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ABSTRACT 

Mapping urbanization and ensuing environmental impacts using satellite data combined with landscape metrics has become a hot 

research topic. The objectives of the study are to analyze the spatio-temporal evolution of urbanization patterns of Kigali, Rwanda 

over the last three decades (from 1984 to 2015) using multitemporal Landsat data and to assess the associated environmental impact 

using landscape metrics. Landsat images, Normalized Difference Vegetation Index (NDVI), Grey Level Co-occurrence Matrix 

(GLCM) variance texture and digital elevation model (DEM) data were classified using a support vector machine (SVM). Eight 

landscape indices were derived from classified images for urbanization environment impact assessment. Seven land cover classes 

were derived with an overall accuracy exceeding 88% with Kappa Coefficients around 0.8. As most prominent changes, cropland 

was reduced considerably in favour of built-up areas that increased from 2,349 ha to 11,579 ha between 1984 and 2015. During those 

31 years, the increased number of patches in most land cover classes illustrated landscape fragmentation, especially for forest. The 

landscape configuration indices demonstrate that in general the land cover pattern remained stable for cropland but it was highly 

changed in built-up areas. Satellite-based analysis and quantification of urbanization and its effects using landscape metrics are found 

to be interesting for grassroots and provide a cost-effective method for urban information production. This information can be used 

for e.g. potential design and implementation of early warning systems that cater for urbanization effects.  

1. INTRODUCTION

Since the middle of the twenty first century, unprecedented 

increase of urban population has been worldwide experienced. 

In 1950, 30% of the world’s population was urban and 66% of 

the world’s population is projected to be urban by 2050 (United 

Nations, 2015). The urbanization phenomenon is continually 

resulting in land use conversion for accommodating new urban 

structures. Globally, more than 5.87 million km2 of land have a 

positive probability of being converted into urban areas by 2030 

(Seto et al., 2012) and it is expected that approximately 14 

million hectares of arable land in developing countries will be 

converted for urban purposes from 1990 to 2020 (Rosegrant et 

al., 1997). Therefore, monitoring spatio-temporal urban growth 

patterns is paramount for supporting controlled urban 

development and satellite based data are potential for such kind 

of monitoring. A growing body of literature found the 

combination of spatio-temporal satellite data and landscape 

metrics (LM) worthwhile in urban land cover change analyses 

and environmental impact assessment (Aguilera et al., 2011; 

Furberg & Ban, 2010, 2012; Haas & Ban, 2014; Haas et al., 

2015; Herold et al., 2005; Herold et al., 2003; Huang et al., 

2007; Kuffer & Barrosb, 2011; Liu & Yang, 2015; Seto & 

Fragkias, 2005). However, few case studies deriving landscape 

indices based on satellite data exist for Sub-Saharan African 

cities, giving impetus for the proposed study. The remainder of 

this paper is structured as follows: Section 2 is dedicated to the 

previous works, whilst section 3 describes data used and the 

study area. The methodological approach is discussed in section 

4. In Section 5, the analysis and discussion of the results is

presented in detail. Section 6 concludes the study and lists some 
1lines of future research direction. 

2. RELATED WORKS

Spatio-temporal urbanization analysis and environmental 

impact assessment involving the combination of remote sensing 

products has become a hot research topic in the last fifteen years 

and important literature was inventoried. Fichera et al. (2012) 

carried out a change detection analysis in Avellino, Italy from 

1954 to 2004 using multi-source imagery including aerial 

photographs, ancillary data and Landsat images. Local urban 

landscape patterns using landscape metrics were investigated by 

same authors for evaluating landscape indices measured along 

the two transects (W-E and SW-NE directions) converging in 

the core urban area of the Avellino City. Haas and Ban (2014) 

evaluated urbanization and associated environmental impacts in 

China's three largest and most important urban agglomerations: 

Jing-Jin-Ji, the Yangtze River Delta and the Pearl River Delta. 

They determined urban indices for quantifying urban expansion 

based of classified Landsat and HJ-1A/B images. Classified 

remotely sensed images were further transformed into 

ecosystem services and a monetary approach was investigated 

to determine changes in ecosystem service values in the study 

area. Furberg and Ban (2012) studied urban land cover change 

detection using pixel-based Support Vector Machine 

classification in the Greater Toronto Area (GTA), Canada 

between 1985 and 2005. Landscape metrics analysis was 

performed based on classified Landsat images for characterizing 

the landscape patterns in the GTA. Interestingly, a comparative 
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study on satellite monitoring of urbanization between 

Stockholm, Sweden and Shanghai, China was conducted by 

(Haas et al., 2015) using Landsat images from 1989 to 2010. 

The impact of urbanization on ecosystem services supply was 

investigated and a monetary approach was used for quantifying 

the value of ecosystem services in the study areas. Herold et al. 

(2003) applied objected-oriented images analysis on very high 

resolution images (IKONOS and QuickBird) coupled with 

texture analysis for land cover assessment in Santa Barbara, 

California, USA. Similarly, the spatial and temporal dynamics 

of urban sprawl in Guangzhou, China was characterized by (Yu 

& Ng, 2007) by combining Landsat TM images, landscape 

metrics and an urban–rural gradient analysis along two selected 

transects. Post-classification land cover change detection 

analysis using multitemporal Landsat images was carried out by 

(Yuan et al., 2005) in seven-county Twin Cities Metropolitan 

Area in Minnesota. Güler et al. (2007) studied land cover 

change in Samsun, Turkey between 1980 and 1999 using hybrid 

classification and post-classification on Landsat images. While 

analyzing the urban expansion in Isfahan, Iran between 1956 

and 2006, (Soffianian et al., 2010) used Landsat images for 

intermediate change detection analysis in residential areas 

between 1975 and 2001. Zhang and Ban (2010) coupled the V–

I–S model to Tasseled Cap Transformations for monitoring the 

impervious surface sprawl in the Great Shanghai Area, in 

China. The authors satisfactorily disaggregated both impervious 

and non-impervious surface sprawl with more than 90% overall 

accuracy. In East Africa, studies using Landsat data as input for 

urban land cover mapping are limited despite free access to raw 

data. However, some successful examples do exist. Typical 

ones include land use monitoring using multi-sensor satellite 

data in Nakuru, Kenya by (Mubea & Menz, 2012) and urban 

growth pattern and scenario development in Kampala, Uganda 

between 1989 and 2010 (Vermeiren et al., 2012). Furthermore, 

Abebe (2013) quantified urban growth patterns in Kampala, 

Uganda using Landsat imagery and LM. For the case of 

Rwanda, there are few studies that involve the use of remote 

sensing techniques for land cover mapping and monitoring and 

more studies are needed, especially in mapping highly paced 

urban land cover changes. Some of the remote sensing efforts 

include the analysis of land cover change dynamics in Kigali, 

Rwanda (Akinyemi et al., 2016) using Landsat images and an 

intensity analysis framework. Besides, Basnet and Vodacek 

(2015) carried out a land cover tracking study in the cloud prone 

Lake Kivu region by combining Landsat imagery and ancillary 

data. 

3. STUDY AREA AND DATA

DESCRIPTION 

3.1. Study Area 

Kigali City is located in Rwanda in the Central-East African 

region. Geographically, it is located slightly in South of Equator 

at 1°56′38″S and 30°3′34″E. Kigali is Rwanda’s  capital and 

largest city at the same time being the country’s most important 

business centre and main port of entry with a population 

estimated at 1.135 million residing in an area covering 730km2

(National Institute of Statistics of Rwanda, 2012). The city is 

composed of three districts namely Gasabo, Nyarugenge and 

Kicukiro. Figure 1 illustrates the location of Kigali within 

Rwanda in East African region.  Land cover in the study area is 

composed of built-up areas fulfilling different urban functions; 

green space composed of forest, open vegetated land, 

agriculture, and wetlands. Bare lands are also found scattered 

throughout different corners of the city especially in the urban 

fringe and rural areas of the city and consist of land under 

construction and uncovered soil. Water bodies composed of fish 

ponds, streams and part of Lake Muhazi in the extreme north of 

Kigali are likewise important land cover class in identified. 

Figure 1: Location of Kigali City 

3.2. Data Description 

Land cover data was derived from three Landsat images with 30 

meter resolution downloaded from the United States Geological 

Survey (USGS). The images with almost same anniversary 

dates were selected. The first Landsat-5 Thematic Mapper (TM) 

image was acquired on 20th June 1984, the second Landsat-7 

Enhanced Thematic Mapper Plus (ETM+) image was acquired 

on 30 August 2001, and the third image was acquired on 12th of 

July 2015 using Operating Landsat Imager (OLI) on board of 

Landsat-8. The three images were taken with satellite track Path 

172 and Row 061. A Digital Elevation Model (DEM) with 30m 

resolution was also acquired and included in the classification 

input bands. The DEM used in this study is the originated from 

Shuttle Radar Topographic Mission (SRTM 1) Arc-Second 

Global available in USGS data bank. All acquired data were 

projected in Universal Transverse Mercator (UTM) with the 

WGS-84 datum and the images were Level 1 products.  

4. METHODOLOGY

4.1. Image Pre-processing 

Landsat images, originally downloaded in separate files, were 

first stacked, thus assembling the bands into a single TIFF file. 

All three images were spatially subset using the study area 

bounding box. Linear histogram stretches and different band 

combinations were performed allowing on-screen visual 

inspection of spatial land cover distribution. The NDVI was 

derived from each of the three images. This was performed by 

rationing the red and near infrared bands (R+NIR/R-NIR) by 

applying the classic mathematical formula for NDVI 

computation (Bannari et al., 1995). Texture analysis using 

Gray-Level Co-occurrence Matrix (GLCM) features was 

performed to be integrated in the classification. Among the 14 

GLCM texture measures proposed by Haralick and Shanmugam 

(1973),  only variance was computed on Red and NIR bands. 

GLCM-Variance was identified  as best performing texture 

measures while combined with spectral bands and NDVI for 

generally improving land cover classification accuracy (Lu et 

al., 2014; Shaban & Dikshit, 2001; Wentao et al., 2014) and 

particularly isolating formal and slum areas in urban 

environment (Kuffer et al., 2016). With regard to co-occurrence 

pixel joint probabilities calculation, the chosen direction was 

invariant (00) and an 11 by 11 window size was empirically 

determined as most suitable.  

4.2.  Land Cover Classification 

4.2.1. Land Cover Classification Scheme 

The first step towards image classification was to determine the 

land cover categories to include in the classification scheme. 

Seven land cover classes plus shadows were proposed as 
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illustrated in Table 1. The shadows class was merely taken into 

account for practical application. Prior to landscape metrics 

analysis, a rural mask was applied for delineating urban green 

space. We hypothesized that open vegetated land localized in 

the core built-up zones and in the nearest urban fringe zones as 

urban green spaces since they are devoid of agricultural activity. 

This land cover category includes urban gardens, parks, golf 

courses, and green patches in the urban core. As a result, the 

landscape metrics were generated on eight land cover classes 

(see Figure 2). 

 Table 1: Land cover class description 

Land cover type Description 

Open vegetated 

land 

Cultivated zones occupied with either  

perennial or seasonal crops, postharvest 

fields, pasture lands 

Forest 

Areas occupied by closed forest plantation 

with 65% canopy cover or higher, 

evergreen and mixed forests 

High-density 

Built-up (HDB) 

Built-up area with congested buildings, 

includes informal settlements 

Low-density 

Built-up (LDB) 

Built-up area with ventilation space 

especially high standing zones, tarmac 

roads, scattered settlements in urban fringe 

zones and in rural areas 

Bare land Uncovered, permissive land/soil 

Water 

Permanent natural water bodies such as 

lakes, rivers, fish ponds reservoirs and 

man-made water bodies, water table in 

irrigated land 

Wetlands 

Low land with permanent water with 

floating aquatic vegetation especially 

papyrus (Cyprus papyrus), seasonal 

flooded low land surrounded by high lands 

Shadows 
Shadowed zones resulting from sensors' 

directions 

4.2.2. Training and Validation Samples Selection 

Both training areas and validation samples were composed of 

pixels randomly selected on row images using ground truth 

regions of interest (ROIs) in ENVI 5.3.1. A cross-checking of 

the corresponding landscape features in the study area was 

performed by referring to Google Earth. For each of the three 

study periods, a total number of more than five thousand pixels 

were selected for training areas. On the other hand, more than 

eight thousand pixels were chosen the validation samples for 

each study period.  The sample size for both training and 

validation pixels was proportionally determined based on the 

size of approximate area occupied by each land cover class. 

However, an emphasis was put in increasing the sample size in 

wetlands class for avoiding pixels’ mixture given that the 

spectral signature was similarly confusing with open vegetated 

land class. 

4.2.3.  Support Vector Machine Classification 

Pixel-based support vector machine (SVM) classification was 

performed using ENVI 5.3.1 after analyzing the training areas. 

The newly computed NDVI and GLCM bands together with the 

DEM were combined with the original Landsat bands 1, 2, 3, 4, 

5 and 7 for Landsat TM/ETM, and bands 2, 3, 4, 5, 6 and 7 for 

Landsat 8 as input for SVM supervised classification at 30m 

resolution. The SVM classifier was selected given that it is 

considered as superior classification algorithm yielding good 

classification result. SVM is a non-parametric supervised 

classification algorithms based on statistical learning theory 

(Kavzoglu & Colkesen, 2009). In various studies, the SVM was 

found as  the most outperforming algorithm in improving 

classification accuracy comparing to other  parametric and non-

parametric algorithms (Foody & Mathur, 2004; Huang et al., 

2002; Kavzoglu & Colkesen, 2009; Niu & Ban, 2013; Shao & 

Lunetta, 2012).  The SVM kernel type used is Radian Basis 

Function (RBF) and the Gamma in kernel function was 0.1 

corresponding to the inverse number of input bands. The 

penalty parameter together with pyramid levels and 

classification probability threshold were left with default values 

of   0, 0, and 100, respectively.  

4.2.4. Post-classification Processing and Accuracy 

Assessment 

Classification results were compared to the true information 

classes in the reference image.  A series of post-classification 

clean-up operations were performed. A Sieve classes algorithm 

was first used for filtering the classified images which was 

suffering from small erroneously classified pixels. The filtering 

process allowed a threshold to be specified for the smallest 

polygon not to be merged into a neighbor. After filtering the 

classified image and assigning new value using Majority 

Analysis, land cover classes were aggregated for producing 

smoothed and meaningful maps. After post-classification clean-

up operation, a confusion matrix was generated for accuracy 

assessment.  

4.3. Landscape Metrics 

The LM methodology consists of deriving indices on land cover 

maps using one (or more) of the six metrics methods namely 

edge-area, shape, core area, contrast, aggregation and diversity 

metrics (McGarigal et al., 2002). In the present study, metrics 

indices were derived using FRAGSTATS Version 4.2.1 

software which is a spatial pattern analysis program for 

quantifying landscape structure (McGarigal et al., 2002). The 

landscape patterns were computed and analyzed at class and 

landscape levels. In total, eight indices were computed and 

analyzed for spatially characterizing the study area. These 

indices were subdivided into two categories. The first category 

includes four landscape composition indices namely Class Area 

(CA), Number of patches (NP), Patch Density (PD) and Largest 

Patch Index (LPI). According to (McGarigal et al., 2002) CA is 

interpreted as the sum of the areas of all patches of the 

corresponding patch type and it is measure in hectares. The NP 

consists of the number of patches of the corresponding patch 

type, whilst the PD refers to the number of patches of the 

corresponding patch type divided by total landscape area.  

The LPI corresponds to the percentage of the area of the largest 

patch of the corresponding patch type divided by total landscape 

area. The second LM category is composed of four landscape 

configuration indices namely Total Edge Contrast Index 

(TECI), Contrast-Weighted Edge Density (CWED), Landscape 

splitting Index (LSI) and Aggregation (AI). (TECI) is the sum 

of the lengths of each edge segment involving the 

corresponding patch type multiplied by the corresponding 

contrast weight, divided by sum of the lengths (m) of all edge 

segments involving the same patch type. CWED refers to the 

sum of the lengths of each edge segment involving the 

corresponding patch type multiplied by the corresponding 

contrast weight, divided by the total landscape area. LSI equals 

.25 (adjustment for raster format) times the sum of the entire 

landscape boundary and all edge segments within the landscape 

boundary involving the corresponding patch type, divided by 

the square root of the total landscape area. Finally, AI equals the 

number of like adjacencies involving the corresponding class, 

divided by the maximum possible number of like adjacencies 

involving the corresponding class.  
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Based on the initial classification comprising eight land cover 

classes, the open vegetated land class was split into the two 

classes including cropland and urban green spaces (UGS). Thus, 

landscape analysis was carried out on eight land cover class (see 

Figure 2) plus a shadows class which was excluded in the LM 

results. The UGS were delineated using urban-rural mask by 

taking into account the official urban administrative boundary 

and the urbanization indicators including dense built-up area 

and predominance of traffic network infrastructure. 

5. RESULTS AND DISCUSSION

5.1. Land Cover Classification 

Table 2 and table 3 is illustrating both the overall accuracy and 

Kappa Coeffient and the confusion matrices for the classified 

images in three considered periods (i.e. 1984, 2001, and 2015. 

Meanwhile table 4 represent both the producer’ and user’s 

accuracies. Figure 2 illustrate land cover results plus the urban 

green space (UGS) produced using by rural mask technique. 

Figure 2: Land cover classes in three periods 

Table 2: Classification accuracies and Kappa Coefficients 

Overall accuracy and Kappa Coefficients 

1984  2001  2015 

Overall accuracy 88.5%  88.6 % 93.6% 

Kappa Coefficient 0.8542  0.8578 0.9177 

Table 3: Producer’s and user’s accuracies (in %) 

Producer's accuracies User's accuracies 

No Land cover 1984      2001       2015 1984 2001 2015 

1 Open land 98.8 99.8 98.4  71 73.6 80.6 

2 Forest 77.1 76.6 83.1 86 97.1 85.8 

3 HDB    94 97.9 98.4 96.7 92.1 98.3 

4 LDB 69.5 65.5  92 96.7 92 93.2 

5 Bare land 68.7 53.4 61.6 96.7 98.9 92.4 

6 Water 95.5 97.6 99.6 93.4 89.8    100 

7 Wetlands 84.1 87.4 93.3 97.5 97.8 98.8 

8 Shadows 99.6 73.9 90.5    100   100    100 
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The overall accuracy for 1984 classification was 88.5% with 

a Kappa Coefficient of 0.85. For the 2001 image, 88.6% 

accuracy was achieved with a Kappa Coefficient of 0.86. 

Similarly, the overall classification was evaluated at 93.8% 

with a Kappa Coefficient of 0.91 for the 2015 image. 

Open land was least confused with other classes in all three 

periods. The most difficult class to distinguish was bare land 

with only 53.4% accuracy in 2001, 61.6% in 2015 and 

68.9% in 1984, respectively. Forests scored a good 

classification in 2015 with more that 80%, whilst the results 

were slightly worse (76.6%) in 2001 and 77.1% in 1984.  In 

all three classified images, bare land was the most confused 

class where between 25% and 31% validation samples were 

counted as open vegetated land. The same class has also the 

lowest producer’s accuracy in all three periods evaluated at 

53.4% in 2001, 68.7% in 1984, and 61.6% in 2015. The 

relative high misclassification rate in bare land is attributed 

to the fact its spectral signatures is very much alike that of 

post-harvest fields. Forests are also confused with open 

vegetated land where 19.7%, 22.7%, and 14.7% of class 

validation samples were counted as agriculture in 1984, 

2001, and 2015 respectively. High commission errors were 

observed in 1984 in open land and forest class with 29% and 

14% over-estimation. Meanwhile, the omission error is 

estimated at 30.5% in LDB, 31.2% in bare land and 22.9% in 

forest in the same period. In 2001, LDB is mostly confused 

either with neighboring HDB or with open vegetated land. 

The confusion in LDB is likely to emanate mainly from the 

applied threshold during post-classification operations, i.e. 

sieving and majority analysis and classification aggregation. 

In some rural areas with sloped zones contiguous to 

shadows, LDB are overestimated as they are spectrally 

interpreted as building. This was the case especially in 1984 

where important scattered settlements are detected in the 

south-west zone. The inevitable mixed pixels in these zones 

neighboring shadows are attributed to the scene illumination 

in the hilly areas. Based on classification results, pixel-based 

SVM classification performed well in the complex landscape  

of Kigali with heterogeneous land cover expanded on hilly 

and shadowed terrain. The disaggregation of land cover class 

into sub-classes helped in avoiding overlap between classes 

and thus eventually misclassifications. Furthermore, GLCM 

(Variance) measure derived from red and NIR bands 

performed well in increasing land cover classes’ separability 

in feature space and the inclusion of DEM in classification 

helped in detecting the wetland extension as depicted on 

Google Earth.  The integration of a vegetation index band 

(NDVI) and a DEM into Landsat optical bands for SVM 

classification is believed to have contributed significantly to  

the good classification result as well. Particularly, the 

elevation data and NDVI proved effective in enhancing class 

separabilities and in discerning low land occupied by dry and 

flooded wetlands with slopes and hilly terrain.  

5.2. Landscape Characteristics 

The total landscape area is estimated at 73524.6 ha. 

Landscape is dominated by cropland in all three periods. 

Croplands decreased between 1984 and 2015 from 77.3% to 

56.7% respectively. Forest decreased from 1400ha to 837ha 

between 1984 and 2001. However, forest cover increased 

again between intermediate and final dates with by 34.4% of 

the forest coverage in middle date. Built-up areas (both HDB 

and LDB) increased at high pace from 2 349 ha in 1984 to 

11579ha in 2015. Water increased after 2001 as a result of 

the creation of an artificial lake in the city centre and the 

emergence of a lake south-east of Kigali resulting from to 

water rise and floods in the Nyabarongo wetlands. Other 

variations observed in the water class occur due to seasonal 

flooding in the wide Nyabarongo flood plain along the 

Southern border of the city landscape. Urban green spaces 

were manually delineated based on core urban sectors and a 

rural mask. Therefore, their increase in three periods is 

proportional to the increased of build-up areas. Furthermore, 

the change wetlands can be ascribed to misclassifications 

given that this class is confused in some locations with either 

cropland or forest. This is not a surprise because large parts 

of the wetlands are occupied by crops and because the 

nearest hillsides opposite the wetland are forested areas. The 

number of patches (NP) has increased from 1,759 in 1987 to 

2,826 patches in 2015. Between 1984 and 2001, the number 

of patches remained almost the same (1,759 in 1984 against 

1,720 in 2001). The patch density (PD) has also remained 

almost stable in three periods but a small incremental 

increase is observed from 2.3 to 3.84 patches/100ha 

respectively between 1984 and 2015. The largest patch index 

(LPI) is found in croplands that decreased almost twice 

between the first and last dates (77.2% in 1987 against 

39.8% in 2015). The schematic representation of four 

investigated landscape composition indices is illustrated in 

Figure 3 and Figure 4. 

Figure 3: Evolution of landscape composition indices 

0

10000

20000

30000

40000

50000

60000

1984 2001 2015

A
re

a (
in 

ha
)

Year

Class area (CA)

Cropland

Forest

HDB

LDB

Bare land

UGS

Water

Wetlands

0

100

200

300

400

500

600

700

800

900

1984 2001 2015

# 
of

  P
at

ch
es

Year

Number of Patches (NP)

Cropland

Forest

HDB

LDB

Bare land

UGS

Water

Wetlands

0

20

40

60

80

100

1984 2001 2015

Pe
rc

en
ta

ge

Year

Largest Patch Index (LPI)

Cropland

Forest

HDB

LDB

Bare land

UGS

Water

Wetlands

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1984 2001 2015

# o
f p

atc
he

s/1
00

ha

Year

Patch Density (PD)

Cropland

Forest

HDB

LDB

Bare land

UGS

Water

Wetlands

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W2, 2017 
37th International Symposium on Remote Sensing of Environment, 8–12 May 2017, Tshwane, South Africa

This contribution has been peer-reviewed.   
https://doi.org/10.5194/isprs-archives-XLII-3-W2-137-2017 | © Authors 2017. CC BY 4.0 License. 141



Figure 4: Evolution of landscape configuration indices 

With regards to landscape configuration, it was revealed that 

the contrast-weighted edge density (CWED) at landscape 

level first decreased between initial and intermediate dates 

and then increased from 29meters/ha in 1984 to 

40.7meters/ha in 2015. High CWED values are found in the 

cropland class. Furthermore, the total edge contrast index 

(TECI) consecutively decreasedfrom 69.9% in 1984 to 

63.3% in 2001 and to 62.36% in 2015. In all three periods, 

the aggregation index (AI) was more than 90% at landscape 

level, indicating that the mosaic of patches in the landscape 

is generally aggregated. Nevertheless, the forest patch 

mosaic becomes gradually less aggregated as compared to 

other classes with indices evaluated at 64.1% in 1984,  

63.3% in 2001 and 60.4% in 2015. Even through  the built-

up area was progressively replacing cropland, the latter class 

is still the most aggregated class with more than 95%. Figure 

4 represents the evolution trends of the four analyzed 

landscape configuration  indices from 1984 to 2015. With 

decreasing area and increased number of patches, forest was 

identified as the most fragmented class in the whole 

landscape especially between 1984 and 2001. This period is 

corresponding to the armed conflict time from 1990 to 1994 

and the genocide perpetrated against the Tutsi in 1994. 

During that time, environmental degradation was alarming in 

Rwanda. Forest in particular was cut down because of 

massive displacement of refugees. From 2001 to 2015, 

forested areas increased slightly. This evolution in attributed 

to the government policies for environmental restoration 

(afforestation) especially in forest landscape (Ministry of 

Natural Resources, 2014). Built-up areas increased 

considerably after 1994 because Rwandan refugees who 

were living in the neighboring countries for more than four 

decades returned to the country, with a majority of people 

moving to Kigali. Other factors explaining the urban growth 

are rural-urban migration and natural growth rate of the 

population. Agriculture is the  

dominating patch in the landscape that occupies more than 

60% of the landscape total area in both periods, despite its 

reduction by almost 12%. The LPI also illustrates the 

dominance of agriculture in terms of comparative patch size 

in the landscape.  

In the present study, landscape metrics were found to be 

useful for spatio-temporal evaluation of the urban landscape. 

In Sub-Saharan African cities such as Kigali, the definition 

of urban circumscription is mainly guided by political 

decisions. It is not taking into account urban indicators such 

as predominance of tertiary activities, the density of built-up 

areas or transport networks and industries which would be 

amongst the driving factors for urban development. 

Therefore, the delineation of urban green spaces is found 

challenging. The urban landscape in the aforementioned sub-

region is interspersed with green patches that are normally 

not falling in the real UGS category. Some are either used as 

vegetable gardens or sporadic agricultural fields. Therefore, 

it was necessary to delineate UGS by balancing the political 

boundary and the predominance of urbanization indicators 

(see Figure 2). In 2001, HDB are more concentrated 

comparing to the situation in 2015 where LDB are taking 

place in the old HDB (see Figure 2). This can be attributed to 

the fact that many tarmac roads (which were classified as 

LDB class) were constructed after 2001 in Kigali. The 

spectral signature for these roads with less than 30m width 

leads to classification into LDB. In addition, many areas that 

were informal settlements were demolished for urban 

redevelopment. This is the case for the commonly known 

Kiyovu y’Abakene (literally Kiyovu for the poor households) 

and Kimicanga neighborhoods. Considerable buildings were 

also demolished in the old central business district and high 

standing commercial buildings were constructed for 

implementing the urban master plan.   

6. CONCLUSION AND FUTURE

RESEARCH 

In this study, spatio-temporal analysis of urban growth in 

Kigali, Rwanda was explored using multitemporal Landsat 

imagery and landscape metrics. The present study revealed 
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that Grey Level Co-occurrence Matrix (GLCM) variance 

texture, vegetation index such as NDVI and elevation data 

such as DEM are worthwhile input for enhancing the 

accuracy of land cover classification especially in areas with 

complex and mixed land cover and hilly terrain. Landscape 

metrics based on classified images are also found as 

promising and cost effective technique for assessing and 

quantifying the urbanization and associated environmental 

impact. The vegetation index and texture analysis combined 

with optical Landsat bands yielded good classification 

results with overall classification accuracies surpassing 88% 

in 1984 and 2001 and 93% in 2015. Landscape composition 

and configuration in the last three decades were 

characterized using landscape metrics. It could be shown that 

forest and cropland were the most fragmented land cover 

classes and that built-up areas expanded mostly due to 

accelerated urbanization in the last three decades. However, 

the interpretation of the information derived from medium-

resolution images such as Landsat could be complemented 

by field visits and triangulation of results with existing data 

which are believed to reduce misclassifications thus resulting 

in a more realistic classification outcome. High-resolution 

data is believed to further increase classification accuracies. 

Future research will be directed towards using mainly high-

resolution satellite data, context and rule-based image 

classification to analyze urban land cover changes and 

associated environmental impact.  
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