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Abstract

Statistical methodology is presented for the statistical analysis of nonlinear measurement
error models. Our approach is to provide adjustments for the usual maximum likelihood es-
timators, their standard errors and associated significance tests in order to account for the
presence of measurement error in some of the covariates. We illustrate the technique with a
mixed effects Poisson regression model for recurrent event data applied to a randomized clinical
trial for the prevention of skin tumors.

1. INTRODUCTION

In this paper, we will be concerned with the effect that measurement error in covariate readings
can have on the statistical analysis of recurrent endpoint data from medical trials. In such trials,
subjects experience a series of recurrent events over the duration of followup. Applications include
infections in AIDS patients, epileptic seizures, asthma attacks, bladder cancer and many others.
Our own motivation came from the “Nutritional Prevention of Cancer” (NPC) trial, the purpose
of which was to study the long-term safety and efficacy of a daily 200ug nutritional supplement of
selenium (Se) for the prevention of cancer. This is a double blind, placebo controlled randomized
clinical trial and has accrued approximately 1300 patients since it started in 1983. More details
on the design of this trial are given by Clark et al.l. A number of endpoints were considered, but
here we shall concentrate on just one — namely squamous cell carcinomas (SCC) of the skin. For
each patient, the time (measured from date of randomization) of each new occurrence of a SCC was
observed. At randomization a number of baseline covariates were also recorded. Of course the most
important of these was the treatment assignment (Se or placebo), but others included such variables
as age, clinic, gender, smoking status, previous history of skin cancer, and blood biochemical levels,
in particular plasma Se status. While some of these variables are recorded accurately, others, such
as plasma Se status, are subject to measurement error. The purpose of this paper is to study the
effect that such error can have upon standard inferential procedures.

2. A MIXED EFFECTS POISSON REGRESSION MODEL
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The negative binomial regression model has proved useful for analyzing data of this kind.>34

Suppose there are n subjects. For subject i (1 < i < n), we let Y; denote the number of occurrences
of the event of interest during the followup time of length 7;, and let X; denote the vector of
covariate values (including an intercept term). We then model the responses {Y;} as conditionally
independent and Poisson distributed

p(yi | 0;)) ~ Poisson(8;T;e*:?)

where ; ~ g(6) are Gamma distributed with mean 1 and variance . (The mean can be taken
to be one without loss of generality because an intercept term is included in the vector X;.) This
can be viewed as a Poisson regression model with fixed covariate effects, but with extra-Poisson
variation (i.e. that not explained by the fixed covariates) introduced via random subject effects.
Alternatively it can be viewed as an empirical Bayes model where “frailties” {6;} have a prior
distribution g.

With this model we can write down the likelihood function:

ﬁ L(Yi + 3) [o exp(X!3)]Y:
i=1 (1) [1+aT; exp(X/B)Yite

11 /0 T p(ui | 0)g(0)do o (1)
1=1

Estimates of a and of the regression coefficients (3, together with standard errors can then be
obtained via the method of maximum likelihood. The computation can be done using one of several
software packages such as the procedure NBREG in STATA 4.0.° Alternatively, EVENTREGS
provides a particularly user friendly program to perform stepwise regression with this model.

Abu-Libdeh et al.* analyzed interim data from the selenium trial described in Section 1, using
the above parametric model. In fact they went further, allowing Weibull inter-event times instead
of exponential times as implied by the underlying Poisson model. However, using regression diag-
nostics tools that they developed, they were able to conclude that the Poisson model did provide
an adequate fit to their data. (They also looked at Poisson models when the events could be of
different types — for example, squamous and basal cell carcinomas in the skin cancer study.)

Although Abu-Libdeh et al.* examined a number of covariates, all were of a categorical type
such as treatment assignment, gender, clinic, etc., where there were presumably few inaccuracies.
However, none were of the kind where there might be ample opportunity for some measurement
error, such as blood biochemical levels (Se, Vitamin E etc.). The baseline plasma Se status covariate
is of obvious importance for two reasons. First, a nested cohort study of association between baseline
Se and disease early in the trial might indicate what treatment effect might ultimately be expected.
As such, the results could provide useful information to a monitoring committee considering the
termination of the trial.” Second, baseline Se could be an effect modifier — a nutritional supplement
of Se might be of less benefit to those subjects with already adequate baseline Se status. In fact,
it was the first consideration that lead to the research that we report here. A regression analysis
of early interim data using the models described in this section led to a smaller magnitude for
baseline Se effect on the recurrence of skin tumors than might have been expected from previous
observational studies. However it is well-known® that, in simple linear regression models with
normal errors, the naive least squares slope estimate is biased — it underestimates the magnitude
of the true slope if there is measurement error present for the regressor variable. This is known
as the “attenuation” phenomenon. If one acknowledges the presence of measurement error, the
questions that arise naturally are:



a. What is the effect on the corresponding estimated regression coeflicients?

b. What is the effect, if any, on estimated regression coeflicients for other variables that are mea-
sured without error, especially treatment ?

c. What is the effect on standard errors, tests, and confidence intervals ?

3. NONLINEAR MEASUREMENT ERROR MODELS

The mixed effects Poisson regression model of the previous section is a nonlinear model and now
we have introduced covariate measurement error. The recent book® by Carroll, Ruppert and Ste-
fanski (1995) provides a comprehensive account of current statistical methodology. There is a large
literature on the subject and there are a number of different approaches. One approach considers the
full likelihood, although this is feasible usually only for discrete covariates where measurement error
is termed “misclassification”. Examples of this approach are contained in Whittemore!'” and Gong
et. al.''. Various approximate methods have been proposed appropriate in certain circumstances —
e.g. the small error approximation (Whittemore and Keller'?), the small incidence approximation
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for logistic regression (Rosner et al.!3). For survival data regression, Prentice
likelihood, while a “corrected” score function approach is taken by Stefanski and Carroll'® and by
Nakamura.'® Only a few papers have been mentioned here — for a complete account, see Carroll
et al.® cited above.

We now describe our general approach. We suppose that the response Y; of the ith subject
(1 <4 < n) has a density (or mass function if discrete) denoted by f(y, X;,3) conditional on the
covariate vector X; for that subject. Here 3 denotes the vector of all unknown parameters we wish
to estimate and would include, for example, the parameter « in the negative binomial model (1) as
well as the regression coefficients. We assume that the {Y;} are conditionally independent. Suppose
however, for each ¢, that X; is not measured exactly, but instead a surrogate Z; is recorded. We
will be assuming a “structural” model (Carroll et al.?, page 6); that is, we will regard the true
unobserved X;’s as independent realizations of a (vector) random variable X, for which we will
be modeling the distribution. If the true covariates {X;} were known, the log-likelihood function
would be given by:

£(b) = £(Yi, Xisb) = 3 _log f (i, X, b). (2)
=1 =1

However, since the X’s are not observed, this likelihood function cannot be evaluated. Instead we

consider the naive log-likelihood function

ST UY;, Zib)
=1

where the observed surrogate variables are simply substituted for them. The naive maximum
likelihood estimator (MLE) is then defined as:

b = arg max ZE(YQ,ZZ'; b).
=1
(Here argmax g(b) denotes a value of b that maximizes g.) Now typically,

b— b= b(B) almost surely as n — oo,



where the limit, b(3) say, depends on the true 3, but is not equal to it. However the relationship can
usually be inverted to obtain a consistent estimator for 3, namely B = b_l(?)). The relationship
between b and S is thus used to compute a “corrected” or “adjusted” estimate of 3 and it can also
be used to obtain standard errors and test statistics, as will be described below.

First, however, we consider how this strategy applies in the case of simple linear regression
through the origin with additive measurement error in the single predictor. The model is

Y = pBX+e (3)
Z = X+U (4)

We assume that X, U, € are independent with zero means and variances 03(, 012], o2, respectively.
We observe n independent pairs {(Y;, Z;) 1 <1 < n}. If we assume that the errors {e} are normally
distributed, the naive MLE is the least squares estimate that minimizes 37 ;(Y; — 6Z;)2. Thus
b= N Y;Z;/ 3 Z2. Using Slutsky’s lemma and the law of large numbers, we see that the consistent
limit of b is

EYZ EX

B B EX? o
"~ EZ?2  EZ

B =
EZ? 0% +o}

b=b(8) 75—

Hence our estimate B of B is

b_l(l;): a§(+a§,i) _ 0§(+0[2] MY, Z;
2 2 2 °
oX ox X7

We note that this estimator depends on the parameters of the distribution of X and U, which
typically will be unknown. These parameters must then be estimated. Typically these estimates
are based on a second data set, where pairs (X, Z) can be observed directly. This is usually termed
a“validation” data set (Carroll et al.?, page 12). It turns out that such a data set is available for
the skin cancer example of Section 1; the details are given in Section 6.3. We also note here, in
this simple example, the “attenuation” phenomenon that | 5| < | 3 | and the magnitude of the

(5)

“naive” slope estimate | b | underestimates | B |. This is a common feature when measurement
error is ignored in analyzing regression models.

We just presented the simplest example. The theorem that we will state in the next section
applies to a wide variety of parametric models. It can be seen that a “model” consists of two
parts — (a) a response model (the distribution of Y given X), and (b) a covariate error structure
model (the joint distribution of Z and X). In our simple linear regression example, these are
represented by (3) and (4), respectively. For response models, the methodology can be applied to
many common situations, for example normal, logistic, probit, Poisson, exponential, proportional
hazards and negative binomial regression models; these examples are discussed by Jiang!”. Here
we will be specifically interested in the repeated events model described in Section 2.

To describe the part of the model that relates to the covariate error structure, we first need
to partition the true covariate vector as X' = (I,X '’W'). Here the components represent the
intercept term, those covariates (X) measured with error, and those covariates (W) measured
without error, which are of dimensions 1,p, q, respectively, say. We correspondingly partition the
observed surrogate variable vector as Z' = (1,Z',W'). A covariate error structure model is one
which specifies the joint distribution of X and Z. In our application in Section 6, we shall use a

simple normal additive error model (NADD), where Z = X +U , X ~ N(0,X3), U~ N(0,Xy)



and are independent. It is worth noting that this implies the conditional distribution:
X|Z ~ N@A'Z X) where A=%'%;, T=%y¥;'S;, T;=%;+%. (6)

We will call the matrix A the “attenuation” matrix and it plays an important role. With little
added effort, it is possible to apply the techniques we describe to more general models (CN) for the
joint distribution of X and Z, in which the conditional distribution of X given Z is normal with
mean linear in Z and constant variance:

X|Z ~ N('Z %) where C'Z=Ch+NZ+CypW

for general vector Cy and general matrices C, %, Cyy, and A. A special case of this model (CN) but
which is more general than (NADD), is the model (CN1) in which the distribution of X does not
depend on W, the covariates measured without error. (X of course still depends on the surrogates
Z ). This assumption might be valid if, for example, W is treatment assignment in a randomized
trial. It might not be valid, however, if W is gender and X is a blood biochemical level, for example.
In model (CN1), Cy = 0 and without loss of generality we can re-center X, 7 to have mean zero,
so that Cyp = 0 and E(X | Z) = A'Z, which is of the same form as in (6) for the additive model
(NADD). The hierarchy is (NADD) C (CN1) C (CN). Another model, not in this hierarchy, but
to which the methodology can apply is the multiplicative model'®, in which Z = X ® U with X
and U independent, U > 0, E[U] = 1. We shall only be concerned with the NADD model here; for

application of the more general models, see Jiang.1”
4. A KEY THEOREM

Under mild regularity conditions listed in the Appendix, the following results hold:

L b2% b(B) and is asymptotically normally distributed as n — oo.

IL B, = b 1(b,) 2% B and vn(Bn — ) = N(0, D'I-VI-1D)
with I = —EV2((Y, Z,b) \b(ﬂ) , the information matrix, V. = EVLVY |y, where
V£ is the score vector, and D = Vb1 ‘b(,@) , the gradient of b1

III. b = b(p) satisfies the estimating equation VEg((Y, Z;b) = 0.

The proof of this theorem will appear elsewhere.!” However, essentially this follows from the
results described in White!? on “misspecified likelihoods,” of which the naive likelihood is an
example.

The strategy then is to obtain b(3) from (I) or (III). If we find that b~! is unique and invertible
(as it was in our simple linear regression example of the previous section), we can “correct” or
“adjust” the naive MLE by using 3 = b 1(b).

The second part (II) of the above theorem shows how standard errors and test statistics can
be constructed. The “naive” asymptotic variance (matrix) of b that ignores the presence of mea-
surement error is (n)~!. The correct (robust) asymptotic variance of b is 177111, the so-
called “sandwich formula” — Huber?", Carroll et al.® page 263. The asymptotic variance of the
adjusted estimate B is thus given by %D'I*IVI*ID. If the expectations in [ and V are not
available then quantities based on sample averages can be used in the usual way, e.g. for I use



—n Y V2UY;, Zi, b) rb(ﬁ)' To test the significance of a particular regressor variable, the jth say,
using the Wald method, the naive test statistic that ignores the presence of measurement error
would be the Z-value:

b,
Zy = ——2

v/ AvaerA)j

where AvarN(lA)j) is the jth diagonal element of (nI)~!. The correct Z-statistic is:
Zag. = ==
\/ Avarf3;
where Avar Bj is the jth diagonal element of %D'I_IVI_ID.
5. APPLICATION OF THE THEOREM

We now apply the theorem to the mixed effects Poisson regression model and the likelihood
(1) of Section 2. Suppose we consider the CN1 covariate error model described in Section 3, which
includes the normal additive error model (NADD).

Recall that the true covariate vector is written as X' = (1, X',W'), and Z' = (1,Z',W') is
observed. The component vector W denotes the covariates measured without error. The parameters
of the model (1) are a and 8 = (By, #',7'), which is the 1+ p + ¢ dimensional vector of regression
coefficients partitioned in the same way as X'. (Strictly speaking, in the notation of Section 4,
we should include « as part of the vector of parameters 3, but it is convenient to use separate
notation for the mixing parameter «.) Similarly define b’ = (b, E',g'). The naive ML estimates of

parameters are denoted by a and Y = (I;O, b ,§'), which can be obtained from available software as
discussed in Section 2.

The estimating equation in part (III) of the theorem in Section 4 is applied to the likelihood
(1). The naive log likelihood function is the sum of n i.i.d. copies of

Y-+
l= Z log(1 +aj) + Yiogp — (Y +a Ylog(1 + ap) (7)
=0

where 1 = Texp(Z'b), and yT denotes max(y,0). Here we use (a,b) in place of (o, 3), in order to
emphasize that they are not true underlying parameters, but only the arguments of the naive log
likelihood function.
Differentiating the expectation of (7) with respect to the xk-th component of b (0 < k < p+ q),
we obtain
(Y —p) 7, T(exp(X'B) — exp(Z'b))

Z
Bl =FE{— """} =F = 0.
9 { 1+ap } { 1+ aTexp(Z'b) P=0 (®)

First note that the CN1 model implies that

Blexp(X'6) | 7] = exp{B(X | 2)8 + 5'Sx6)

= exp{fo+ ZAF+ W'y + 3 F55) ©)



since X | Z ~ N(A'Z,%) and the conditional covariance matrix Yx|z = diag(0,%,0).
By conditioning first on Z and T', taking expectations and using (9), we get

ZT(exp(Bo + 38’5 + Z'AB + W'y) — exp(by + Z'b+ W'g))
1+ aTexp(Z'b)

E{ }=0. (10)
Here we have tacitly made the natural assumption that, given Z, the followup time 7' is independent
of X. An obvious solution for (10) is:

1. . . .
bo = Bo + 5/3'25, b=AB  g=7. (11)
This solution is unique, since the expectation of (7), El, is a globally concave function of b.
This can be seen by noting that

0xO\El = —FE

7.7
1“4 (14 aY) (12)

(1+ap)?

which is negative semi-definite; strictly negative definite if the components of Z are non-degenerate,
in the sense that no component of Z can be expressed as a linear combination of the other compo-
nents with probability one.
The equations in (11) give the asymptotic limit b(3) of the naive MLE b. Inverting (11) gives
the adjusted estimates:
1

fo=bo—S(ATBYS(ATN), =AM, =4 (13)

The adjusted estimate & is of less interest but may be obtained by solving numerically the derivative
04,El = 0 analogous to (8).

We now turn our attention to the standard errors of our adjusted estimate ,é which come from
application of part (II) of the theorem to the naive log-likelihood (7). The information matrix
I as defined there is block diagonal, which can be written as I = diag(lsq, ), say, where the
components of Iy, are given by (12). Define Vi be the (1 +p + g) X (1 + p + ¢) submatrix of the
matrix V', defined in part (II) of the theorem, with elements:

227, 24],
ap

Ed,.105 = EJ( L‘

obtained from (7). Finally define the submatrix of the derivative matrix:

1 0 0
0 .
Dbbza—iz —(A"YY2A" AL 0

0 0 1

Since (13) does not involve a and I is block diagonal, we can compute the asymptotic variances of
B by: R
nAvar(3 = Dibl&lvbbfb_bll)bb (14)

Here all quantities are evaluated at the asymptotic limit of the naive MLE as given by (I) of the
theorem. Since (14) depends on unknown quantities we replace b and a by b and a, respectively,
and replace expectations by the sample averages.



Similar results can be derived in the same fashion for other types of response models, (still
assuming the CN1 covariate error model). The appropriate log-likelihood is simply substituted for
(7). For example, for (i) the normal response model Y ~ N(X'B,02), (ii) the Poisson regression
model with log link and possible exposure time offset ¥ ~ P(TeX'?), and (iii) the proportional
hazards rate model where Y has hazard rate g (t)eX,ﬂ for parametric function Ay, the following
effects are typically observed!:

A. B = A1b and we observe the attenuation effect, namely the estimates of regression coefficients
for variables measured with error are adjusted upward in magnitude.

B. 4 = g, coefficient estimates of variables measured without error are unchanged.

C. Upon adjustment, the significance of regression coefficients is diminished, ¢.e. Z-values become
smaller in magnitude. (For the normal regression model, Z-values are unchanged.) This
may seem paradoxical at first in light of the fact that the magnitudes of adjusted regression
coefficients are typically larger; however the diminished significance reflects the fact that the
presence of measurement error has introduced more uncertainty into the problem.

We say these effects are “typical” because the theorem concerns asymptotic results. The relation-
ships (A — C) may not hold exactly in finite samples. It is interesting to note that somewhat differ-
ent phenomena are observed in the logistic regression model where Y ~ Bin[1, (14+exp(—X'3))71)].
Then there can be an attenuation effect even on 4, coefficient estimates of variables measured with-

out error. Also the relationship between ﬂ and b is no longer linear, with 5 A~ 1b holding only
approximately for small | B | — cf Rosner et al.'> Space does not permit a full discussion of the
details of the different regression models — this will appear elsewhere.l” We now apply the results
derived above for the mixed effects Poisson regression model to the skin cancer data and show how
incorporation of measurement error can affect the results.



6. ILLUSTRATION WITH RECURRENT EVENT DATA

6.1. The model

For illustration we consider a simplified version of the model for the skin cancer endpoint data
for the clinical trial described in Section 1. For a given patient, we let Y denote the number
of squamous cell carcinomas experienced during followup time 7. For simplicity of exposition
we consider just two covariates. Covariate X is the patient’s long run average baseline log(Se)
plasma level. However X is measured with error and only Z is observed — the reading taken at
randomization. The second covariate is W which takes on values 0 or 1, according to which of the
two treatments was randomly assigned (the coding is blinded). We assume that W is known without
error. (A full analysis might include other covariates and treatment by covariate interactions.) The
followup time T is assumed independent of both covariates. Recall that our response model was a
mixed effects Poisson regression model with offset. That is

Y ~ POTPPXHIWY  with 6 ~ I'(mean = 1, var = a).
We adopt the additive measurement error model (NADD), which implies that:
Z=X+U  X,Uindep. X ~N(ux,0%) U~ N(0,0%)

In the notation of Section 5, p = ¢ = 1 and we are more simply using X to denote X, 31 for B and
by for b. The matrices ¥ ; and Xy in the NADD model (6) are now replaced by scalars 0% and
0%, respectively. The attenuation matrix A is the scalar 0% /(0% + 0%).

6.2. Adjusted MLE’s
We denote the naive ML estimates of parameters «, g, 31,7 by d,go,él,g}, respectively. These
can be obtained from available software as discussed in Section 2. We are most interested in the
estimates of the covariate effects. Equation (13) leads us to the adjusted estimates for parameters
(1 and v with the simple and familiar form:
2 2
B = —OX_;_JU by and 4 =g.

9%
Because of the simple relationship between ((31,v) and (b1, 9g), the derivative matrix in (14) sim-
plifies. Thus the asymptotic variance of Bl is given by the center element of the 3 x 3 matrix
%A‘z(ll;lVbel;)l) and that of 4 is the bottom right entry of %I,ElVbeI;)l. As before, we substi-
tute MLE’s for the unknown quantities in these expressions and use sample averages in place of
expectations.

Unfortunately the estimate and asymptotic variance of Bl depend on ox and oy which are
unknown. These cannot be estimated from the pairs (Y, 7). However, for the NPC clinical trial
described in Section 1, a validation data set was available which could provide these estimates, and
also be used as a check on the appropriateness of the additive covariate error model assumption.

6.3. Validation data set

For all patients in the NPC trial, plasma Se measurements were taken serially at approximate six
month intervals, and not just at baseline (randomization). Assuming stationarity, the repeated
readings from each placebo patient should represent replicated measurements of X for that pa-
tient. We are including the natural temporal variation in Se plasma levels as a component of the



“measurement” error. Recall that X represents the long run mean level for an individual untreated
patient. Of course we do not include Se readings of treated patients since their subsequent levels
would be affected by the nutritional supplements of Se they were taking. The stationarity assump-
tion can be examined by checking that the group mean Se levels remain approximately constant
over time and by using control chart techniques (X-charts for individuals, moving range charts)?!
on the longitudinal series of measurements in samples of individual placebo subjects. For the NPC
trial data, the stationarity assumption seemed reasonable. There were 637 placebo patients. Let
Zi1y Zi2, . . ., Ziy, denote the replicate log(Se) readings for the ith placebo patient (¢ =1,...,637).
We obtain estimates of px = pz and of O‘% = agf + 0[2] from the baseline readings {Z;;}:

1 637
, = [ = ZZ
X = [z 637 1
1 637
~2 ~ 2
67 = =) (Za—pz)”
636 =

An estimate of 012] can be obtained from the pooled within placebo subject variability:

o 2637 T l(Z 71)2

oy =
2i(ri—1)

Finally we have 6% = 6% — 6% and the attenuation factor is estimated as A= 62/6%.

The validation data set can also be used to check some of the distributional assumptions on X
and U in the additive covariate error model. To do this, we restricted ourselves to the 220 placebo
patients for whom ten or more serial Se readings were available at the time of the analysis, ¢.e.
those patients with r; > 10. For such patients, the mean log(Se) readmg should be a reasonably
accurate estimate of the “true” X-value. Thus we replace X; with X; = Z; = 1 -2 Zij- The {Z;}
are of course the initial Se readings taken at randomization, that is 7Z; = le We can then take
U; tobe U; = Z; — Xi, (1 << 220). A small correlation between the {(A]Z} and the {X'Z} would
indicate the appropriateness of the independence assumption. (Note this is not automatically zero
since X; is based on all Zij,1 < j < r; not just Z;;). Similarly histograms and probability plots of
the {U } and the {X } can indicate the appropriateness of the normality assumption.

6.4. The skin cancer data

We applied the techniques to data from n = 1277 patients available at the sixth interim analysis
of the NPC trial described in Section 1. The final data from this trial?? are currently under
review. For this illustration, some of the treatment assignment indicators in the data set have been
deliberately switched to prevent premature conclusions and speculation on treatment effect.?3:24
However the data do represent what might be expected in a typical randomized trial of this type.
Using the validation data set, the probability plots and histograms as described in Sec. 6.3, showed
close agreement with the normality assumption. The correlation between the {U;} and {X;} was
computed to be —0.037. Thus the data were consistent with the normal additive error model
(ADD) for the log(Se) measurements. The mean log(Se) level was fx = fz = 4.717 (0.007).
(Quantities in parentheses represent standard errors.) The units for Se are ng/ml. Also 62 =
0.186% (0.044%), &7 = 0.148% (0.022%), &% = 0.113% (0.049%). This yields an estimate of the
attenuation factor A1 = = 2.71, which is quite large and implies a rather large measurement error.
(Recall we include temporal fluctuations in our definition of measurement error.)
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Table 1 shows the results of a naive analysis of the squamous cell carcinoma (SCC) recurrent
event data using the mixed effects Poisson regression model with covariates treatment and plasma
log(Se) level at baseline. This ignores any measurement error in the log(Se) covariate. The entries
in the table were obtained by using the software of Natarajan et al.® When the measurement error in
the log(Se) covariate is taken into account using the methods of Section 6.2, the point estimate 4 of
treatment effect is unchanged although its significance is diminished because we now use the robust
estimate (sandwich formula) for its variance as described in Section 4. The magnitude of the point
estimate ﬂAl of baseline Se effect is increased by the attenuation factor Al=2711 (from —0.692 to
—1.873), yet the Z-value decreases in magnitude from 2.07 to 1.89. The results are summarized in
Table 2. Note that the results exhibit the typical features (A) — (C) listed in Section 5.

[TABLES 1 AND 2 ABOUT HERE.]

Tables 1 and 2 ignore the the uncertainty in A and treat it as known. From the validation
data, application of the delta method leads to a standard error for A=1 of 0.66. The sensitivity
of the qualitative conclusions can be examined by repeating the same analyses with A~! set equal
to A7l £ s.e., say. This would lead to proportional changes in the point estimate of 3; in Table 2
yielding a range of —1.41 to —2.33. However, because we are using the robust variance estimate,
the standard errors adjust by the same proportion and the Z-value in Table 2 for 3; is unchanged.
Of course the point estimates and standard errors for v are unaffected.

7. CONCLUDING REMARKS

We have presented a unified treatment for assessing measurement error effects on MLE’s, asymp-
totic variances and P-values in generalized linear models. We have concentrated on the mixed effects
Poisson regression model for recurrent endpoint data. In fact, our approach can apply to the more
general setting of misspecified models. For example, in the situation of Section 6, we might initially
ignore both measurement error and the extra-Poisson variation. This would involve only a simple
Poisson regression analysis being needed, for which there is a much larger amount of standard
computer software available. The techniques of Section 4 could then be used to adjust for either
measurement error or extra-Poisson variation or both. The techniques of Section 4 can also be
extended to handle multi-type recurrent event data.* Further work including theoretical details,
applications to other models and simulation results for finite sample sizes will appear in Jiang.!”
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APPENDIX: REGULARITY CONDITIONS FOR THEOREM OF SECTION 4

The following conditions are sufficient for the theorem of Section 4. Other sets of sufficient conditions
are possible — see Jiang!?. We denote the parameter space as © where O is open and © C R®%. Let X’ denote
the support of X and Y.

(A) the support of exp(y,z,b) does NOT depend on b;
(B) Eﬁl(Y’Z’b) exists and is finite V b, € O;
(C) l(y,z,b)eC*(©) Vy,z€eX.
(D) V by € O, there exists an open ball B¢(by) such that B.(by) C ©, and
(i) SUPbeB. (bg) 0:(y,z,b)| < Hi(y, 2),
(ii) Supbege(bo) |0’Lajl(yaz~b)| S Hij(yaz)’
(iii) SuprEe(bo) |6i8j6kl(y,z,b)| S Hijk (y, Z),
where 9; = -, and EgH;, EgH;j, EgHyji < oo VB €O, Vi,j k=12, 5.
(E) (1) ||8j8¢E13l(Y, Z,b)| (which exists by (C) and (D)) is negative definite V3,b € ©.
(ii) ||0;0:l(y.z.b)|| is semi-negative definite Vb € ©, y,z € X.
(iii) If 3by € O and a directional vector ny € ®° such that [ny| = 1, and
31210”[,0 = Znomojaic‘)jl(y,z,bﬂb:bo = 07
i,]
then 9% 1 =0 Vb € ©.

(F) The equation
9;Egl(Y,2,b) =0, =15 (L)

has a solution (which must be unique by (E)(i)) b = g(8) for all 8 € ©;

(G) Let b’ = g(3) be the solution of (L). For all 3 € O,
||Eﬁ8il(Y, Z.,b)0;1(Y.Z,b)|p=po|| is nonsingular, and all its elements are well-defined and finite;

(H) g(B) in (F) is a C!-diffeomorphism of © onto an open set g(©).
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Table 1: Naive analysis of NPC trial recurrent SCC data, ignoring
measurement error: Maximum likelihood estimates and Z-values

Baseline Se  Treatment

a by by g
Estimate 2.675 1.126 —0.692 0.180
VvVAvary 0.299 0.089 0.337 0.125
2N 8.99 12.58 —-2.07 1.44

Table 2: Analysis of NPC trial recurrent SCC data, adjusted for
measurement error: Point estimates and Z-values

Baseline Se  Treatment

a Bo B Y
Estimate 2.753 1.122 —1.873 0.180
v Avar 0.135 0.092 0.992 0.130
zZ 20.45 12.14 —1.89 1.39
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