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Abstract The tsunami generated by the Great East Japan Earthquake caused seri-
ous damage to the coastal areas of the Tohoku district. Numerical simulations are
used to predict damage caused by tsunamis. Shallow-water equations are generally
used in numerical simulations of tsunami propagation from the open sea to the coast.
This research focuses on viscous shallow-water equations and attempts to generate a
computational method using finite element techniques based on the previous investiga-
tions of Kanayama and Ohtsuka (Coast Eng Jpn 21:157–171, 1978). First, the viscous
shallow-water equation system is derived from the Navier–Stokes equations, based on
the assumption of hydrostatic pressure in the direction of gravity. Next a numerical
scheme is shown. Finally, tsunami simulations of Hakata Bay and Tohoku-Oki are
shown using the approach.

Keywords Tsunami · Viscous shallow-water equations · Navier–Stokes equations ·
Finite element method

Mathematics Subject Classification 65

1 Introduction

The coastal areas of the Tohoku district suffered serious damage from the tsunami
caused by the 2011 off the Pacific Coast of Tohoku Earthquake that occurred on March
11, 2011 [1]. Now, numerical simulations are used to develop disaster-prevention mea-
sures to deal with such tsunami disasters. They are used to predict potential future
tsunami disasters, to design disaster-prevention facilities such as coastal breakwaters
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and levees, and in tsunami forecasts to predict tsunami attacks immediately after an
earthquake occurs [2,3]. The Central Disaster Prevention Council [4] prepares a basic
disaster prevention plan and participates in the determination of important disaster-
prevention matters. If the Tonankai–Nankai Earthquake occurs, it may cause consid-
erable damage. Consequently, the council has been performing numerical calculations
to predict the wave height and the arrival time when the tsunami reaches the coast.

The waveform of a tsunami changes significantly in coastal areas compared with
the open sea. This is because the water depth becomes shallow and the wave height
becomes high when the tsunami reaches coastal areas. In addition, the wave height
is amplified by the complex shapes of the closed-off sections of bays, as well as
by the ocean floor topography. The shallow-water long-wave equations are generally
used in the numerical simulation of tsunami propagation from the open sea to the
coast [5,6]. In this study, we have focused on the viscous shallow-water equations
[7] and attempted the computation by the finite element method based on the method
proposed by Kanayama and Ohtsuka [8]. Thus far, we have studied the two-layer
viscous shallow-water equations [9,10], obtained using the layer model [11], which is a
well-known technique for quasi-three-dimensional computations. In these, we showed
that the mass conservation law and the energy conservation law are satisfied under
physically appropriate conditions [12]. We also found that the two-layer equations
correspond to the one-layer equations [7] when the upper and lower layers have the
same densities and the upper and lower layer equations are combined. Recently, we
have found an interesting survey [13] which deals with sound mathematical topics
related to the viscous shallow-water equations.

In this paper, to let it be self-contained, the viscous shallow-water equations are
again derived from the Navier–Stokes equations in which the hydrostatic pressure in
the direction of gravity is assumed. In the numerical analysis of tsunamis, the viscosity
term is often omitted or simply added [5]. In this study, however, a computational
method that does not omit the viscosity term is adopted. That is because it enables
more rigorous analysis to be performed and we intend to include the viscosity term
in future stress analysis of tsunamis. The approximation scheme is given below and
simulation results for a Hakata Bay model and a Tohoku-Oki model are presented as
computational examples.

In the computational example of Hakata Bay, the tsunami generating area is taken
to be the epicenter of the West off Fukuoka Prefecture Earthquake, which occurred
in 2005 in the Sea of Genkai located northwest offshore of Fukuoka Prefecture. The
validity of this computational method can be confirmed by examining the tsunami
propagation velocity based on the numerical analysis results. It can also be confirmed
that when the tsunami reaches land in the coastal areas, waves are reflected with islands
functioning as breakwaters, suppressing the wave height in our computation.

2 Derivation of the viscous shallow-water equations

As shown in Fig. 1, we consider the shallow-water long-wave flow in which the
wavelength is sufficiently long relative to the water depth [7]. First, the viscous shallow-
water equations are derived. Orthogonal coordinates [m] are used, where x1 and x2
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Fig. 1 Variables of the computational model

represent directions in the horizontal plane and x3 represents the vertical direction, and
the time [s] is represented by t . Assuming the hydrostatic pressure in the x3 direction,
the following Navier–Stokes equations are used with the external forces, namely the
Coriolis forces and the gravity are assumed to act in the x1 and x2 directions and the
x3 direction, respectively.

3∑

j=1

∂u j

∂x j
= 0, (1)

∂u1

∂t
+

3∑

j=1

u j
∂u1

∂x j
= − 1

ρ

∂p

∂x1
+ 1

ρ

3∑

j=1

∂τ1 j

∂x j
+ f u2, (2)

∂u2

∂t
+

3∑

j=1

u j
∂u2

∂x j
= − 1

ρ

∂p

∂x2
+ 1

ρ

3∑

j=1

∂τ2 j

∂x j
+ f u1, (3)

0 = − 1

ρ

∂p

∂x3
− g. (4)

u(x1, x2, x3, t) represents the fluid velocity [m/s] in the xi (i = 1−3) direction,
p(x1, x2, x3, t) denotes the pressure [N/m2], ρ is the density [kg/m3], τi j is the stress
[N/m2] in the xi direction acting on the x j plane, f is the Coriolis coefficient [1/s],
and g is the acceleration [m/s2] due to the gravity. In addition, the ordinate [m] of
the water surface (water level) is represented by ζ and the ordinate [m] of the bottom
surface is represented by h.

Equations (1)–(3) are integrated with respect to x3 from the bottom h to the water
surface ζ . The velocity component in the normal direction is assumed to be zero
at the water and bottom surfaces. By doing this, the viscous shallow-water equations
expressed by the averaged velocity can be derived. If the layer thickness is H(x1, x2, t)
and the average velocity in the xi (i = 1−2) direction is Ui (x1, x2, t), then H and Ui

are given by the following equations:
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H = ζ − h, Ui = 1

H

ζ∫

h

ui dx3. (5)

The fixed density of the layer is represented by ρ and the stress in the xi direction
acting on the x j plane is represented by τ̃i j . The horizontal viscosity constant [N s/m2]
is represented by μH , the wind effect coefficient is represented by θ , the air density
is represented by ρa , the wind speed in the xi direction is represented by Wi , and the
Chezy coefficient [m1/2/s] is represented by C . Then, the following viscous shallow-
water equations are derived:

∂ζ

∂t
+

2∑

j=1

∂

∂x j
(HU j ) = 0, (6)

H

⎛

⎝∂Ui

∂t
+

2∑

j=1

U j
∂Ui

∂x j

⎞

⎠ = −gH
∂ζ

∂xi
+ 1

ρ

2∑

j=1

∂

∂x j
(H τ̃i j )

+ 1

ρ
θρa Wi ((W1)

2 + (W2)
2)

1
2 − g

C2 Ui ((U1)
2 + (U2)

2)
1
2 + (−1)i+1 f HUi+1, (7)

where

τ̃i j = μH

(
∂Ui

∂x j
+ ∂U j

∂xi

)
, U3 = U1. (8)

Finite element approximation is performed for the viscous shallow-water equations
(6) and (7) with given initial conditions and boundary conditions.

The computational domain is the two-dimensional polygonal region Ω surrounded
by the boundaries Γc and Γo. In this region, the orthogonal coordinates x = (x1, x2)

are used. The boundary conditions on Γc and Γo and the initial conditions at t = 0 are
as follows:

Boundary conditions:

Ui (x, t) = 0 on Γc, (9)

ζ(x, t) = ζΓo(x, t)
2∑

j=1
τ̃i j n j = 0

⎫
⎬

⎭ on Γo. (10)

Here, ni is the component in the xi direction of the unit normal vector on the boundary.
On Γo, ζΓo(x, t) is specified.

Initial conditions:

Ui (x, 0) = Ui0(x), ζ(x, 0) = ζ0(x). (11)

Here, Ui0 (x) and ζ0(x) are the initial values of Ui and ζ , respectively.
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A tsunami simulation of Hakata Bay 609

3 Finite element approximations for the viscous shallow-water equations

The finite element approximation [8] is as follows. First, Eqs. (6) and (7) are multiplied
by test functions and then integrated over the computational domain Ω . Subsequently,
the approximation is carried out for terms containing a derivative with respect to time
by using an explicit method. For terms containing spatial derivatives, the finite element
approximation is carried out by using the piecewise linear basis function ϕ̂k . For terms
without spatial derivatives, the approximation is carried out by using the corresponding
step function ϕ̄k . The step function ϕ̄k is 1 in the barycentric region around the node
k and is 0 at other places.

(
ζ̄ n+1 − ζ̄ n


t
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)
+
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∂ϕ̂k
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1
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−
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C2 Ū n
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1 )2 + (Ū n
2 )2)

1
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)

+((−1)i+1 f H̄ n+1Ū n
i+1, ϕ̄k). (13)

In the above, ζ n+1
k is determined from (12). From the obtained value and U n

i,k , the

value U n+1
i,k is determined by (13). Here, ζ n

k and U n
i,k are approximate values of ζ(x, t)

and U (x, t) respectively, at the node k after n time steps, and 
t represents the size
of time steps. In addition, the following symbols are also used:

(
∂Ui

∂x j
, v

)
=

∫

Ω

∂Ui

∂x j
v dx, (14)

Û n
i =

∑

k

U n
i,k ϕ̂k, Ū n

i =
∑

k

U n
i,k ϕ̄k (15)

Because of the presence of the basic boundary conditions, (12) holds for all nodes
except for the nodes on Γo and (13) holds for all the nodes except for the nodes on
Γc. However, on the boundary Γo, an approximation method is adopted in which the
advective term of (13) uses Tabata’s upwind approximation [8,14]. A mathematical
justification for the approximation scheme for linearized equations related to the above
scheme was given by Kanayama and Ushijima [15,16] (see also Appendix A for self-
containedness).

123



610 H. Kanayama, H. Dan

4 Computational examples

The numerical results for Hakata Bay are shown. The tsunami generating area was
taken to be the epicenter of the West off Fukuoka Prefecture Earthquake, which
occurred in the Sea of Genkai located northwest offshore of Fukuoka Prefecture on
March 20, 2005 (maximum seismic intensity: 6 lower). Because it was a strike slip-
fault earthquake, no tsunami was observed despite the hypocenter being on the ocean
floor. It is therefore noted that our numerical results can not be compared with observed
data.

The computation is performed with a Coriolis coefficient f = 2ω sin φ, a plan-
etary angular velocity ω = 0.00416 [deg/s], a latitude φ = 35 [deg], a horizontal
viscosity coefficient μH = 0.001 [N s/m2], a wind effect coefficient θ = 0.0026,

a wind speed W1 = W2 = 0 [m/s], a Chezy coefficient C = 61.4 [m1/2/s], and a
time step size 
t = 0.1 [s]. This time step size is found to be too small, because
we can get similar results even if a 10 times larger time step size is used for the
following mesh data. Details will later be published, referring to the linear stability
analysis in Appendix A. Though the full nonlinear stability analysis is very difficult,
we believe that the present linear stability condition is useful. In fact, the similar
stability condition of [18] in the case of θ = 1 produces a good estimate of the 10
times larger time step size (1 [s]) in the numerical experiments. Regarding the mesh
data, the total number of nodes is 11,370, the total number of elements is 22,099,
and the ocean floor ordinate is fixed at h = −10 [m]. This constant depth is also
not a strong simplification, because the actual depth in Hakata Bay is almost flat. We
set the initial conditions ζ0(x) = 0 and Ui0(x) = 0, and the boundary conditions
ζΓo(x, t) = 5 [m] (0 < t < 60 [s]) at the tsunami generating area and ζΓo(x, t) = 0
[m] at other areas. See Fig. 2 where the tsunami generating line is shown in dif-
ferent color (red). In general, the tsunami is excited by two ways. The first one is
to consider it in the initial condition of the water surface ζ , for which we do not
have sufficient input information in this artificial tsunami of Hakata Bay. The second
one is to consider it in the boundary condition of ζ as in this paper. In our setting,
the computational domain is not so wide that the above approach may be the only
way.

Figure 3a–f show the ordinates of the water surface (water level) every 4 [min]
from after 4 [min] to after 24 [min]. It is apparent that the tsunami propagates to the
closed-off section of the bay. In addition, since inundation of the tsunami is not taken
into consideration in our simulation, part of the tsunami is reflected by the island.

Figure 4 shows the water level change at the three points A–C in Fig. 5. It is
confirmed that the presence of an island near the coast suppresses the wave height
on the land side of the island. The distance from the tsunami generation area to the
point A is 15.3 [km], and the arrival time of the first wave at the point A is 19 [min].
If the propagation velocity is calculated from the arrival time of the first wave of a
tsunami, the obtained value (48 [km/h] = 15.3 [km]/19 [min]) is somewhat larger than
the simplified theoretical value

√
g|h| (≈36 [km/h]) where |h| is the water depth. This

is considered to be due to the surrounding land.
Next, the numerical results for Tohoku-Oki are shown. When not specifically

defined, the same physical values as for Hakata Bay were used. Regarding the mesh
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Fig. 2 A computational mesh of Hakata Bay (color figure online)

data, the total number of nodes is 56,562, the total number of elements is 113,013,
and the ocean floor ordinate is set to become deep gradually from h = −10 [m] to
h = −1,000 [m]. We set the initial conditions at ζ0(x) = 0 and Ui0(x) = 0, and the
boundary conditions ζΓo(x, t) = 50 [m] (0 < t < 60 [s]) at the tsunami generating
area and ζΓo(x, t) = 0 [m] at other areas. See Fig. 6. It is noted that 50 [m] at Γo may
be too high. In our computation, the tsunami arrived at Oshika Peninsula in Fig. 6 after
20 min and the highest wave height reached 15 [m]. These numerical results should
more carefully be checked with boundary data on Γo. Numerical results with suitable
initial data for the tsunami generation will later be published.

123



612 H. Kanayama, H. Dan

Fig. 3 a Contour map of ζ after 4 min. b Contour map of ζ after 8 min. c Contour map of ζ after 12 min.
d Contour map of ζ after 16 min. e Contour map of ζ after 20 min. f Contour map of ζ after 24 min

Figure 7 shows the ordinates of the water surface (water level) after 18 [min].
Since the computational domain is not wide, it looks that there is a reflection from
the northern boundary in Fig. 7. This artificial reflection can be removed by suitable
boundary conditions on Γo. Details will later be published. Figure 8 shows the water
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Fig. 4 Time histories of ζ

Fig. 5 Contour map of ζ

level change at the two points A and B in Fig. 6. The wave height at the point B is
higher than the point A after about 1,500 [s]. When the tsunami reaches coastal areas,
the water depth becomes shallow and the wave height becomes high.

5 Concluding remarks

In this study, the viscous shallow-water equations have again been derived from the
Navier–Stokes equations in which the hydrostatic pressure in the direction of gravity
is assumed. Tsunami propagation is then simulated by a finite element computation.
Using the present Hakata Bay model, in which the tsunami generating area is taken
to be the epicenter of the West off Fukuoka Prefecture Earthquake (2005), tsunami
propagation from the open sea to the coastal area may be produced. In addition, we
have constructed a system in which the tsunami arrival time and the wave height at
the time of tsunami attack can be obtained from numerical results. Since our analysis
takes the viscosity term into account, this study can be considered to be a preliminary
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Fig. 6 A computational model of Tohoku-Oki

Fig. 7 Contour map of ζ

Fig. 8 Time histories of ζ
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Fig. 9 Structural analysis in the
case of tsunami attack

study for future planned stress analyses of tsunamis. See Fig. 9. We want to check
whether the hydrostatic pressure is always the dominant force in the case of tsunami
attack, compared with other forces including the viscous force.

Appendix A

A.1 Introduction

This appendix summarizes contents of Kanayama and Ushijima [15,16] for self-
containedness. First we introduce a linearized system [15] of the viscous shallow-
water equations. After the derivation of the model problem, we reformulate the linear
initial-boundary value problem within the framework of Hilbert space theory. Then,
the existence and uniqueness of the solution of the reformulated problem follows
from Hille–Yosida theorem. Next, this appendix concerns the finite element analysis
of linearized viscous shallow-water equations [16]. Our scheme is obtained by the use
of the “piecewise-liner” continuous finite element approximation for both the water-
level and the velocity with respect to the space variables, together with the step by step
integration method for the time variable. The stability criterion of the scheme and the
convergence of the approximate solutions to the exact one are obtained in L2 sense.

A.2 The derivation of a linearized viscous shallow-water system

Let us consider the following nonlinear stationary problem
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U0 · ∇U0 + [ f ]U0 + g∇ζ0

= 1

H0ρ

{
div(H0τ0) + θρa |V |V − ρg

C2 |U0|U0

}
in Ω, (16)

div(H0U0) = 0 in Ω. (17)

Supposing that the domain Ω is an open bounded set in the plane R2 with the C∞-class
boundary Γ , we set the following boundary condition:

U0 = 0 on Γ. (18)

We assume the existence of a sufficiently smooth solution pair {U0, ζ0} of the above
problem (16)–(18). Further, let us suppose the existence of two positive constants H0
and H0 such that

0 < H0 ≤ H0 = ζ0 − h ≤ H0 in Ω. (19)

Furthermore we assume U0 ∈ (C∞(Ω))2 and H0 ∈ C∞(Ω), where Ω denotes the
closure of Ω , and C∞(Ω) consists of all infinitely differentiable functions on Ω . In
the following, C(Ω) denotes the totality of continuous functions on Ω .

As a model linear initial-boundary value problem, we adopt the following linearized
viscous shallow-water equations (20) and (21):

∂U

∂t
+ U0 · ∇U + [ f ]U + g∇ζ = 1

H0ρ

{
div(H0τ) − ρg

C2 |U0|U
}

in Ω, (20)

∂ζ

∂t
+ div(H0U ) = 0 in Ω, (21)

with the initial and boundary conditions:

U (x, 0) = Ũ (x) in Ω, (22)

ζ(x, 0) = ζ̃ (x) in Ω, (23)

U (x, t) = 0 on Γ, (24)

where Ũ (x) and ζ̃ (x) are sufficiently smooth initial data. In the sequel, conditions
(17), (18) and (19) will be assumed, and (16) will not be used.

A.3 The unique solvability of the linear initial-boundary value problem

Let L2(Ω) be the space of functions which are square integrable on Ω . The space
(L2(Ω))3 is considered as the product space of (L2(Ω))2 and L2(Ω), and any v ∈
(L2(Ω))3 is represented as v =

(
V
η

)
with V ∈ (L2(Ω))2 and η ∈ L2(Ω).
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Introduce the following inner product (u, v)X in (L2(Ω))3:

(u, v)X = (H0U, V )(L2(Ω))2 + g(ζ, η)L2(Ω) for u =
(

U
ζ

)
, v =

(
V
η

)
∈ (L2(Ω))3.

Due to (19), (L2(Ω))3 becomes a real Hilbert space with this inner product ( , )X ,
which is demoted by X in the sequel.

Let us consider the following X-valued evolution problem:

du
dt

= Au (t > 0), (25)

u(0) = a ∈ D(A), (26)

where the linear operator A is defined by

Au =
[

−U0 · ∇U − [ f ]U + 1
H0ρ

{
div(H0τ) − ρg

C2 |U0|U
}

− g∇ζ

−div(H0U )

]
, (27)

with the domain D(A) given by

D(A) =
(H1

0 (Ω) ∩ H2(Ω))2

×
H1(Ω).

(28)

Here, the standard notations of Sobolev spaces are used. Namely, let m be a non-
negative integer. The Sobolev space Hm(Ω) of order m on Ω is defined by Hm(Ω) =
{v : ∂αv ∈ L2(Ω), |α| ≤ m}, where

∂αv = ∂α1+α2v

∂xα1
1 ∂xα2

2
, α = {α1, α2}, |α| = α1 + α2.

We consider Hm(Ω) the Hilbert space with the norm:

‖v‖m =
⎛

⎝
∑

|α|≤m

∫

Ω

|∂αv|2 dx

⎞

⎠
1/2

.

Let D(Ω) be the totality of infinitely differentiable functions on Ω with compact
supports in Ω . The closure of D(Ω) in Hm(Ω) is denoted by Hm

0 (Ω).

Theorem 1 The linear operator A is a densely defined dissipative operator, that is,

(i) D(A) is dense in X,
(ii) (Au, u)X ≤ 0 for any u ∈ D(A).
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618 H. Kanayama, H. Dan

The range R(A−λ) is dense in X . Hence, the closure A of A exists and is a
maximal dissipative operator in X , since A is dissipative by Theorem 1. A generates a
contraction semi-group of linear operators {et A}t≥0 acting in X . Therefore, we arrive
at the following theorem [15].

Theorem 2 Consider the X-valued evolution problem :

[ du
dt = Au (t > 0),

u(0) = a ∈ D(A).
(E)

Then, (E) has a unique solution u(t) = et Aa satisfying

‖u(t)‖X ≤ ‖a‖X (t ≥ 0).

Remark 1 For any a ∈ X, the function u(t) = etAa is called the generalized solution
of the problem (E).

A.4 A finite element semi-discrete approximation

For simplicity of notations, we introduce bilinear forms a(U, V ), b(U, V ), c(ζ, V )

and d(U, η) for U, V ∈ (H1
0 (Ω))2 and ζ, η ∈ H1(Ω) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

a(U, V ) = 1
ρ
(H0τ,∇V )(L2(Ω))4 + g

C2 (|U0|U, V )(L2(Ω))2 ,

b(U, V ) = (U0 · ∇U, H0V )(L2(Ω))2 + ([ f ]U, H0V )(L2(Ω))2 ,

c(ζ, V ) = g(∇ζ, H0V )(L2(Ω))2 ,

d(U, η) = g(div(H0U ), η)(L2(Ω)).

(29)

Define the function space V and the bilinear form a(u, v) for u, v ∈ V as follows:

⎧
⎪⎪⎨

⎪⎪⎩

V = (H1
0 (Ω))2 × H1(Ω),

a(u, v) = −{a(U, V ) + b(U, V ) + c(ζ, V ) + d(U, η)}
for u =

(
U
ζ

)
, v =

(
V
η

)
∈ V.

(30)

Set the following weak formulation (π ) of (E):

⎧
⎨

⎩

Find u(t) ∈ V (t ≥ 0) such that
d
dt (u(t), v)X = a(u(t), v) for any v ∈ V and t > 0,

u(0) = a ∈ V .

(π )

Let �h be a “triangulation” of the domain Ω with the representative length h. The
curved elements due to Zlamal [17] are adopted near the boundary Γ , while the trian-
gular elements are used in interior of Ω . We assume that the family of “triangulation”
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A tsunami simulation of Hakata Bay 619

{�h : 0 < h ≤ h < ∞} is regular, and satisfies the inverse assumption. Namely, there
are positive constants Σ and Λ independent of h such that

hT

ρT
≤ Σ,

h

hT
≤ Λ for T ∈ �h,

where hT and ρT denote the diameters of an element T and the inscribed circle of T ,
respectively.

Let Wh be the “piecewise-linear” continuous finite element space constructed by
�h :
Wh = {ηh ∈ C(Ω) : ηh is a “polynomial” with degree at most 1 on each T ∈ �h}.

More precisely, ηh ∈ Wh is a polynomial with degree at most 1 on each triangular
element of �h , while on a curved element T, ηh(FT (x̂)) is a polynomial with degree
at most 1 on a reference triangle T̂ , where FT : T̂ � x̂ → x = FT (x̂) ∈ T is the
isomorphism from T̂ onto T determined by Zlamal’s method [17]. Now, define the
vector-valued finite element space Vh by

Vh = {Vh ∈ (Wh)2 : Vh = 0 on Γ },

and let

Vh = Vh × Wh .

Then

Vh ⊂ V = (H1
0 (Ω))2 × H1(Ω).

The following problem (πh) is said to be the semi-discrete Galerkin approximation
of (π ):

⎧
⎨

⎩

Find uh(t) ∈ V h such that
d
dt (uh(t), vh)X = a(uh(t), vh) for any vh ∈ V h and t > 0,

uh(0) = ah ∈ V h .

(πh)

The set V h , being considered as a closed subspace of X , is denoted by Xh , which is
a Hilbert space with the inner product ( , )X . Let Ah be the bounded linear operator
acting on Xh , defined by the relation:

(Ah uh, vh)X = a(uh, vh) for any uh, vh ∈ Xh .

Since we have (3.5)–(3.9) in [15] for u =
(

U
ζ

)
∈ V , it holds that

a(v, v) ≤ 0 for v ∈ V . (31)

This estimate together with the finite dimensionality of Xh implies that the operator
Ah is maximal dissipative. Hence, the exponential function {et Ah : t ≥ 0} forms a
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contraction semi-group acting on Xh . The problem (πh) is equivalently represented
in the following Xh-valued evolution equation (Eh):

{ duh
dt = Ah uh (t > 0),

uh(0) = ah ∈ Xh .
(Eh)

The unique solution of (Eh) is given by uh(t) = et Ah ah, which satisfies

‖uh(t)‖X ≤ ‖ah‖X (t ≥ 0). (32)

The main conclusion of this section [15] is:

Theorem 3 Let u(t) and uh(t) be the generalized solution of (E) and the solution
of (Eh), respectively. If limh→0‖ah − a‖X = 0, then limh→0‖uh(t) − u(t)‖X = 0
uniformly in t ∈ [0, T] for any finite T.

A.5 A class of finite difference schemes in time

First, several notations of spaces and operators are prepared to state our schemes. Let
X be the Hilbert space (L2(Ω))2 with the inner product:

(U, V )X = (H0U, V )(L2(Ω))2 , (33)

and let Z be the space L2(Ω) with the inner product:

(ζ, η)Z = g(ζ, η)L2(Ω). (34)

The spaces Vh and Wh are denoted by Xh and Zh when they are considered as the

subspaces of X and Z , respectively. The product Hilbert space
Xh

×
Zh

is denoted by

Xh . The bounded operators Ah ∈ L(Xh), Bh ∈ L(Xh), Ch ∈ L(Zh, Xh) and Dh ∈
L(Xh, Zh) are defined so as to satisfy

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(AhUh, Vh)Xh = a(Uh, Vh),

(BhUh, Vh)Xh = b(Uh, Vh),

(Chζh, Vh)Xh = c(ζh, Vh),

(DhUh, ηh)Zh = d(Uh, ηh),

for any Uh, Vh ∈ Xh and ζh, ηh ∈ Zh .

(35)
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Now our finite difference schemes are given in the following :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find un =
(

Un

ζn

)
∈ Xh =

Xh

×
Zh

for n = 1, 2, . . . such that
Un−Um

τ
+ AhUm + Bh(θ Um + (1 − θ)Un) + Chζm = 0,

ζn−ζm
τ

+ DhUn = 0,

with n = m + 1, m = 0, 1, 2, . . . ,

(Eh,τ )

where τ is a given positive time increment, θ is a parameter satisfying

0 ≤ θ ≤ 1, (36)

and the initial value u0 =
(

U0
ζ0

)
is given in Xh . It is noted that Ushijima [18] deals

with the case of θ = 1, while Kanayama–Ushijima [19] slightly modifies the case of
θ = 1

2 .

Introduce ai (U, V ) and bi (U, V ) (i = 0, 1) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

a0(U, V ) = 1
ρν

(H0τ,∇V )(L2(Ω))4 ,

a1(U, V ) = g
C2 (|U0|U, V )(L2(Ω))2 ,

b0(U, V ) = (U0 · ∇U, H0V )(L2(Ω))2 ,

b1(U, V ) = ([ f ]U, H0V )(L2(Ω))2 .

(37)

where ν is equal to μH /ρ in (8). It is noted that τ̃i j in (8) is simply written as τ in
Appendix A. Then we have

a(U, V ) = νa0(U, V ) + a1(U, V ),

b(U, V ) = b0(U, V ) + b1(U, V ),

for U, V ∈ (H1
0 (Ω))2.

It is easy to see that there are positive constants α,μ, β0, β1 and γ with which the
following estimates from (38) to (42) hold true:

a1(V, V ) ≤ α‖V ‖2
X for V ∈ (L2(Ω))2. (38)

a1(V, V ) ≤ μa0(V, V ) for V ∈ (H1
0 (Ω))2. (39)

b0(U, V ) ≤ β0a0(U, U )1/2‖V ‖X for U ∈ (H1
0 (Ω))2, V ∈ (L2(Ω))2, (40)

‖V ‖X ≤ β1a0(V, V )1/2 for V ∈ (H1
0 (Ω))2. (41)

(div(H0U ), η)L2(Ω) ≤ γ a0(U, U )1/2‖η‖Z for U ∈ (H1
0 (Ω))2, η ∈ L2(Ω). (42)

In fact, (19) implies (38). Then (19), (3.12) in [15] (Korn’s first inequality) and (38)
imply the estimates from (39) to (42). Since our family of “triangulation” {�h : 0 <
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h ≤ h < ∞} satisfies the inverse assumption, there is a constant σ0 independent of h
satisfying

‖∇ζh‖(L2(Ω))2 ≤ σ0

h
‖ζh‖L2(Ω) for ζh ∈ Wh .

Hence, there is the constant σ independent of h satisfying

a0(Vh, Vh) ≤
(σ

h

)2 ‖Vh‖2
X for Vh ∈ Vh, (43)

Theorem 4 Fix the parameter θ such that 0 ≤ θ ≤ 1. Let ε, δ, and ε̃ be positive
constants satisfying

ε + δ ≤ 1

and

ε̃ < 1,

respectively. For any h ∈ (0, h], choose τ so as to satisfy the condition:

τ ≤ 2ν min

(
ε

(σ
√

ν2 + μν + θβh)2
h2,

δ

γ 2

)
, (44)

and the condition:

τ ≤ (1 − ε̃)
√

ν

(1 − θ)βσ
h (45)

if θ < 1, where β = β0 + | f |β1. Let uh(t) be the step function of t constructed by the
solution un of (Eh,τ ) through the relation:

uh(t) = un : nτ ≤ t < (n + 1)τ, n = 0, 1, 2, . . . .

Denote uh(0) by ah . Let u(t) be the generalized solution of (E). Under these settings,
we have that

‖uh(t)‖X ≤ ‖ah‖X , t ≥ 0, (46)

and that if

lim
h→0

‖ah − a‖X = 0, (47)

then

lim
h→0

‖uh(t) − u(t)‖X = 0, (48)

uniformly in t ∈ [0, T] for any finite T.
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Remark 2 Finally we remark that the function uh(t) in Theorem 4 satisfies the error
estimate:

‖uh(t) − u(t)‖X ≤ Ch for any t ∈ [0, T] (49)

with an h-independent constant C provided that the solution u(t) is sufficiently smooth,
and that the initial value ah is chosen so as to satisfy ‖ah − a‖X = O(h).

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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