalent to

∀n ∈ N ∀µ0, µ
′, µ′′ with µ′ 6= µ′′ : ‖ Pµ′(UnPµ0

U †n)Pµ′′ ‖2<
√
d ǫ , (11)

where ‖ A ‖2:=
√

Tr[A†A] denotes the Hilbert-Schmidt operator norm for any operator A.

It then follows, for all n ∈ N and for all µ0, µ
′′, that

‖ [(UnPµ0
U †n), Pµ′′ ] ‖2 = ‖ (UnPµ0

U †n)Pµ′′ − Pµ′′(UnPµ0
U †n) ‖2

= ‖ (
∑

µ′

Pµ′ )(UnPµ0
U †n)Pµ′′ − Pµ′′(UnPµ0

U †n)(
∑

µ′

Pµ′ ) ‖2

≤
∑

µ′

µ′ 6=µ′′

‖ Pµ′(UnPµ0
U †n)Pµ′′ − Pµ′′(UnPµ0

U †n)Pµ′ ‖2

≤
∑

µ′

µ′ 6=µ′′

{ ‖ Pµ′(UnPµ0
U †n)Pµ′′ ‖2 + ‖ Pµ′′(UnPµ0

U †n)Pµ′ ‖2}

< 2( ♯ µ′ )
√
dǫ ≤ 2d

√
dǫ = 2d

3

2

√
ǫ , (12)

i.e. ‖ [(UnPµ0
U †n), Pµ′′ ] ‖2< 2d

3

2

√
ǫ for all n ∈ N and for all µ0, µ

′′. We thus get the

following generalisation of the implication (a)⇒(b) of Theorem 1:

Theorem 2: Let a projective partition {Pµ} of a finite dimensional Hilbert space H, a

unitary map U on H, and a small ǫ > 0 be given. Then

∀ ρ ∈ S{Pµ} ∀ k ∈N ∀h~α, h~β
∈ K[{Pµ} ; k ] with h~α 6= h~β

:

∣

∣

∣
DU,ρ [h~α, h~β

]
∣

∣

∣
< ǫ

(

DU,ρ [h~α, h~α]DU,ρ [h~β
, h~β

]
)

1

2

|K[{Pµ} ; k ] |
(13)

only if

∀Pµ′, Pµ′′ ∈ {Pµ} ∀n ∈ N : ‖ [(UnPµ′U †n), Pµ′′ ] ‖2< 2d
3

2

√
ǫ , (14)

where d = dimH and ‖ · ‖2 denotes the Hilbert-Schmidt operator norm.
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