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Abstract This study presents a centralized control scheme

that coordinates parallel operations of power conditioning

system (PCS) for the grid interactions of electric vehicles

(EVs) in EV charge–discharge and storage integration sta-

tion. Key issues for the control and operation of PCS under

various operation modes are discussed, including vehicle to

grid (V2G) mode, stand-alone mode and seamless transfer

mode. The intelligent multi-mode charge–discharge method

is utilized for the V2G mode, and the parallel control method

based on communication network is adopted for the stand-

alone mode. In addition, a novel seamless transfer strategy is

proposed, which is able to implement PCS transition be-

tween V2G mode and stand-alone mode. The detailed pro-

cess of the seamless transfer between the two modes is

illustrated. Experimental results are presented to show the

performance and feasibility of this strategy.

Keywords Centralized control, Power conditioning

system (PCS), Charge–discharge and storage integration

station, Vehicle to grid (V2G), Seamless transfer

1 Introduction

The needs to reduce pollutant gas emissions and the in-

creasing energy consumption have led to an increase of the

electric vehicles (EVs) and renewable energy generation [1–4].

Large-scale utilization of EVs has the potential to reduce

greenhouse gases emission, save fuel cost for EV drivers, en-

hance power system security, and increase penetration of re-

newable energy [5–7]. The development of the microgrid

concept endows distribution networks with increased re-

liability and resilience and offers an adequate management and

control solution for massive deployment of renewable energy

generation and EVs [8–10]. EVs are considered as both a new

type of load and flexible generation resources with vehicle-to-

grid (V2G) technology.

The charge–discharge and storage integration station,

consisting of bi-directional converters and hierarchical

control structure, is able to realize bidirectional power flow

between EVs and power grid. Many research works on

designing the topologies and controllers of bi-directional

power electronic converters for EV application, which are

able to function as battery charger and to transfer electrical

energy between battery pack and the grid [11–13]. In ad-

dition, the centralized control system for parallel operation

of the converters during grid-connected and stand-alone

operations has been conducted [14–16]. The issue of

seamless transition between the V2G mode and stand-alone

mode is discussed widely. A phase locked loop (PLL)-

based seamless transfer control method between grid-con-

nected and islanding modes is applied in a three-phase

grid-connected inverter [17]. The performance of the

transfer process is highly dependent on the characterization

of PLL. In [18], a control strategy based on the frequency

and magnitude droop control is used for the distributed

generation (DG) to achieve a seamless transfer between

grid-tied mode and islanding mode. However, both the

magnitude and the frequency of the output voltage are

varied due to the droop operation. In [19], a transfer

strategy based on indirect current control is proposed for

the three-phase inverter in the DG. However, it is difficult
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to realize the current limiting control because the induc-

tance current is not controlled in both operation modes. In

[20], a transfer methodology is presented for the three-

phase grid-tied inverter without static transfer switch. In

this case, because the instantaneous grid current is not in-

troduced in the control algorithm, the harmonic perfor-

mance of the grid current may not be good. Compared with

the existing strategies for the grid-connected inverters [17–

20], the contribution of this paper on the mode transfer

strategy can be concluded into two points. First, an im-

proved transfer control strategy based on indirect current

control is proposed according to the model of three-phase

(power conditioning system) PCS in the synchronous ref-

erence frame. In the seamless transfer mode, double

closed-loop control technology is applied, the outer loops

track instructions mutually while the inner loop remains the

same. Second, particular issues of bidirectional converter

are considered, including the charging state and discharg-

ing state during seamless transfer between V2G mode and

stand-alone mode.

In this paper, a flexible and efficient centralized control

scheme is developed for the parallel connected PCS in EV

charge–discharge and storage integration station. The sys-

tem configuration and theoretical analysis of three operation

modes principles are described. Moreover, a novel seamless

transfer method of PCS between V2G and stand-alone modes

is presented. Finally, the control scheme has been verified on

a 1 MW parallel connected PCS prototype.

2 System configuration

Figure 1 shows the infrastructure of EV charge–dis-

charge and storage integration station with parallel

connected PCS adopting centralized control architecture. In

the V2G mode, integration station is connected to the uti-

lity grid. PCS can achieve several major functions: battery

charger, active power regulation and reactive power com-

pensation. In the stand-alone mode, integration station is

separated from the utility grid. PCS functions as an unin-

terruptible power supply (UPS) to maintain the output

voltage of the integration station. The PCS should transfer

between the two modes in order to provide electrical power

to the critical load during utility grid interruptions.

The topology of parallel connected PCS for EV charge–

discharge and storage integration station is shown in Fig. 2,

where Vbat is the battery voltage, Ldc and Cdc are the dc-

link filter inductor and capacitor, L1, L2 and L are the ac

filter inductors, and C is the ac filter capacitor. The dc

power acquired by the battery packs is converted to three-

phase ac power through two parallel connected IGBT full-

bridge with a LCL filter. Compared with the L or LC filter,

LCL filter is more suitable in high-power low-switching-

frequency grid connected inverter applications due to its

better performance on inhibiting grid current harmonics.

Power transformer is selected to implement electrical iso-

lation and voltage matching between battery packs and

utility grid.

A three-level architecture is designed where complex

control tasks are decomposed into simpler and manageable

ones. The architecture consists of three levels, namely,

level 1 converter control, level 2 centralized control and

level 3 energy management system (EMS). The EMS is the

highest level which ensures power balance within the EV

charge–discharge and storage integration station. The

centralized system as the middle level is responsible for

coordinating the parallel operation of PCSs. The central-

ized control center uploads parallel system operation status

and obtains the dispatch order from EMS through serial

communication interface. The converter controller is the

lowest level which handles the primary control of PCS. The

converter controller sends the voltage–current instruction

and receives the synchronization signal and operation

mode instructions from centralized control center by opti-

cal fiber cable and controller area network (CAN)

respectively.

3 Operational modes and control strategy

3.1 V2G mode

As shown in Fig. 3 the double-loop control uses the grid

current loop to generate the reference for the inverter

current loop under dq synchronous rotating coordinate.

During the discharging process of Li-ion battery packs,

PCS modules work as grid-connected inverters, the
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discharging power is determined by the EMS. The bi-di-

rectional converter will control the active–reactive power

and insure the output current harmonics to be low.

During the charging process of Li-ion battery packs,

PCS modules work as grid-connected rectifiers. The bi-

directional converter will control the power factor to unity

and insure the input current harmonics to be low. In ad-

dition to the double-loop controller above, external con-

trollers are designed to regulate the battery current and

battery voltage respectively as shown in Fig. 4. Consider-

ing the battery state and application requirement under

various conditions, the battery charging algorithm should

be flexibly selected.

Constant current–constant voltage (CC–CV) charging

method is adopted as conventional charging method. Under

the arrangement of CC–CV charging algorithm, a constant

current are applied to charge the battery till the transition

time from CC to CV determined by terminal voltage of the

battery. Then constant voltage is held after reaching the

terminal voltage and the charging current will reduce au-

tomatically. Finally, the battery packs are fully charged.
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This charge strategy can effectively increase the battery life

cycle and avoid overcharge.

However, a faster and more efficient charging algorithm

is required. The pulse charge with constant voltage (CV-

PC) charging method is adopted as advanced charging

method. The basic idea of the CV-PC is to adjust the duty

cycle of the pulse within a certain range and obverse the

response of the charging current. This charge strategy can

really retard the polarization and reduce the battery-

charging time.

3.2 Stand-alone mode

The block diagram of double-loop control in the stand-

alone mode is described in Fig. 5.

The capacitor voltage loop generates the reference for

the inverter current loop under dq synchronous rotating

coordinate. PCS module works as voltage source converter,

the output voltage should keep strictly sinusoidal. When

PCS modules are connected in parallel, circulating currents

will inevitably occur due to the asynchronous switching

process and module parameter difference. In order to ef-

fectively solve the impact of circulating current and to

achieve superior accuracy of current sharing, the power-

sharing controller is designed besides the double-loop

controller.

Due to the voltage source nature, each PCS module has

to be strictly consistent in output voltage amplitude, fre-

quency and phase to suppress the circulating current.

Synchronization is essential to achieve reliable parallel

operation, which can be solved by a synchronization bus

through the optical fiber cable. Rapid transmission rate of

optical fiber can ensure the minimal synchronous error. The

introduced power sharing strategy depends on the active-

reactive power and output impedance of PCS module. The

data exchange between centralized controller and converter

controllers are achieved by CAN, including active-reactive

power, battery status and control instructions. The module

output impedance is highly inductive because of the

transformer leakage inductance and inductance on the grid

side of LCL filter. Therefore, the active power flow and

reactive power flow are mainly influenced by the phase

angle and the amplitude of the output voltage respectively.

The decoupling control of d/q-axis voltage reference and

active-reactive power error are realized effectively under

dq synchronous rotating coordinate. The equivalent circuit

of parallel connected PCS in the stand-alone mode is

shown in Fig. 6.

3.3 Seamless transfer mode

Figure 7 shows the proposed control block diagram for

V2G and stand-alone operations of PCS module. When

PCS transfers between V2G mode and stand-alone mode,

the outer loop simultaneously changes from the grid cur-

rent control mode for V2G operation to the capacitor

voltage control mode for stand-alone operation. The volt-

age–current double-loop control in the stand-alone mode is

a conventional strategy, widely used in three-phase voltage
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source inverter. The parameter design and stability analysis

of current double-loop control in the V2G mode is dis-

cussed in [21, 22]. During the process of transfer, the outer

loops track current instruction mutually while the inner

loop for inverter current control remains the same. In this

case, it can be regarded as change in control instructions

rather than change in controllers, the stability in both the

stand-alone mode and the V2G mode guarantees the stable

transition period between stand-alone mode and V2G

mode.

A detailed sequence for the seamless transfer from V2G

to stand-alone operation is summarized as follows. The

process of the seamless transfer from V2G to stand-alone

mode is illustrated in Fig. 8.

1) Judge a fault or scheduled maintenance on the grid.

2) Preparing for mode transfer adhere to stand-alone

specification.

3) The static transfer switch (STS) is tripped in order to

disconnect the PCS from the utility grid.

4) The control switch Sc is connected to ‘S’ from ‘G’,

PCS changes its control from current control mode to

voltage control mode.

5) Gradually change voltage references Vcdref and Vcqref

to the desired values. The initial value of the Vcdref and

Vcqref is determined by grid voltage Vgd and Vgq, which

is calculated from the measured three-phase grid

voltages at the transfer point.

In the meanwhile, a detailed sequence for the seamless

transfer from stand-alone to V2G operation is summarized

as follows. The process of the seamless transfer from stand-

alone to V2G mode is illustrated in Fig. 9.

1) Detect that the grid voltage is within the normal

operating range.

2) Preparing for mode transfer adhere to V2G

specification.

3) When the frequency, phase and magnitude of the PCS

output voltage match the grid voltage, the STS is

closed. The PCS is connected to the utility grid

afterwards.

4) The control switch Sc is connected to ‘G’ from ‘S’,

PCS changes its control from voltage control mode to

current control mode.

5) Gradually change the current reference Igdref and Igqref
to the desired values.

4 Experimental results

An experimental device of parallel-connected PCS has

been built to verify the proposed control method with the

parameters and prototype shown in Table 1 and Fig. 10

respectively.

Fig. 7 Novel seamless transfer control strategy
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Figure 11 shows the experimental waveforms of both

charging and discharging process in the V2G mode. The

THD of grid-side current fulfills the grid standard, and DC

bus voltage ripple is limited.

Figure 12 shows the experimental waveforms of load

current sharing in the stand-alone mode. It is clearly that

the steady-state and dynamic performance of parallel

connected PCS is excellent during load variation.

Figure 13 shows the experimental waveforms of the

seamless transfer process from V2G mode to stand-alone

mode. Figure 14 shows the experimental waveforms of the

seamless transfer process from stand-alone mode to V2G

mode when grid fault occurs. The proposed transfer strat-

egy is capable of providing the critical loads with a stable

and seamless sinusoidal voltage during the whole transition

period.
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Table 1 Experiment specification of PCS module

Parameter Symbol Value

Rated power S 500 kVA

Grid voltage Vg 380 V/50 Hz

Switching frequency Fs 3 kHz

4-Y Transformer ratio N 315:380

DC filter inductance Ldc 0.17 mH

DC bus capacitor Cdc 22 mF

Inverter-side inductance L1/L2 0.36 mH

Grid-side inductance L 0.05 mH

AC filter capacitor C 200 lF

Fig. 11 Experimental waveforms of charging and discharging pro-

cess in the V2G mode
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5 Conclusion

In this paper, a centralized control strategy for parallel

connected PCS in EV Charge–discharge and storage

integration station is designed. The PCS infrastructure and

operational principles are illustrated, controllers are ana-

lyzed in both V2G mode and stand-alone mode. A novel

seamless transfer strategy and detailed sequence have been

proposed and utilized to achieve better performance between

V2G mode and stand-alone mode. The effectiveness of the

proposed control strategies have been validated with com-

prehensive experimental results under various operations.
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