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Abstract 

The expression of many genes varies under
different conditions. The relationships among
genes can be identified from DNA microarray
data. To better understand the SOS response, I
developed a network model of whole
LexA/RecA-dependent manner genes in two
genotypes of Escherichia coli from expression
data after ultraviolet (UV) irradiation. First, all
LexA/RecA-dependent manner genes were
estimated by a combination of the Mann-
Whitney U test and hierarchical clustering.
Second, the relationships between genes were
inferred from a graphical Gaussian model
(GGM) combined with hierarchical clustering.
Here, I incorporate a step-by-step procedure

of the method developed in my previous study
to identify interactions within larger clusters.
The analysis suggested the presence of a
sequential relationship between LexA/RecA-
dependent manner gene groups in which the
association between neighboring groups was
positive while that between non-neighboring
groups was negative. I suggest the inferred
network provides information on the function-
al role of poorly defined genes whose expres-
sion patterns change according to LexA/RecA.
Although relationships in the network

require biological validation, the model pre-
sented here provides insights into potential
LexA/RecA regulation following UV irradiation.

Introduction

Escherichia coli responds to severe condi-
tions such as ultraviolet (UV) irradiation by
initiating the SOS response, which repairs
DNA lesions, restores replication, and prevents
premature cell division.1,2 The SOS response
controls gene transcription,3 and many genes
are activated in sequence. Some of these DNA
damage control genes are regulated by the
LexA/RecA circuit mechanism.4,5 To date, 47
genes, directly regulated by LexA protein bind-
ing and activated by RecA concentration in a
cell, have been identified by several different

methods.6,7 Over 30 genes induced after UV
irradiation act in a LexA/RecA-dependent man-
ner, as determined from expression profiles,
but it is not known if these genes act in a dis-
tinctive fashion from others activated by the
SOS response.8 Furthermore, in the SOS
response many genes are controlled in a
LexA/RecA-dependent manner. Although the
regulatory mechanisms of LexA protein bind-
ing have been described,4,5 the relationship
between whole LexA/RecA-dependent manner
genes remains unclear.
Previous studies have investigated gene

relationships using expression profiles derived
from microarray data, and several algorithms
have been developed for inferring the gene
network model.9-11 In our previous studies, I
used two approaches to reconstruct the regula-
tory networks from the expression profiles of
known LexA-regulated genes. Network infer-
ence by the graphical Gaussian model (GGM)
determines the relationships of the genes
associated with the known LexA-regulated
genes.12 In the present study, I further devel-
oped this method by comparing the expression
profile of whole LexA/RecA-dependent genes
under different conditions by the Mann-
Whitney U test13,14 and hierarchical clustering
of expression data of empirically defined and
undefined genes. Furthermore, I inferred the
relationships of all LexA/RecA-dependent man-
ner genes by performing a stepwise network
inference approach based on GGM. 

Materials and Methods

Gene expression data
The fifteen expression profiles of 4289

genes derived by Courcelle et al.8 were down-
loaded from the GEO Database (http://www.
ncbi.nlm.nih.gov/geo/). This provided informa-
tion for the wild-type strain MG1655 (WT) and
isogenic mutant lexA1 strains GPL17 and
GPL18, with or without UV irradiation, produc-
ing four conditions.
Data were obtained from GEO series matrix

files (GSE9-GPL17_series_matrix.txt and
GSE9-GPL18_series_matrix.txt). 
These files record the expression levels as

log2-ratio of the raw expression signals. To
compare different platform data, I utilized Z-
scores transformed by log2-ratio.

Identification of LexA/RecA-
dependent manner genes
Genes identified from the WT strain that

showed a change in the expression level with
UV treatment were considered to be LexA/RecA
dependent. In contrast, genes in the lexA
strain or WT without UV irradiation that did
not show a change in expression were consid-

ered to be LexA/RecA independent.
First, the expression level for each condition

of the different strains (WT and lexA1) and
treatments (with or without UV) were com-
pared by the Mann-Whitney U test. All statis -
tical analyses were conducted using PASW
Now IBM SPSS, statistics version 17 software].
Genes were regarded as LexA/RecA-dependent
manner where their expression levels in WT
with UV were significantly different from other
conditions at P<0.01. After the LexA/RecA-
dependent manner genes were identified,
those with similar expression patterns to
known LexA regulated genes were detected by
hierarchical clustering.

Hierarchical clustering
In this method, the Euclidian distance

between the Pearson’s correlation coefficients
of expression profiles for each gene pair repre-
sents the “distance” between genes. Clusters
of similar genes are identified by delimiting a
boundary between clusters. The distance
between genes i and k is defined by:

[1]

where n is the total number of genes, and rij is
the Pearson correlation coefficient of the
expression profiles between genes i and j at
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Nexp conditions:

[2]

where gi is the arithmetic average of gik over
Nexp conditions. A distance matrix between
genes was calculated by the unweighted pair
group arithmetic average (UPGMA) method to
obtain clusters. The cluster boundaries were
delimited using a stopping rule.15

The number of clusters was estimated by
the variance inflation factor (VIF). This meas-
ures the separation between clusters and iden-
tifies variables that are involved in the multi-
collinearity of the multiple regression analysis,
and is defined by:

VIFi = rii–1 [3]

where rii–1 is the ith diagonal element of the
inverse of the correlation coefficient matrix
(CCM) between explanatory variables.16 m VIFs
are calculated from the CCM between m
explanatory variables.16 m VIFs are calculated
from the CCM between m explanatory vari-
ables.16

When the explanatory variables in equation
3 correspond to the gene profiles, the VIF
expresses the degree of linear relationship
between the profiles. The accepted cut-off
value to diagnose multicollinearity is 10.0,16

and this threshold was used to delimit each
cluster. The cut-off values were assessed from
the condition:

max{VIFi} < 10.0 for i = 1, 2, …, m [4]         

If the condition is satisfied, then no linear
relationship exists in the m sets of profiles; if
the condition is not satisfied then a linear rela-
tionship exists between profiles. Thus, the
algorithm searches for the maximum number
of clusters with no linear relationship.
Note that cluster boundaries derived by this

method depend on the gene set and distance
between clusters may change with different
sets. The unweighted pair group method uses
the arithmetic average (UPGMA) to separate
clusters. Although the distance of each gene
pair calculated at the first step is fixed by
expression data, the distance among clusters
may change according to the calculated gene
set.

Network inference by graphical
Gaussian modeling
The average expression profiles for mem-

bers of each cluster were calculated for input
into GGM. The CCM for each cluster pair was

calculated from their averaged expression pro-
files. In GGM, the network is inferred from a
partial correlation coefficient matrix (PCCM)
derived from the actual CCM15 between clus-
ters. 
A graph, G = (V, E) is drawn from the profile

data17,18 to represent the relationship between
M clusters, where V is a finite set of nodes, cor-
responding to the M clusters and E is a finite
set of edges between the nodes. E consists of
the edges between cluster pairs whose aver-
aged expression levels are conditionally
dependent, given the rest. Any pair of variables
that are not connected in the graph G are con-
ditionally independent. The conditional inde-
pendence is estimated using the partial correl -
ation coefficient, expressed by:

[5]

where rij|rest is the partial correlation coefficient
(PCC) between variables i and j, given the rest
of the variables, and rij is the (i, j) element in
the reverse of the CCM. Conditional independ-
ence between pairs of clusters was evaluated
by a stepwise and iterative algorithm for
covariance selection:19,20

Step 1. Prepare a complete graph of G(0) =
(V, E). The nodes correspond to M clusters, and
all of the nodes are connected. G(0) is called a
full model. On the basis of the expression pro-
file data, construct an initial CCM, C(0).
Step 2. Calculate the partial CCM P(t) from

the CCM C(t). t indicates the number of the
iteration.
Step 3. Find an element that has the small-

est absolute value among all of the non-zero
elements of P(t). Then, replace the element in
P(t) with zero.
Step 4. Reconstruct the CCM C(t+1) from

P(t). In C(t+1), the element corresponding to
the element set to zero in P(t) is revised,
while all of the other elements are left as the
same as those in C(t).
Step 5. Finalize the iteration by calculating

deviance. Here, I used two types of deviance,
dev1 and dev2:

The two deviances follow an asymptotic χ2-
distribution with n degree(s) of freedom and 1
degree of freedom, respectively. n is the num-
ber of elements that are set to zero until the (t
+1)th iteration. In our approach, n is equal to
(t+1). | C(t) | indicates the determinant of

C(t). Dnum is the number of different condi-
tions under which the expression levels of M
clusters are measured.
Step 6. If the probability value correspon-

ding to dev1 or dev2 is ≤0.05 then the C(t+1)
model is rejected and the iteration is stopped.
Otherwise, the edge between a pair of clusters
whose PCC is set to zero in P(t) is omitted
from G(t) to generate G(t+1) and t is
increased by 1; then, go back to Step 1.
The graph obtained using this procedure is

undirected and represents a pair of condition-
ally independent clusters; that is, when the
PCC for a cluster pair is equal to 0, the cluster
pair is conditionally independent, indicating
that there is no edge between the nodes
corres ponding to the clusters in the independ-
ence graph. In other words, the graph repre-
sents the genetic network of the M clusters
under consideration.
All of the calculations for the clustering,

estimation of cluster number and GGM were
performed on Automatic System for Inferring A
Network (ASIAN; http://eureka.cbrc.jp/asian/)
web site.21,22

Rearrangement of the inferred
graph
The initial networks produced by GGM are

complicated forms with many edges. Because
the magnitude of the PCC indicates the
strength of the association between clusters,
the intact network can be rearranged accord-
ing to the PCC value, to interpret the associa-
tion between clusters. The strength of the
association can be assigned by a standard test
for the partial correlation coefficient,23 Fisher's
Z transformation of partial correlation coeffi-
cients. That is:

[6]

Z has an approximate normal distribution,
thus the graph can be rearranged to show sig-
nificant associations by assessing the strength
of PCC between clusters, via the t-test
(P≤0.05).

Stepwise application of graphical
Gaussian model 
The SOS response in E. coli is complicated.

One means of clarifying the response is to use
a stepwise application of GGM to identify the
relationship between LexA/RecA-dependent
manner genes. This produces a simplified net-
work of clusters, which represents an overall
relationship between genes. One problem with
this, however, is that genes may not be equit -
ably distributed between clusters and further
interactions may be hidden within one large
cluster. To break up large clusters, further levels
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of interaction can be ascertained by iteration of
the model. Here, large clusters at each step were
further divided by VIF estimation, to indicate
networks within the cluster. Iterations were
repeated until all clusters were multicollinear.

Results

Estimation of LexA/RecA-depend-
ent manner genes
There were significant differences (P≤0.01)

between expression levels in WT-UV treatment
and other treatments in 709 genes. Of 47 pre-
viously identified LexA-regulated genes,6,7,24 33
were detected by a visual comparison.8 In our
study, 39 known LexA-regulated genes were
detected by Mann-Whitney U tests at P<0.01.
Two out of six known LexA-regulated genes
were difficult to detect from an expression
change as there were no data for WT and UV
treatments, and four other genes, which were
not induced by UV irradiation, were undetect-
ed by Mann-Whitney U tests. 
Hierarchical clustering was performed on

the detected 709 genes and three clusters with
709 genes were delimited: 309 in cluster 1, 9 in
cluster 2, and 391 in cluster 3. All known LexA-
regulated genes were segregated in cluster 3.
This implies that the expression of genes in
cluster 3 is controlled by LexA/RecA.

Hierarchical clustering iteration
Iteration of hierarchical clustering divided

cluster 3 (391) genes into seven further clus-
ters. The number of genes segregated by hier-
archical clustering iteration is shown in Table
1 (steps 1-2) and Table 2 (steps 2-4). The gene
names in each cluster are shown in the supple-
mentary Table S1. In the tables, the number of
known LexA-regulated genes in each cluster is
indicated in parentheses. After the first itera-
tion, cluster 5 (C1-5) was the largest and com-
prised 333 genes, including 32 known LexA-
regulated genes. At the second step clustering,
C1-5 was separated into five further clusters,
including a larger cluster with 215 genes (C2-
5). The 215 member genes in cluster 5 at the
2nd step (C2-5) divided into six clusters at the
3rd step. Finally, C3-5 divided into four clusters
(Table 2). The other clusters were not sub-
divided beyond the 3rd step, as they could not
be classified easily owing to multicollinearity
between sub-clusters. Almost all known LexA-
regulated genes segregated into three clusters
at the 2nd step, 12 in C2-1 and 17 in C2-5. At
the 3rd step, 17 known LexA-regulated genes
were divided into two clusters, 9 genes in C2-
5-5 and 8 genes in C2-5-6 (Table 2).

Network of LexA/RecA genes 
The initial network of inferred relationships

(Figure 1A), derived from ASIAN, identified 17
of the 21 possible edges between seven clus-
ters (approximately 80%) that included all esti-
mated LexA/RecA-dependent genes. After the
network was rearranged by extracting the rela-
tively strong associations between the clus-
ters, eight edges remained (Figure 1B).

Article

Table 1. Number of member genes in clusters. 

1st Step 2nd Step
Cluster Member Cluster Member

1 6(1) 1 2(1)
2 1(0)
3 1(0)

2 3(2) 1 1(1)
2 1(0)
3 1(0)

3 15(2) 1 1(0)
2 1(0)
3 3(0)
4 1(0)
5 5(2)
6 4(0)

4 17 (2) 1 2(0)
2 1(0)
3 1(0)
4 1(0)
5 9(2)
6 1(0)
7 1(0)
8 1(0)

5 333(32) 1 22(12)
2 28(2)
3 34(1)
4 34(0)
5 215(17)

6 11(0) 1 5(0)
2 2(0)
3 3(0)
4 1(0)

7 6(0) 1 2(0)
2 1(0)
3 1(0)
4 1(0)
5 1(0)

Figure 1. Inferred relationships among the
estimated 391 LexA/RecA-dependent
genes. Each cluster is indicated as a circle
and the number of members in each cluster
is indicated in parentheses. Positive rela-
tionships between clusters are shown with
solid lines and negative relationships with
broken lines. Strong relationships are indi-
cated by bold lines. (A) intact network
inferred by GGM; (B) rearranged network.

Table 2. Number of cluster members at each step. 

2nd Step 3rd Step 4th Step
Cluster Member Cluster Member Cluster Member

1 22(12) 1 4(1)
2 1(0)
3 15(11)
4 1(0)

2 28(2) 1 18(2)
2 3(0)
3 5(0)
4 1(0)
5 1(0)

3 34(1) 1 5(0)
2 5(0)
3 19(1)
4 3(0)
5 1(0)
6 1(0)

4 34(0) 1 29(0)
2 3(0)
3 2(0)
1 12(0)
2 14(0)
3 28(0)
4 4(0)

5 215(17) 5 28(9) 1 10(8)
2 13(1)
3 4(0)
4 1(0)

6 129(8)
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The rearranged network (Figure 1B) identi-
fied six positive associations and two negative
associations in a linear relationship with the
central branch. The association between
neighboring clusters was positive, while that
between non-neighboring clusters was nega-
tive. This remarkable feature is similar to a
network of LexA/RecA genes, induced as part of
a circuit mechanism in the SOS response.3,4 As
the linear relationships among the clusters
represent sequential events of gene expres-
sion, the negative relationships may represent
feedback regulation.

Partial interactions in LexA/RecA
regulation
The association between genes in each 1st

step cluster was examined in secondary and
subsequent level clusters. Even though C1-2
and C1-4 divided into three and eight clusters
at subsequent iterations of GGM, sub-clusters
in C1-2 and C1-4 were independent and no hid-
den interactions were seen between genes in
each sub-cluster. Figure 2 shows the inferred
network among the clusters at the 2nd step. At
the second step, one edge remained among the
three clusters at C1-1, five edges remained
among six clusters at C1-3, six edges remained
among five clusters at C1-5, four edges
remained among four clusters at C1-6, and
three edges remained among five clusters at
C1-6 (P≤0.05, t-test of PCC) (Figure 2).
Most networks were linear and featured pos-

itive relationships. Negative associations were
observed between non-neighboring clusters
(Figure 2B,C,D). This was similar to the pat-
tern observed at the first level of iteration

(Figure 1B).
A similar pattern emerged at the 3rd step

(Figure 3) where adjacent clusters formed pos-
itive associations and negative associations
formed between non-adjacent clusters. There
were two edges among four clusters derived
from C2-1, five edges among five clusters
derived from C2-2, three edges among six clus-
ters derived from C2-3, one edge among three
clusters derived from C2-4, and five edges
among five clusters derived from C2-5.
Although the edges in inferred networks

have no direction, the difference between pos-
itive and negative associations was apparent
in all networks. This specific feature appears
in both whole (Figure 1) and partial (Figures 2
and 3) networks constructed with statistically
estimated LexA/RecA-dependent manner
genes. This implies that the network of
LexA/RecA-dependent manner genes within
the SOS response includes some form of feed-
back between genes.

Discussion

GGM provides insight into the expression of
LexA regulatory genes implicated in the SOS
response. A stepwise hierarchical clustering
revealed interactions within larger clusters of
genes derived from earlier stages of the model.
As such, stepwise GGM may indicate interac-
tions between genes on a finer scale. 
In this study, I applied two statistical

approaches to estimate LexA/RecA-dependent
manner genes from E. coli. The expression lev-

els were measured in four conditions, but com-
parison of expression patterns between only
two conditions, wild type strain with UV or the
other conditions, is suitable for estimating the
LexA/RecA-dependent genes. In previous stud-
ies, 535 genes were detected by a four-way
comparison as WT with UV treatment-specific
genes.25 Although 62 LexA/RecA-dependent
genes were detected among 535 detected
genes in the previous study, the number of
known LexA-regulated genes detected in the
present study was higher. As such, stepwise
analysis may detect higher numbers of LexA-
regulated genes than other methods, such as
visual inspection or four-way comparison.8,25

A limitation of this approach is that the bio-
logical function of genes remains unknown.
Further, the derived networks are presented as
undirected graphs, so the order of gene expres-
sion in the SOS response is also unknown.
However, the inferred positive and negative
associations between clusters appear to reflect
the sequence of the SOS response, which
includes the circuit or feedback mechanism.3,4

Although part of the SOS response has been
described,2,4,5 the relationship among different
LexA/RecA-dependent genes is still unresolved.
Stepwise modeling presented here provides
insight into the regulatory networks implicat-
ed in the SOS response.
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