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Digital libraries of geo-spatial multimedia content are
currently deficient in providing fuzzy, concept-based re-
trieval mechanisms to users. The main challenge is that
indexing and thesaurus creation are extremely labor-
intensive processes for text documents and especially
for images. Recently, 800,000 declassified satellite pho-
tographs were made available by the United States Geo-
logical Survey. Additionally, millions of satellite and aer-
ial photographs are archived in national and local map
libraries. Such enormous collections make human in-
dexing and thesaurus generation methods impossible to
utilize. In this article we propose a scalable method to
automatically generate visual thesauri of large collec-
tions of geo-spatial media using fuzzy, unsupervised
machine-learning techniques.

Traditional thesaurus creation is an extremely labor-
intensive process for text documents and especially for
images. Currently, the University of California, Santa Bar-
bara Maps and Image Library has more than two million
aerial photographs of current and historical significance
(Manjunath & Ma, 1996). Such enormous collections make
human indexing and thesaurus generation slow and costly.
According to Rorvig (1990) human indexing typically only
provides sparse image descriptions because of the high cost.
This leaves users with inadequate resources to efficiently
search for images.

Besides volume, geographical images present other chal-
lenges to indexers. For example, images may be easily
indexed by geographical location and time; however, con-
tent descriptions and semantics cannot. According to Carl-
son (1997) an image may contain a high density of infor-
mation that subjective index categories cannot fully de-

scribe. Additionally, the content that is relevant to any
individual is impossible to predict.

Recent work by researchers at the Alexandria Digital
Library have provided a means to automatically analyze
digitized photograph textures using Gabor filters (Gabor,
1946; Manjunath & Ma, 1996). The tags created by the
filters can be combined with other location data such as the
Advanced Very-High Resolution Radiometer (AVHRR)
thermatic data and other multispectral signatures taken via
satellite. The assimilated data can be used as input to an
unsupervised machine learning system to produce a brows-
able image thesaurus. Unlike the system developed by Ror-
vig, Turner, & Moncada (1999), ours does not leverage text
descriptions of images. Instead, the search space consists
solely of numeric representation of image textures and the
interface consists of a two-dimensional map of significant
textures extracted from the collection. Our system is most
applicable to large collections of geographic images with
sparse or no text descriptions.

In this article we propose a scalable method to automat-
ically generate visual thesauri of aerial photographs and
AVHRR data using Kohonen self-organizing maps (SOM).
A detailed description of the texture-based thesauri creation
is presented, followed by a discussion of the interfaces.
Then, the AVHRR thesaurus is discussed and the article
concludes with summaries of our findings and future work.

Texture-Based Visual Thesaurus Creation

The first step in constructing a visual thesaurus is to
reduce the dimensionality of the visual scene which has
already been lessened by the limits of film. The original
scene has infinite resolution and very high spectral band-
width and a photograph is limited in both respects. The
digitization of the film further reduces the image dimension-
ality by imposing discrete color and typically lower resolu-
tion.

† The figures featured in this article can be viewed in color online, at
http://www.interscience.wiley.com/jpages/0002-8231/suppmat/index.html.
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The digitized image is a matrix of pixels that has lost
much of the original scene information but still retains a
significant amount. A total of 4,194,304 unique identifiable
textures for a 1283 128 pixel 256 grayscale image subset
can be stored in this format. However, textures can have
completely different pixel values and still be perceived as
similar (Picard & Kabir, 1993).

A lossy classification system can be used to identify
texture concepts rather than unique textures. The problem is
finding the best discriminators for identifying conceptually
(visually) similar textures. Commonly, texture information
is reduced to small-feature vectors that are formed by sum-
marizing the pixel information into statistical elements that
can be used to discriminate a reasonable number of texture
concepts. Each element in the feature vector represents a
potentially useful discriminator of texture; however, the
elements and value ranges that best determine texture con-
cept are still unknown. A method must be devised to further
summarize tile information into a few statically significant
classifications by analyzing the feature vectors.

Step 1: Create Image Tiles and Reduced Resolution
Images

Typically the aerial photos used in our study are 5000
3 5000 pixel grayscale images. Before analyzing their
textures, the images must be split into small tiles that can be
more easily analyzed. A tile is the fundamental unit for our
processes and is a 1283 128 pixel subset of an image.
Extracting the tiles is trivial and involves reading the col-
umn-row order pixel vector of the original image in sun
raster format and translating it to a concatenated list of
column-row order raw format tiles. The resultant file is
about twice the size of the original because each column and
row of tiles overlap the previous one by 50%. The overlap
is necessary to more accurately define region boundaries
during segmentation.

Because the large aerial photos are cumbersome to view,
requiring large amounts of computer memory to display,
reduced-resolution versions are created for quick browsing.
The down-sampled images are only used for display and are
not processed during thesaurus creation.

On Silicon Graphics, Inc.’s (SGI) new Origin 2000 mul-
tiprocessor computer at the National Computational Science
Alliance (NCSA), 28 images were simultaneously pro-
cessed on 28 processors in approximately 10 minutes with
an average of almost three images per minute.

Step 2: Extract Features

The “tile files” created in Step 1 are used to produce
feature vectors of 60 floating point numbers. The numbers
are generated by applying a bank of Gabor filters that
analyze the texture of a tile. Gabor filters are scale tunable
edge and line (bar) detectors which create statistics, describ-
ing the microfeatures, that are used to characterize the
texture of a given region (Manjunath & Ma, 1996). The

filters are applied in six different orientations and five
different scales. For each orientation-scale combination, a
mean and standard deviation is calculated, thus, creating a
total of 60 values. The feature vector of each tile is saved in
the image’s “feature file.”

Although many different algorithms have been proposed
for texture analysis, Gabor filters were chosen because, for
both region similarity measures and comparison efficiency,
they have been proven as good if not better than the com-
mon pyramid-structured wavelet transform, tree-structured
wavelet transform, and multiresolution simultaneous au-
toregressive model (Manjunath & Ma, 1996).

In the remaining steps, tile similarity must be measurable
and accurate. Ultimately, two tiles should be considered
similar if they are visually alike. However, this is a subjec-
tive evaluation and is not quantifiable. Dissimilarity, and
conversely similarity, can be calculated by using a distance
metric between two feature vectors. Euclidean distance is
the most common measure of dissimilarity and is used by
our system. We claim that two tiles are similar if the
Euclidean distance of their feature vectors is relatively
small.

Before creating the visual thesaurus, we produced a
system that finds similarly textured tiles in a single image.
The program is used to visually verify that feature extrac-
tion has meaningfully captured the texture content and that
Euclidean distance is an acceptable metric for computing
dissimilarity. Figure 1 shows the program’s display which
starts with an image that has been segmented into tiles and
analyzed using Gabor filters. When a tile in the image is
selected a precomputed index file of the ten closest tiles,
based on the Euclidean distance of feature vectors, is used
to find and show similar tiles in a separate window. Our

FIG. 1. Tile similarity program display.
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initial finding is that the closest tiles are visually similar to
the associated tile.

Step 3: Segment Images Using Texture Flow Analysis

The previously created tiles and their feature vectors are
used to segment the aerial photograph by grouping adjacent
tiles with similar textures. Each tile’s feature vector is
compared with its eight neighbors and texture gradients are
calculated. The gradients of similarly oriented tiles are
combined to create a texture flow with direction and energy.
The local texture flows are used to find region boundaries by
identifying the areas with opposite orientations. This leads
to a discontinuous set of boundary edges that are then
connected to form regions. The number of regions are then
reduced by merging similar regions that are adjacent (Ma &
Manjunath, 1996).

Step 4: Find Representative Feature Vectors

After the images are segmented, a representative feature
vector for the region’s textures is calculated and saved to a
“region feature file.” We use the average feature vector for
the tiles in a region because it should be a close approxi-
mation of the tile cluster’s centroid in the multidimensional
space.

Figure 2 shows the display of a demonstration program
used to verify both the representative feature vectors and the
Euclidean distance as a measure of dissimilarity. This ap-

plication is similar to the one used in Step 2. The demo
displays an image segmented into regions that the user can
select with the mouse. An index file of the closest regions is
used to find and display the ten most similar regions. This
index file is used only in the similarity demonstration and is
not utilized in the visual thesaurus. The program visually
demonstrates that average feature vectors and Euclidean
distance can be used to determine region similarity.

Step 5: Create Self-Organizing Map

The algorithm used by the similarity demonstration to
find the closest tiles has a computational complexity of
O(n2), wheren is the number of feature vectors. Because
the algorithm increases exponentially, it is not scalable to
large collections. A more efficient approach is to cluster
textures and then let the user browse the clusters. Our
experience with Kohonen SOM borrows from Lin’s work
(1997) and has shown them to be effective for the creation
of scalable visual thesauri of texts (Chen, Schuffels, &
Orwig, 1996). This algorithm has a time complexity of
O(n), wheren is the number of feature vectors. Since input
to input comparisons are avoided, the algorithm is only
linearly increasing and, thus, scalable. For this reason we
propose to extend the SOM to cluster and display textures of
images.

An SOM is an unsupervised single-layer neural network
used for dimensionality reduction and clustering. An advan-
tage SOMs have over other clustering algorithms is the

FIG. 2. Region similarity program display.
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ability to easily display output nodes as a two-dimensional
grid labeled with text or images. Similar nodes are topolog-
ically close on the map presenting a visualization that is
congruent hopefully with human interpretation as expressed
by Small (1999). During training, inputs are presented se-
quentially with the desired output left unspecified. After
training, inputs are mapped to nodes which have connection
weights that represent cluster centers in the multidimen-
sional vector space. The connection weights of topologi-
cally close output nodes are sensitive to similar inputs and
may be combined, based on connection weight similarity, to
form regions (Chen, Smith, Larsgaard, Hill, & Ramsey,
1997).

Tile-Based SOM

A node in the neural network consists of a set of 60
floating point numbers-weights, that represent the node’s
position in the multidimensional feature space and are ran-
domly initiated. The neural network is trained by presenting
the feature vector for each tile to all of the nodes and finding
the node with the minimum Euclidean distance between its
weights and the tile feature vector. The winning node and its
neighbors—output nodes that are within a given radius—
have their weights adjusted to approach the tile feature
vector. This process is done for a given number of iterations
with a decreasing learning rate and neighborhood size.
Kohonen (1995) and Lippmann (1987) provide a more
detailed description of the SOM algorithm.

After the last training iteration, every tile is assigned to a
node in the SOM by finding the node with the minimum

Euclidean distance based on its weights and the tile’s fea-
ture vector. Then, each node is labeled with a tile by finding
the tile with the minimum Euclidean distance for each node.
Regions in the SOM can be formed by grouping adjacent
nodes that are labeled with the same tile. Figure 3 shows a
trained SOM that was created by a demonstration program
written in Java™. It reads the feature vectors from the file
created in the extraction process and clusters them. Subse-
quently, the tile file is read and the bitmaps are used to
display the tiles corresponding to the feature vectors in the
SOM. The user can click on any of the tiles that represent
the output nodes and the tiles clustered in the node are
displayed in a separate window. Selecting a tile in this
window will cause the photograph containing the tile to be
shown.

Region-Based SOM

The region based SOM uses the same method of creation
except region feature vectors are the inputs instead of indi-
vidual tile feature vectors. Output nodes are also labeled by
the closest region instead of the closest tile. Figure 3 shows
the output of a trained SOM based on regions that was also
written in Java™. The user can select an output node’s
representative region and see the node’s clustered regions in
a separate window. Inputs to this process are the region
feature file used for clustering and the tile file used for
displaying the regions corresponding to the region features.

Texture Thesaurus Browsing

When users invoke the tile based visual thesaurus, they
will see a two-dimensional map of the texture classifications

FIG. 3. Region based self-organizing map display.

FIG. 4. Tile based self-organizing map display.
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found by the SOM created in the previous section. Figure 4
shows a map with airport runway textures located in the
upper-left corner, barron land in the lower-left corner, and
vegetation in the lower-right with urban areas located just
above it. Other nodes show roadways, intersections, and
mixtures of textures.

Users can then select the tile with a texture that is closest
to the concept that interests them, such as vegetation. A
window similar to the one in the foreground of Figure 5 will
appear showing all the tiles that were clustered within that
node. Users can again choose a tile that most closely re-
sembles the concept they are seeking. Then, the image
containing the selected tile will appear as shown by the
background window in Figure 5. The selected tile is high-
lighted in red in both the tile and image windows. Blue
highlighted tiles are those that exist in the retrieved image
and are located in the same cluster as the selected tile. In
Figure 5 the tiles in a large section of vegetation at the top
of the background image were all classified by the currently
selected node.

The region based visual thesaurus is similar to the one
for textures except a map of regions is displayed from which
users select the region that is the most similar to the concept
they are searching for. Figure 3 shows a region map with
mixed-soil textures in the upper-left corner, shoreline in the
lower-left corner, urban area in the bottom-right, and
mixed-vegetation/fallow-field areas in the upper-right cor-
ner. The foreground window in Figure 6 shows the subse-
quently displayed window of the regions that were mapped
to the SOM output node corresponding to the user selected
region of urban areas. After selecting a region in this win-
dow, the image containing the region is displayed as shown
by the background window in Figure 6. The selected region

is highlighted in red and the other cluster regions in blue.
Much of the urban texture tiles at the right side of the image
are classified by the node along with some vegetation at the
top. The vegetation and urban areas have similar periodic
textures resulting in the same classification. Users probably
would prefer to have the textures separated which texture
based clustering cannot always perform. This problem un-
derscores the need to assimilate other data such as the
AVHRR to create more meaningful classifications.

Both the tile- and region-based visual thesauri allow
users to find images of interest in very large collections. The
images could then be used to feed a query-by-example
search engine based on texture to find other similar images.
We have not currently created a search utility but this is the
next logical step.

Vegetation and Temperature Thesaurus

The goal of generating the vegetation and temperature
thesaurus is to allow users to browse surface vegetation and
surface temperature information spaces. For this system we
use an SOM to classify and display the AVHRR data for
Arizona.

Data Set Description

The data used include NASA’s Pathfinder AVHRR data
and United States Geological Survey’s GNIS gazetteer. The
GNIS gazetteer consists of about 56,000 place names and
their associated coordinates. The AVHRR data is acquired
by the National Oceanic and Atmospheric Administration’s

FIG. 5. Image containing tile selected from a cluster in a self-organizing
map.

FIG. 6. Image containing region chosen from a cluster in a self-organiz-
ing map.
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(NOAA) Television Infrared Observation Satellite (TI-
ROS), and is archived and made available for distribution
by the United States Geological Survey, Earth Resources
Observation Systems, and the European Space Agency. The
raw AVHRR data is composed of the afternoon observa-
tions over all land and coastal zones from NOAA’s polar-
orbiting TIROS.

NASA’s Pathfinder program determines the latitude and
longitude for each pixel of the raw data based on precise
navigation information. Atmospheric correction is also ap-
plied to remove effects of atmospheric factors, such as water
vapor, aerosols, and ozone. The 10-day composite data
provided by the Pathfinder AVHRR Land (PAL) data re-
moves the effects of clouds by choosing the observations on
the day that has the highest Normalized Difference Vege-
tation Index (NDVI) value. Therefore the 10-day PAL data
can provide the surface observations under near-clear sky
condition. The spatial resolution of this data is 8 km.

The AVHRR sensor measures emitted and reflected ra-
diation in five channels (bands) of the electromagnetic spec-
trum: a visible (0.58 to 0.68 micrometer) band, a near-
infrared (0.725 to 1.1 micrometer) band, a mid-infrared
(3.55 to 3.93 micrometer) band, and two thermal infrared
(10.5 to 11.5 micrometer, 11.5 to 12.5 micrometer) bands.
The mid-infrared band is used for sea surface temperature
mapping and is not available in the PAL data. The first
AVHRR channel is located in a part of the spectrum where
chlorophyll in leaves causes considerable absorption of in-
coming radiation, and the second channel is in a region
where the spongy mesophyll leaf structure leads to consid-
erable reflection. The NDVI is calculated by the following
formula:

~Channel2 reflectance2 Channel1 reflectance!

~Channel2 reflectance1 Channel1 reflectance!

The NDVI equation produces values in the range of 1.0
to 21.0, where increasing positive values indicate increas-
ing green vegetation and the negative values indicate non-
vegetated surface features such as water, barren land, ice,
and snow. The radiances from channels 4 and 5 depend on
the surface temperature. Therefore, by converting the radi-
ance to brightness temperature, an approximation of the
surface temperature will be obtained.

According to the goal of this experiment, the PAL data
over Arizona in 1993 has been chosen as the test bed. The
NDVI data and the information from channels 4 and 5 will
be used to form the input of the thesaurus.

AVHRR Thesaurus Creation

Step 1: Feature vector extraction

The Goode Interrupt Homolosine Projection used by the
PAL data has to be converted to the equal angular projection
so that the latitudes and longitudes of pixels can be deter-
mined. Each pixel is assigned a name according to its

location by using the GNIS gazetteer. Pixels with unusable
records or missing values have been discarded and 1442
pixels over Arizona have been chosen. One year (1993)
NDVI and thermal temperatures from channel 4 and chan-
nel 5 are used to produce feature vectors of 108 floating
point numbers. The formed feature vector for each pixel can
represent not only the surface vegetation type and temper-
ature but also the seasonal change of the vegetation and
temperature.

Step 2: Self-organizing map formation

A 10 3 10 SOM map has been employed to visualize the
categorization of the AVHRR data. The chosen feature
vectors of the 1442 pixels were used as the input nodes of
the map. The SOM was trained in the same manner as the
texture-based maps resulting in the assignment of pixels
with similar vegetation type and thermal temperature to the
same region.

Figure 7 shows the SOM produced using Java. The
numbers on the regions represent number of pixels assigned
to the region. When an output region is selected by the user,
all the pixels belonging to the region will be displayed on a
map of Arizona. Figure 8 is a display of 54 pixel locations
from the region at the north-east corner of the map in Figure
7. The pixels near Flagstaff, east of Showlow, and near
Alpine, were assigned to this region. According to the SOM
theory, all these pixels should have similar surface vegeta-
tion type and temperature. This can be rationalized by the
fact that the areas of Flagstaff, Showlow, and Alpine are
within national forest parks and have the densest vegetation

FIG. 7. AVHRR self-organizing map display.
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cover in Arizona. The areas are also the highest regions in
the state thus having the lowest temperatures.

Visual Thesaurus Interface for the AVHRR Data

The vegetation-temperature patterns have been clustered
on a graphical two-dimensional display (SOM map). Pixels
with similar vegetation and surface temperature are grouped
in the same region of the display. For instance, the green/
cold patterns are at the upper-left corner of Figure 7, while
the desert/warm patterns are at the bottom-right corner.
When a vegetation/temperature pattern on the display is
clicked, pixels belonging to this pattern will be displayed on
an Arizona map in another window.

This prototype system will enable users to find the num-
ber of vegetation patterns in Arizona. Also, users will have
little problem differentiating patterns because each pattern
has its own color. The four corners of the SOM in Figure 7
are occupied by four typical vegetation/temperature types
(i.e., green/cold pattern at top-left, green/warm pattern at
bottom-left, desert/warm pattern at bottom-right, and desert/
cold-pattern at top-right). The other areas on the display are
occupied by mixed type patterns. The distribution of the
patterns in the map will help users to efficiently locate
interesting patterns.

Instead of displaying the place names when a pattern is
clicked, the system displays the locations of the pixels on a
map of Arizona shown in Figure 8. The display shows the

geological positions of the pixels which are more meaning-
ful to users who are unfamiliar with the place names.
Additionally, the interface presents the distribution of the
selected pattern over the state of Arizona. If the users are
familiar with certain places, they can find other places with
the similar vegetation/temperature pattern by looking at the
pixels on the map. Therefore, users will still be able to find
interesting places even though they are not familiar with the
area’s pattern.

This system will answer queries like “find all the places
with a lot of green and low temperature in Arizona” or “find
places which have similar temperature and vegetation as
Tucson.” Users will be able to browse places according to
the vegetation/temperature pattern. Some other information,
like aerial photographs, vegetation type data, and satellite
images may be used jointly with AVHRR data to answer
various geological and environmental queries.

AVHRR Discussion

The SOM map appears to be a powerful method for
thesaurus formation and visualization. The combination of
AVHRR data and the SOM map will be able to answer
queries concerned with the surface vegetation and surface
temperature. Future work will include conducting an exper-
iment to evaluate the performance and usefulness of the
thesaurus; combining AVHRR data with other data sets,
such as Digital Elevation Models data; and answering other
climate or land cover queries.

Implementation Details

The feature extraction, tile file creation, and region seg-
mentation programs are all written in C by B. S. Manju-
nath’s group at the University of California, Santa Barbara.
We have made some modifications to the feature extraction
program to parallelize it for execution on SGI’s 64 node
Origin 2000 supercomputer at NCSA. Feature extraction of
all the tiles in an image, typically 64,000 tiles, is the most
computational intensive part of the process. By parallelizing
the extraction, we are able to reduce the time linearly with
respect to the number of nodes used on the Origin 2000.

The rest of the programs, including the SOM and image
display, were written in Java™, an object-oriented language
created by Sun Microsystems and modeled after C11.
Java™ is “small, simple, and portable across platforms and
operating systems, both at the source and binary level”
(Lemay & Perkins, 1996). It is compiled and interpreted,
meaning the Java™ compiler converts source code to plat-
form independent byte code (Flanagan, 1996). This byte
code represents instructions for the Java™ virtual machine
which is easily emulated on most modern hardware plat-
forms. Ports currently exist for Windows NT, Windows 95,
Macintosh, HP-UX, Solaris, Digital UNIX, Linux, and oth-
ers. The portability does come at a cost in performance since
the byte code is interpreted using the virtual machine. How-
ever, the performance difference has been significantly re-

FIG. 8. Map showing pixel locations for a cluster in AVHRR self-
organizing map.
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duced because many of the available Java™ ports include a
just-in-time (JIT) compiler that converts the Java™ byte
code to native code while the program runs (Flanagan,
1996).

We chose to implement the user interface for the visual
thesaurus in Java™ because of the language’s portability
and rapid graphical user interface (GUI) development fea-
tures. We were not greatly concerned with performance
because it is not usually an issue for GUIs which spend most
of their time waiting for user input.

The demonstration programs are not just GUIs but also
rely on a clustering component implemented as an SOM for
which performance is a concern. In our early prototypes, the
SOM’s performance was more than adequate mainly due to
the implementation of our scalable SOM algorithm (Rous-
sinov & Chen, 1998). The JIT compilers, while not included
in Sunsoft’s standard Java™ Development Kit but available
on SGI workstations and the Origin 2000, increase the
performance to near compiled C code’s speed. Additionally,
we have created a C11 implementation of the SOM that
we are currently testing and will parallelize for greater
execution speed.

Since we foresee the visual thesaurus as executing in a
distributed computing environment, security is an issue.
Programs received over a network must be able to guarantee
safe execution without virus contamination or Trojan
horses. An attractive feature of Java™ is its ability to
address many security issues as discussed by Niemeyer and
Peck (1996).

A useful interface must be easily accessible and an
effective means to provide accessibility is the leveraging of
Internet technology. The latest versions of many Web
browsers incorporate the Java™ virtual machine enabling
them to load programs from remote locations and run them
locally as embedded Java™ applets. The incorporation of
Java™ in Web browsers allows a large number of people to
use programs written in the language. Thus, Java™ appli-
cations have a larger potential user base than ones created
by compiled languages such as C or C11 that are platform
dependent.

Future visual thesauri could also be implemented using
client-server architecture. Clients would connect to the
server which would provide images used in the search.
Java™ is an excellent choice for both the client and servers
because it has significant advantages over traditional Com-
mon Gateway Interface (CGI) programs.

Homepages with dynamic content have traditionally
been produced by CGI programs that provide a means of
connecting client programs with information servers using
the Web HyperText Transport Protocol (HTTP). When us-
ers access pages that use CGI programs, their browsers
submit requests to the HTTP servers which respond by
performing actions, such as creating new homepages. How-
ever, the communication between the users’ browsers and
the HTTP servers is not dynamic. The servers are com-
pletely event driven, meaning they can only respond to
requests from the clients and cannot initiate requests of their

own. In addition, CGI programs can only respond to one
event before terminating. These limitations lead to rela-
tively static user interfaces for CGI-based applications. This
is especially frustrating when frequently used requests take
more than a few moments to satisfy, causing users to
wonder if the program is still running (Beard, 1991).
Java™’s ability to avoid these pitfalls fortified our decision
to use the language.

Conclusion

The scalable algorithms we have used to automatically
create thesauri of texts can be applied to images when
combined with textural analysis methods. Kohonen’s SOM
and Gabor filters appear to be a powerful combination for
visual thesauri generation of aerial photographs. The the-
saurus of AVHRR data also appears promising and the data
may be used to augment the texture feature vectors to build
an enhanced SOM of geo-spatial media. However, before
any conclusions can be made about the visual thesauri’s
utility, a usability study needs to be conducted.

The use of Java™ to build the interfaces is a solid
technique for creating dynamic web accessible applications
since the language is powerful, portable, and secure. The
only problem we encountered with Java™ is that the devel-
opment kits for different platforms are not yet consistent.

Future Work

In the future we plan to use the texture clusters found by
the SOM as classifiers to index images and perform co-
occurrence analysis. Each texture region of an image is
mapped to an output node in the SOM representing a unique
cluster of similar textures. The output node number can be
treated as an index for the image texture region and used to
compute co-occurrence with other texture types (i.e., tex-
tures mapped to other output nodes). Then users can browse
the visual thesaurus and find a texture to start their query. A
list of other classes of textures frequently co-occurring with
the specified one will be displayed in the order of decreasing
frequency. From this list the users can refine the queries by
selecting other textures they feel are relevant to their search.
This process is iterative. Finally the user can browse the
images that contain all or most of the selected texture types.
The advanced query visualization technique presented by
Brooks & Campbell (1999) could be well suited for a
texture retrieval system.

Query by example is another exciting possibility that
could be realized by creating an SOM based on the image
indexes. A sample photograph provided by the user, perhaps
found through browsing the visual thesaurus, could be bro-
ken down into a set of texture types. Then the image is
presented to the SOM to find the cluster of similar images.
For example, if the user found a photograph that contained
orchards near a river and industrial park, they could use it to
find other images containing similar combinations of or-
chards, rivers, and industrial parks.
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These methods build on our experience with co-occur-
rence analysis, and query refinement, and category maps of
texts. We believe our past success should carry over to
geo-spatial data types and plan to pursue this path.
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