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Abstract Breast cancer is a major cause of death for

women. To improve treatment, current oncology research

focuses on discovering and validating new biomarkers for

early detection of cancer; so far with limited success.

Metabolic profiling of plasma samples and auxiliary life-

style information was combined by chemometric data fu-

sion. It was possible to create a biocontour, which we

define as a complex pattern of relevant biological and

phenotypic information. While single markers or known

risk factors have close to no predictive value, the devel-

oped biocontour provides a forecast which, several years

before diagnosis, is on par with how well most current

biomarkers can diagnose current cancer. Hence, while e.g.

mammography can diagnose current cancer with a sensi-

tivity and specificity of around 75 %, the currently devel-

oped biocontour can predict that there is an increased risk

that breast cancer will develop in a subject 2–5 years after

the sample is taken with sensitivity and specificity well

above 80 %. The model was built on data obtained in

1993–1996 and tested on persons sampled a year later in

1997. Metabolic forecasting of cancer by biocontours

opens new possibilities for early prediction of individual

cancer risk and thus for efficient screening. This may

provide new avenues for research into disease mechanisms.

Keywords Metabolomics � Early detection � Multivariate

analysis � Plasma � Danish diet � Cancer and health cohort �
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1 Introduction

Breast cancer is the major cause of death for women in the

first decade after menopause. Despite insight into several

disease risk factors, these explain only a minor fraction of

the incident cases. Continuous improvements in sensitivity,

resolution and precision of modern explorative technolo-

gies like metabolomics continuously increase the potential

to identify additional risk factors. More importantly, the

platforms also form a basis for prediction modeling at the

individual level, i.e. individual prediction of disease risk.

This translational aspect has not been exploited to any large

extent until now, primarily due to the inherent difficulties

associated with the technologies. Omics-based biomarker

profiling is a complex and truly multi-disciplinary subject.

Proliferation of the tumor at time of diagnosis is prob-

ably the factor with the greatest effect on survival rates

amongst cancer patients. Consequently, an important focus

in cancer research is to improve the ability to detect ma-

lignancy prior to the stage where the tumor has evolved

into a clinically detectable disease. Breast cancer is the

most common type of cancer diagnosed among women in

the Western part of the world. In Europe, 458,337 women

were diagnosed with breast cancer in 2012 and 131,259

women died of breast cancer (Ferlay et al. 2012). World-

wide, close to 1.4 million women are diagnosed with breast

cancer each year and approximately one-third die from this
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disease. To facilitate detection of breast cancer prior to the

occurrence of clinical symptoms, many Western countries

have introduced mammography screening programs that

are broadly aimed at middle-aged women. Mammography

offers a fast diagnostic test for potential early stage ma-

lignancies. The risk of too many false positives in mam-

mography screening, that is, detection of tumors that never

progress to a stage that will affect the wellbeing of the

patient has, however, been heavily discussed (Independent

UK Panel on Breast Cancer Screening 2013). In the current

analysis the cancer is not present (let alone diagnosed) at

the time of the sampling but is diagnosed years later. It is

the prediction of this later diagnosis of cancer that is the

aim of this study. Such a method of early prediction of

breast cancer risk at a time before diagnosis will have

further substantial ethical implications but may also offer

new leads for understanding cancer causation and for early

detection of cancer.

2 Methods

2.1 Cancer cohort and samples

In the current project, samples from 838 Danish women

enrolled in theDanishDiet, Cancer andHealth (DCH) cohort

have been analyzed. The cohort was established in the years

1993–1997 and consists of a total of 57,053 men and women

free of cancer at the time of recruitment (Tjønneland et al.

2007). The DCH cohort is part of the European Prospective

Investigation into Cancer and nutrition (EPIC) study in-

cluding cohort participants from ten European countries. In

the part of the cohort investigated here, half the women were

diagnosed with breast cancer between time of enrolment and

the chosen follow-up date (December 31, 2000). From the

same cohort, an equal number of randomly selected women

free of cancer during the same timespan, were selected as

controls. These were not matched on age. Plasma samples

werewithdrawn in a non-fasting state, and citratewas used as

anticoagulant. The samples were stored at -150/-80 de-

grees until analysis.

2.2 Data collection and analysis—NMR

The plasma samples were analyzed by proton Nuclear

Magnetic Resonance (1H NMR), see Online Supplemental

Materials. The 1H NMR analytical platform (Beckonert

et al. 2007) has several advantages compared to other

common metabolomic analytical platforms. In particular, it

is inherently quantitative and provides an unbiased and

highly reproducible simultaneous observation of multiple

metabolites. The so-called ‘curse of dimensionality’

(Bellman 1957) poses a practical hindrance for how much

information can be obtained when few samples and many

variables are measured. In the 1H NMR data, there are

resonances from each hydrogen atom in hundreds of

molecules sampled in several thousand variables. The high

number of variables increases the risk of spurious corre-

lations and this is a fundamental problem in non-targeted

and comprehensive analyses (Kjeldahl and Bro 2010). A

way to counter the influence of spurious correlations, is to

have a sufficient number of samples compared to the

number of variables and to avoid inflating the number of

variables if possible. In this case, the NMR spectra were

transformed into a less redundant representation by using

integrals of 189 identified spectral regions. These regions

were further reduced to 129 variables as some regions

contained resonances from the same chemical compounds

(see Online Supplementary Information). Each individual

region was carefully selected and assessed and, in order to

avoid selection bias, the best approach for integrating was

decided for each in a blinded way, i.e. without any

knowledge of the outcome (cancer status).

2.3 Data collection and analysis—additional

variables

In addition to the NMR data, 47 variables contained in-

formation about the lifestyle and phenotype of the subjects,

resulting in a total of 176 variables. A complete list of these

additional parameters, which mainly relate to anthropo-

metrics, life style habits such as smoking, alcohol intake

and dietary habits, can be found in the Supplementary In-

formation. These variables will be named ‘lifestyle’ vari-

ables subsequently for convenience although it is to be

remembered that the variables cover broader than just

lifestyle.

2.4 Model construction and validation

All models were built using the chemometric classification

model, Partial Least Squares Discriminant Analysis (PLS-

DA) (Geladi and Kowalski 1986; Næs and Indahl 1998),

only using samples taken in the period 1993–1996; 709

samples in total. Upon establishing the actual classification

model on samples from this period, the model was applied

to data from 129 samples subsequently obtained in 1997.

3 Results and discussion—forecasting breast
cancer status at follow-up

3.1 Hormone replacement therapy

Consider the number of years using hormone replacement

therapy (variable ‘‘HRT—years of use’’). This is an
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established risk factor for breast cancer (Tjønneland et al.

2004). A linear discriminant analysis using just hormone

replacement therapy yields a classification error of 42 %

which is close to a random assignment. This shows the

limited discriminatory power of this single risk marker.

The present dataset is rather high in the number of samples

and therefore also in statistical power. Null hypothesis

testing of ‘‘HRT—years of use’’ reveals apparent strong

results (pHRT—years of use = 0.00001). Although this sug-

gests real differences between cases and controls on the

population level, it is clear from the actual classification

that this variable offers no power in terms of predicting the

future status (cancer/no cancer) of an individual.

3.2 Biological pattern analysis

Rather than using single variables, it is imperative to use a

sufficient number of relevant variables to reflect the bio-

logical patterns that relate to the given endpoint. The

chemometric classification model PLS-DA allows building

multivariate classification models with correlated variables.

When combining all the 47 available lifestyle variables

including ‘‘HRT—years of use’’, a multivariate classifica-

tion model can be obtained with a classification error of

40 %. This is not better than a model with only years of

hormone treatment. None of these models have any real

predictive power.

Instead of relying only on the traditional life style and

risk markers, it is possible to do data fusion of the NMR

and additional variables (Bro et al. 2013). By using vari-

able selection based on forward selection (Andersen and

Bro 2010; Nørgaard et al. 2000; Ståhle and Wold 1987) a

subset of variables were selected one by one until the cross-

validated prediction error did not improve (nine randomly

selected segments averaged over seven repetitions). This

led to a classification model using a total of 27 of the

original variables. The resulting model provides a hitherto

unseen effective means for forecasting breast cancer with

an error of 18 %. The quality of all three mentioned models

is given in Table 1 and associated receiver operator char-

acteristics (ROC) curves (Zweig and Campbell 1993) in

Fig. 1. A model based only on NMR was also evaluated

and led to a model with a classification error of 22 %.

Hence, the NMR part of the data by far contains the most

important part of the information. In the obtained classifi-

cation models, it was investigated if any one variable was

crucial for the classification, but this was not the case.

Instead, it is the pattern of biological data—a biocontour—

which is required for accurately predicting the risk. In fact,

any of the variables may be substituted without major loss

of predictive power indicating substantial informational

redundancy in the data set.

3.3 Model validation

Rigorous validation is of utmost importance, especially

when the variable to sample ratio is high and the relevant

signals are deeply buried in the data. Two approaches are

often used for validating biological models. One is inter-

pretation of the model which may also give clues to more

fundamental insight on cancer while another approach for

validation is to test the model on new data. Both are pur-

sued here.

So-called score plots can be deceiving as the extent of

overfitting is difficult to assess (Kjeldahl and Bro 2010).

The classification model is based on a PLS-DA model of

27 selected variables. The regression vector indicates the

importance of the 27 variables as shown in Fig. 2 and may

serve as a basis for understanding the model.

For example, it is observed that hormone replacement

therapy (HRT—years of use) has a large positive regres-

sion coefficient confirming the fact that hormone treatment

is considered a risk factor. Due to spectral overlap it is

difficult to uniquely identify specific NMR variables, but

one interesting case is constituted by a peak at 5.71 ppm. It

seems that it is negatively associated with cancer

incidence.

Further investigations aimed at assigning the NMR

signal, led to the conclusion that the chemical shift fits that

of cis-aconitate which is an intermediate molecule in the

Krebs cycle (tricarboxilic-acid cycle) in between the iso-

merization of citrate to isocitrate and also known to be

relevant in relation to cancer (Wallace 2012).

Note that Ethanol (measured by NMR) has a negative

regression coefficient. Ethanol intake in general, has a

known positive effect on development of breast cancer, so

the negative coefficient may at first be disturbing. How-

ever, the regression coefficients in an empirically based

regression model can be opposite (or absent) to the known

causal direction. This is also known as Simpson’s paradox

and it is a very common, quite simple and yet often

overlooked phenomenon (Simpson 1951). Regression

Table 1 Classification results using a single risk factor (years of

hormone treatment), a palette of lifestyle variables (47 in total) and

using NMR data together with additional data

AUC Classification error (%)

Calibration 1997 Samples

Hormone replacement therapy 0.65 42 43

47 Risk factors and phenotypes 0.68 40 43

All data 0.89 18 20

AUC area under the curve (where one indicates a perfect classification

and 0.5 indicates no predictive power)
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coefficients must be interpreted with much more care when

there is no experimental design behind the data. In fact

several cautionary warnings are appropriate when dealing

with interpretation of untargeted empirical models:

• Single variables with high coefficients (or correlations)

are not necessarily risk factors in their own rights. For

example, according to the current data, HRT may also

be seen as preventive for some persons in terms of

cancer depending on other variables. The results in

Table 1 clearly show that hormone treatment in itself

implies very little individual risk as judged from these

data.

• The variables included in the model above are not to be

expected as the most likely candidates for explaining

why we can predict cancer. The variables are merely

accurate indicators of the biocontour and nothing

statistically or biologically suggests that these would

offer the most appropriate explanation. For example

HRT (or any other variable) were found to be

replaceable by other variables yet still maintaining the

same classification power. We call this the cage of

covariance; maintenance of homeostasis as a result of a

complex metabolic network implies that many factors

may be equally influenced by any biochemical change.

This is the downstream consequence of pleiotropy.

3.4 The concept of a biocontour

The main virtue of NMR is that it measures a fair number

of high concentration (bulk) plasma metabolites with high

precision and reproducibility. Apparently the bulk plasma

metabolome is perturbed in the subjects which later de-

velop breast cancer and NMR measures enough metabo-

lites with high precision that the biological cage of

covariance can reflect the perturbed plasma metabolome,

i.e. an altered biological contour of the variables at large.

Theories may well be developed based on the totality of

the biocontour—not just the selected 27 variables—once

its variables have been unequivocally identified to allow

bioinformatics analyses. It would be possible that several

factors could point to metabolic pathways important for

breast cancer prediction and could therefore form an im-

portant avenue for novel mechanistic research into a po-

tential relation with causation.

While identifying the hundreds of metabolites in the

current biocontour can be interesting, it will also be a time-

consuming endeavor. We suggest that the biocontour has

immediate importance in its own right as a predictor for

future cancer regardless of the level to which the contour

can provide mechanistic understanding. Hence, as a more

powerful means for validating the model, the real classi-

fication power is assessed using independent samples. In

Table 1, it is shown that when the model based on NMR

and lifestyle data is used on samples from a subsequent

year, the predictive power is maintained. This provides

very strong evidence for the robustness and validity of the

current predictive finding. The obvious next step will be to

investigate, if the model is indicative of cancer in general

or just breast cancer. The data set also contains information

on additional 428 colon cancer cases and we have analysed
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these samples as well, but there is no predictive power in

terms of colon cancer in the data (results not shown). More

investigations should be performed in other cohorts for

further validating the specificity of the current breast can-

cer prediction model.

4 Conclusion

We have described a biocontour that can forecast indi-

vidual diagnosis of breast cancer several years ahead. It has

been subjected to strong validation. Its applicability for

other populations of women with other diets, lifestyles,

medications and habits is unknown and should be investi-

gated before attempting to translate our model into clinical

use. The perspectives in early detection of other cancers

and chronic diseases by use of biocontours from human

samples fused with life style variables from apparently

healthy persons are of worldwide importance. We advocate

that biocontours get a much more prominent role in disease

diagnostics, including cancer prediction and as potential

new leads for complex biological interactions in disease

causation.
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