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Abstract. Validating coarse scale remote sensing soil mois-
ture products requires a comparison of gridded data to point-
like ground measurements. The necessary aggregation of in
situ measurements to the footprint scale of a satellite sensor
(>100 km2) introduces uncertainties in the validation of the
satellite soil moisture product. Observed differences between
the satellite product and in situ data are therefore partly at-
tributable to these aggregation uncertainties. The present pa-
per investigates different approaches to disentangle the error
of the satellite product from the uncertainties associated to
the up-scaling of the reference data. A novel approach is
proposed, which allows for the quantification of the remote
sensing soil moisture error using a temporally adaptive tech-
nique. It is shown that the point-to-area sampling error can
be estimated within 0.0084 [m3/m3].

1 Introduction

There is ample evidence that atmospheric and climate pro-
cesses are significantly conditioned by the availability of wa-
ter in the soils (Fast and McCorcle, 1991; Clark and Ar-
ritt, 1995; Koster et al., 2004). Soil moisture is an essen-
tial climate variable that has importance for the interactions
between the land surface and atmosphere. It is thus an es-
sential variable in climate research and numerical weather
forecast as well as land surface hydrology. Satellite remote
sensing has been demonstrated to provide useful informa-
tion on soil moisture dynamics at various temporal and spa-
tial scales (Zribi and Dechambre, 2002; Bindlish and Bar-
ros, 2000; Wigneron et al., 2004, 2003; Loew et al., 2006;
Schwank et al., 2005; Owe et al., 2008). Two dedicated
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satellite soil moisture missions have been designed to pro-
vide global information on soil moisture dynamics. The Eu-
ropean Soil Moisture and Ocean Salinity mission (SMOS)
(Kerr et al., 2001) was launched in November 2009 and is the
first dedicated soil moisture mission ever built. The NASA
Soil Moisture Active Passive mission (SMAP) (Entekhabi
et al., 2010) is planned to be launched in 2014. These satellite
missions will provide information on soil moisture dynamics
at global scale and with medium to coarse spatial resolutions
(102...103 km2). A critical aspect of the missions success
is the validation of their soil moisture products to verify if
they meet pre-defined accuracy requirements. This valida-
tion exercise is complicated by the scale mismatch between
the satellite footprint and local in situ measurements of soil
moisture which serve as a reference.

A large number of continuous soil moisture measure-
ments would be needed to determine the soil mois-
ture dynamics at the footprint scale (Yoo, 2002; Brocca
et al., 2007; Famiglietti et al., 2008) with an accu-
racy better than 0.04 [m3/m3] , which is the typical ac-
curacy requirement for satellite soil moisture missions
(Kerr et al., 2001; Walker and Houser, 2004).

Typically, characteristic soil moisture patterns develop in
a landscape that remain stable at different temporal and spa-
tial scales (Vachaud et al., 1985; Vinnikov et al., 1996). The
analysis of temporally stable soil moisture patterns has been
used for the development of concepts for the upscaling of lo-
cal soil moisture measurements to larger scales that could
be used for the validation of satellite soil moisture prod-
ucts (Cosh et al., 2004, 2006). A different concept for the
evaluation of the error of satellite soil moisture products
has been investigated byMiralles et al.(2010). They ap-
plied the so called triple collocation (TC) method to quan-
tify the uncertainty of soil moisture data sets using data from
three independent sources. Triple collocation analysis has
been first used byScipal et al.(2009) to quantify the error
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characteristics of two different remote sensing soil moisture
data set and soil moisture derived from a land surface model.
Miralles et al.(2010) then adopted the approach to assess the
soil moisture ground validation problem. They compared a
passive microwave soil moisture product with soil moisture
from a land surface model and sparse ground based observa-
tions. They could show that the TC technique provides a use-
ful alternative to address the satellite soil moisture validation
problem and that it is possible to quantify the soil moisture
error with an accuracy of 0.0064 [m3/m3] for their test site.

The objective of the present paper is to investigate the po-
tential synergies of combining in situ soil moisture informa-
tion with distributed land surface modeling for the validation
of satellite products. The paper investigates the potential of
using temporally stable soil moisture patterns as well as the
TC method for the validation of remote sensing soil mois-
ture products. A temporally dynamic validation approach is
proposed which applies the TC method for monthly tempo-
ral slices and provides a framework for the quantification of
the uncertainties of a satellite based soil moisture product.
The novelty of the approach is that it provides uncertainty
estimates of soil moisture products at rather short timescales
and is able to identify periods where either the satellite mea-
surements or the in situ measurements don’t provide reliable
information on the large scale soil moisture dynamics.

The method is verified on a core soil moisture validation
site situated in Southern Germany using AMSR-E soil mois-
ture products. The used methods and data are first introduced
in Sect.2 and3. Results from the analysis of the two methods
are then presented in Sect.4 and5 and results are discussed
in Sect.6.

2 Methodology

A key question for the validation of remote sensing soil mois-
ture data products is an appropriate accuracy assessment of
the data products. Typically, the root mean square deviation
(RMSD) is used to predefine the accuracy requirements of a
satellite soil moisture product (?Kerr, 2007). It is defined as

RMSD=

√
〈(x −y)2〉 =

√
var(x)+bias(x,y)2 (1)

whereasx andy correspond to vectors of collocated satel-
lite and in-situ observations respectively. Angled brack-
ets indicate ensemble averaging. The user requirement for
global satellite soil moisture products is currently defined
with RMSD≤ 0.04 [m3/m3] (Walker and Houser, 2004; Kerr
et al., 2001). However as by its definition, the RMSD is very
sensitive to a bias between in situ reference data and the satel-
lite product. Even if a product would perfectly reproduce
the relative temporal soil moisture dynamics it would show
a large RMSD if the estimates or used reference data are bi-
ased. Biases in remote sensing soil moisture estimates might
result from a variety of sources, like e.g. imperfect character-
ization of the land surface in the retrieval scheme or variable

sensitivity of the observation system to soil moisture dynam-
ics (van de Griend et al., 2003; Loew, 2008).

Regular in situ soil moisture measurements are typically
based on a relative small number of samples compared to the
footprint scale of a satellite sensor. The monitoring of soil
moisture dynamics using a very high number of observations
is limited to dedicated campaigns (Famiglietti et al., 2008;
Peischl et al., 2009; Jackson et al., 2005, e.g.). Existing reg-
ular soil moisture networks like the Oklahoma Mesonet net-
work (www.mesonet.org) (Brock et al., 1995), the REMED-
HUS network in Spain (Ceballos et al., 2002), OzNet in Aus-
tralia (www.oznet.org.au) or the SMOSHYD validation site
(Loew et al., 2009a) provide in situ data from only a few sta-
tions N < 10 for an area corresponding to the footprint of
dedicated soil moisture missions like SMOS.

Ground based soil moisture measurements are typically
only representative for very small volumes in the order of
10−4 m3 and thus remain very local (for a comparison of
different measurement techniques seeWalker et al., 2004).
Currently, no global in situ soil moisture monitoring net-
work exists. First efforts to collect reference data of in situ
soil moisture was made byRobock et al.(2000). More
recently, a research community driven in situ soil mois-
ture network has been initiated to collect and distribute
harmonized and quality proofed in situ soil moisture data
(http://www.ipf.tuwien.ac.at/insitu/).

As the soil moisture spatial variability in the footprint of
a satellite sensor can be large, the mismatch between in situ
measurements and the satellite footprint scale results in large
uncertainties for the validation of satellite soil moisture prod-
ucts. An appropriate validation approach therefore needs to
take into account the inherent uncertainties that are associ-
ated with the upscaling of local scale soil moisture measure-
ments to a larger scale. Two different approaches will be
introduced in the following two sections and their potential
will be investigated in the further analysis of the paper.

2.1 Temporal stable soil moisture patterns

The concept of temporal stability was introduced byVachaud
et al.(1985) as a mean to represent large scale soil moisture
dynamics using a measurement network of a few sites only.
The fundamental assumption of the method is that character-
istic soil moisture patterns persist, which can be used to de-
velop time-invariant relationships between local (θ ) and large
scale (̄θ) soil moisture dynamics in the spatial domainR with
an areaA which is given by

θ̄ = A−1
∫

R

θdr ≈
1

N

N∑
i=1

θi +ε (2)

and can be approximated by a discrete number ofN mea-
surements. The indexi specifies the in situ measurements at
pointP with coordinates (x,y) andε is the error of (2) due to
the discrete approximation. The number of measurements re-
quired to obtain a specific accuracy might vary, depending on
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the heterogeneity of the study area.Brocca et al.(2007) used
a statistical approach to infer the number of required sam-
ples for different spatial scales and concluded that 15 to 35
measurement sites are needed to estimateθ̄ with an absolute
error of 0.02 [m3/m3] for a study area with a size of 104 m2.
As the variability of soil moisture is also dependent on the
soil moisture dynamic itself, the number of required sam-
ples might vary as a function of̄θ (Vereecken et al., 2007).
Famiglietti et al.(2008) provide an analysis of a large num-
ber of soil moisture measurements from different campaigns
and at various scales. They conclude that the number of mea-
surements required to estimateθ̄ with an accuracy better than
0.04 [m3/m3] (95% confidence level) is larger thanN = 20
for a scale of 50× 50 km2 with decreasing sample numbers
for very dry or wet conditions.

A point i is considered to be temporally stable if its soil
moisture dynamics is in good agreement with the spatial av-
erage. The relative soil moisture difference at timej is given
as

δij =
θij − θ̄j

θ̄j

(3)

The expected value of̄δi and its standard deviation is then
obtained fromM times as

δ̄i =
1

M

M∑
j=1

δij (4)

σ(δi) =

√√√√ 1

M −1

M∑
j=1

(δij − δ̄i)2 (5)

A point which is representative for the large scale soil
moisture dynamics therefore corresponds to small values of
|δ̄i | andσ(δi). If stable relationships between the local and
large scale soil moisture dynamics exist, these can be used
for the upscaling of local measurements to the larger scale
(Brocca et al., 2010).

Spatially persistent soil moisture patterns have been an-
alyzed using ground measurements (Vachaud et al., 1985;
Grayson and Western, 1998; Cosh et al., 2004; Martinez-
Fernnandez and Ceballos, 2005; Teuling et al., 2006), mod-
els (Loew and Mauser, 2008) or remote sensing observations
(Wagner et al., 2008). Techniques to dissaggregate coarse
scale remote sensing observations using prior knowledge of
persistent soil moisture fields have been developed (Loew
and Mauser, 2008; Wagner et al., 2008).

The temporal stability approach assumes that a specific lo-
cation can be found where the relationship between local and
large scale soil moisture dynamics is time-invariant. It will
be evaluated in Sect.4 if this assumption is applicable for
the data used in the present study and contrasted against the
triple collocation approach introduced next.

2.2 Triple collocation method

The triple collocation (TC) method was originally developed
to estimate the errors of sea wind and wave height estimates
derived from buoy, model and satellite data (Stoffelen, 1998;
Caires and Sterl, 2003). It estimates the uncertainties of ob-
servations of a geophysical quantity using time series of three
independent data sets.

Scipal et al.(2009) was the first to apply the TC method
to quantify uncertainties of surface soil moisture data, using
data from two different remote sensing soil moisture prod-
ucts and ERA-40 reanalysis data. The method was then used
for validation of remote sensing surface soil moisture ob-
servations using sparse in situ networks byMiralles et al.
(2010). Their approach was based on the analysis of anoma-
lies of time series of a surface soil moisture product derived
from AMSR-E (Jackson et al., 2010). In contrast to this
anomaly approach, the method ofScipal et al.(2009) was
based on measured time series directly.

The implementation of the TC method in the present study
follows the analytical solution provided byCaires and Sterl
(2003) and uses measured time series of three soil moisture
observations. The method and used notation is briefly intro-
duced in the following.

Let us assume that three temporally collocated time series
of n observations (xi , yi , zi , i = 1...n) of an arbitrary phys-
ical quantityTi , i = 1...n exist. Their respective random er-
rors (ex , ey , ez) are assumed to have zero mean. The true
measurements (X,Y,Z) of T , corresponding to the observa-
tions (xi ,yi ,zi) are related toT as

x = X+ex = α0+β0T +ex

y = Y +ey = α1+β1T +ey

z = Z+ex = α2+β2T +ez

(6)

where the time subscripts have been dropped for easier no-
tation. Removing the mean from each of the variables and
denoting the anomalies asx∗, y∗, z∗, T ∗, their relationship is
given by

x∗
= β0T

∗
+ex

y∗
= β1T

∗
+ey

z∗
= β2T

∗
+ez

(7)

If we assume that the errors of the data sets are uncor-
related,〈exey〉 = 〈exez〉 = 〈eyez〉 = 0, and independent ofT ,
〈T ex〉 = 〈T ey〉 = 〈T ez〉 = 0, we can remove the unknown de-
terministic variableT ∗ using a simple elimination procedure
(see for details,Caires and Sterl, 2003) and obtain

β1 = β0〈y
∗z∗

〉/〈x∗z∗
〉

β2 = β0〈y
∗z∗

〉/〈x∗y∗
〉

(8)

where angled brackets〈·〉 denote ensemble averaging. The
variances of the observation errors are then obtained as

var(ex) = 〈e2
x〉 = 〈(x∗)2

〉−〈x∗y∗
〉〈x∗z∗

〉/〈y∗z∗
〉

var(ey) = 〈e2
y〉 = 〈(y∗)2

〉−〈x∗y∗
〉〈y∗z∗

〉/〈x∗z∗
〉 (9)

var(ez) = 〈e2
z 〉 = 〈(z∗)2

〉−〈x∗z∗
〉〈y∗z∗

〉/〈x∗y∗
〉
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Fig. 1. Location of test site (left) and details of used in situ stations and their mapping to the ISEA grid. The polygons correspond to ISEA
grid cells used for the analysis of land surface model simulations. The circle corresponds to the AMSR-E like footprint size.

Finally the coefficientsα1 andα2 are estimated as

α1 = 〈y〉−β1(〈x〉−α0)

α2 = 〈z〉−β2(〈x〉−α0)
(10)

Note, that only four of the six coefficients can be derived
usingx,y,z. Defining one observation (e.g.x) as a reference,
α1, α2, β1 andβ2 can be estimated. Typically it is assumed
that the reference is a bias free estimator of the determinis-
tic variable (Scipal et al., 2009; Caires and Sterl, 2003), thus
α0 = 0 andβ0 = 1. However, in a strict sense, this assump-
tion might not be valid. In fact, it will be shown that the
ground stations in the present study are not a bias free esti-
mator of the large scale soil moisture content.

Further, modeled soil moisture as well as satellite re-
trievals have typically biases and exhibit their own charac-
teristics. The data is therefore typically rescaled before us-
ing soil moisture observations for e.g. data assimilation pur-
poses. Such a rescaling is crucial, as data assimilation tech-
niques typically rely on the assumption of bias free obser-
vations (Reichle et al., 2004; Albergel et al., 2010). In that
sense, the estimation ofα andβ parameters corresponds to
a similar rescaling of the original data sets. However, the
estimation of the errors is independent of such a rescaling,
as their value is not dependent on the scaling parametersα

andβ any more, as can be seen from (8) and (9). In situ soil
moisture data will be used as the un-biased reference data (x)
in the present study.

3 Study area and data

Three different soil moisture data sets are used in the present
study. These are based on ground observations, land sur-
face model simulations and remote sensing soil moisture es-
timates. The datasets and their characteristics are described
after a brief introduction to the study area.

3.1 Study area

The study area is located in the Upper Danube catchment
area which is situated in Southern Germany (Fig.1). A
remote sensing soil moisture validation site has been es-
tablished in a small sub-catchment (Vils), situated in the
Northeast of the city of Munich (Loew et al., 2009a). The
site is most suitable for validation of coarse resolution mi-
crowave remote sensing data as the microwave signal is not
affected by open water water bodies or large urban areas
which might have a considerable effect on the microwave
signal (Loew, 2008).

To perform a cross comparison between the different data
sets, these are reprojected to a common, equal area grid.
The Icosahedral Snyder Equal Area projection (ISEA4H9)
is used as the reference projection (Sahr et al., 2003) which
has a grid spacing of 15 km. The same grid is used as a ref-
erence grid for the Soil Moisture and Ocean Salinity Mission
(SMOS). Each grid node has a unique identifier which will
be used in the following to identify ground stations, model
grid cells and satellite footprints.
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3.2 Soil moisture data

3.2.1 Soil moisture measurements

Half-hourly measurements of soil moisture profiles are avail-
able since mid of 2007 from five stations in the test site.
Soil moisture measurements are made using Time-Domain-
Reflectrometry (TDR) probes at depth of 0.05, 0.1, 0.2 and
0.4 m. Surface soil moisture at 0.05 m is measured by two
different probes independently. The stations cover an area of
approximately 40×40 km2 (1).

3.2.2 Land surface model

The PROMET land surface model is used in the present study
to simulate the surface energy and water fluxes (Mauser and
Bach, 2009) on an hourly basis. The model consists of a
kernel model which is based on five sub-modules (radiation
balance, soil model, vegetation model, aerodynamic model,
snow model) to simulate the actual water and energy fluxes
and a spatial data modeler, which provides and organizes the
spatial input data on the field-, micro and macro-scale. Soil
moisture dynamic is simulated using a modified version of
the Richards equation for flow in unsaturated media (Philip,
1957). The soil water retention model ofBrooks and Corey
(1964) is used to relate soil moisture content to soil suction
head. A detailed description of the model is given byMauser
and Bach(2009). The soil water model has been validated in
different test sites using in-situ soil moisture measurements
of soil moisture profiles (Pauwels et al., 2008).

PROMET model simulations are made on 1 km2 grid. The
meteorological forcing is obtained from a dense network of
stations which are collocated with the in situ soil moisture
network. Model simulations at 1 km2 scale are made from
1st of November 2007 until end of 2009. The high resolu-
tion model simulations are then aggregated to estimate the
expected large scale soil moisture dynamics at the footprint
scale of a satellite sensor (see Fig.1).

3.2.3 Satellite soil moisture

Remote sensing soil moisture data are obtained from a glob-
ally available data set based on the Advance Microwave
Scanning Radiometer (AMSR-E), provided by the VU Uni-
versity Amsterdam together with NASA Goddard Space
Flight Centre (Owe et al., 2008). AMSR-E is a passive
microwave scanning radiometer, operating at six different
wavelengths within the microwave spectrum (6.925, 10.65,
18.7, 23.8, 36.5, and 89 GHz). The large area coverage
(swath width: 1445 km) of the sensor allows for a frequent
coverage of the globe in the order of three days with increas-
ing frequencies at higher latitudes. The spatial resolution
of the different channels is varying from 5 km (89 GHz) to
56 km (6.925 GHz) (Njoku et al., 2003).

Soil moisture retrievals are based on the solution of a
microwave radiative transfer model which solves simulta-

neously for the surface soil moisture content and vegeta-
tion optical depth without a priori information (Meesters
et al., 2005). The flexible approach allows in general
for the retrieval of soil moisture from a variety of fre-
quencies. The C-band (6.925 GHz) data product is used
in the present study as it is expected to have the high-
est sensitivity to surface soil moisture dynamics from the
AMSR-E channels. The data set is available since 2002
and has been validated over a large range of study areas
with high correlations with in situ observations in semi
arid regions (r = 0.79, RMSE = 0.03 [m3/m3] for the Mur-
rumbidgee Soil Moisture Monitoring Network in Australia,
(Draper et al., 2007); r = 0.83, RMSE = 0.06 [m3/m3] for the
REMEDHUS soil moisture network in Spain, (Wagner et al.,
2007)) and somewhat lower in agricultural areas (r = 0.78,
RMSE = 0.06 [m3/m3] for the SMOS REX site in France,
Rdiger et al., 2009).

Only data from the daytime ascending overpass
(01:30 p.m.) are used as these were found to be less
noisy than the nighttime observations (Loew et al., 2009b).
As the sensitivity of the AMSR-E observations to soil
moisture decreases with increasing optical depth of the
vegetation layer (de Jeu et al., 2008), only data with an
optical depthτ < 0.8 are used for the further analysis. A
single AMSR-E time series, located in the center of the test
site (ISEA ID #2027099) is used in the study.

4 Soil moisture variability and stability

The variability of the in situ soil moisture data is analyzed
in the following. The investigations are limited to the period
from 01/05 to 30/10 of the years 2008 and 2009 to cover a
large variability in soil moisture and vegetation conditions,
while avoiding interference by snow and frozen soil condi-
tions in the test site.

4.1 Soil moisture variability

The average soil moisturēθ for the investigated area is cal-
culated from the station data. As the number of stations
(N = 5) is rather small to sufficiently representθ̄ this will
introduce an uncertainty in the estimation ofθ̄ (Famiglietti
et al., 2008; Brocca et al., 2010). Figure2 shows time series
of θ̄ and its standard deviation for the years 2008 and 2009.
Both soil moisture curves show a dynamical range between
0.2 [m3/m3] and 0.5 [m3/m3] . The standard deviation varies
between 0.025 and 0.1 [m3/m3] .

4.2 Temporal stability analysis

A temporal stability analysis (Sect.2.1), is conducted for
each of the stations, usinḡθ as the reference. For each sta-
tion and year, the statistic for̄δ is calculated using (4) and
(5). Results are summarized for each station and year in
Fig. 3. Considerable differences are observed between the
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Fig. 2. Temporal evolution of large scale mean soil moisture content
θ̄ as calculated from the average of all ground stations. Greyed area
correspond to±1σθ .

years. The station Steinbeissen (Neusling) does best repre-
sent the large scale soil moisture dynamics in 2008 (2009)
according to thēδ metric.

The linear relationship betweenθj andθ̄ was estimated us-
ing a least squares approach withθ̄ as the dependent variable.
The regression coefficientsm andb are given in Table2. By
removing this linear trend, we obtain the random upscaling
error for each station (estation) as

estation=

√
〈
(
θ̄ −(mθ +b)

)2
〉 (11)

Considerable differences are observed between the two
years. The different stations do not show a consistent re-
lationship to the large scale soil moisture dynamics. While
all stations show significant correlations with the large area
soil moisture dynamics over a certain time period, they might
not be used to predict the spatial mean soil moisture dynam-
ics consistently over a longer time period. The reason for
these differences are small scale differences in precipitation
dynamics, which are mostly related to convective events that
are very local.

However at smaller timescales, a single station might be
a good predictor for the large scale soil moisture dynamics.
We will therefore investigate the potential of using a tempo-
rally dynamic approach to assess the soil moisture validation
problem by using the TC technique. First, the triple colloca-
tion will be applied on an annual basis to provide compara-
ble results with the analysis in the present section. We will
then relax the method by applying it on shorter timescales to
adapt it to temporally stable soil moisture patterns at shorter
timescales.
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Fig. 3. Boxplot of the relative differencēδ between soil moisture
observations of a single station and the spatial meanθ̄ . Boundaries
of the boxes correspond to the 25% and 75% quartiles and the line
indicates the median value. Whiskers indicate extreme values.

Table 1. List of soil moisture stations, IDs of closest ISEA grid
point and assigned experiment number.

Station ISEA Name lat/lon experiment
number [deg]

118 2026587 Engersdorf 48.45/12.63 16
74 2026585 Lochheim 48.27/12.49 17
16 2026588 Steinbeissen 48.61/12.73 18
14 2027101 Neusling 48.69/12.88 19
49 2027611 Frieding 48.34/12.83 20

5 Triple collocation analysis

5.1 Data preparation

The TC method requires all data sets to be temporally col-
located. They are therefore binned to daily values and spa-
tially collocated on the ISEA grid. Satellite data which were
recorded during precipitation events were not considered for
the inter-comparison, as the rainfall and interception in the
canopy can deteriorate the microwave signal (Saleh et al.,
2007). Such a masking might be in general applicable if in
situ measurements of precipitation are available. However,
as a consequence of such a masking, the error estimates of
the satellite product might be idealized compared to the sit-
uation, when no ancillary precipitation data can be used to
mask periods that are affected by precipitation. Data from
different stations were used as a reference (x) and compared
against the spatially averaged soil moisture from PROMET
(y) and AMSR-E soil moisture data (z). The different exper-
iments for the various stations are summarized in Table1. It
is assumed that the model and satellite data are representative
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Table 2. Linear regression parameters (gain, offset, correlation coefficientr) between the soil moisture time series of a station as compared
against the corresponding spatial average.

Station Experiment ISEA
2008 2009

gain (m) offset (b) r estation gain (m) offset (b) r estation

Steinbeissen 18 2026588 0.77 9.03 0.93 3.19 0.96 −3.1 0.80 5.25
Engersdorf 16 2026587 0.93 −1.2 0.89 4.82 0.56 10.5 0.78 8.80
Lochheim 17 2026585 0.71 4.50 0.93 8.16 0.57 16.6 0.84 5.47
Neusling 19 2027101 1.35 −3.9 0.84 7.03 1.03 0.82 0.74 3.60
Frieding 20 2027611 0.72 12.6 0.90 5.95 0.51 19.8 0.72 7.87

Table 3. Summary of soil moisture errors as estimated using triple collocation method for different stations: reference station error (estation),
estimated errors for station, model and satellite (estat,emodel,esat), correlation (r), gainsβ and offsetsα of the relationships given by (6).
Upscaling errors for the station used as variablex is shown for comparison (estation). Errors are given as [m3/m3] × 100.

Year Exp. estation estat emodel esat rstation,model rstation,AMSR−E rmodel,AMSR−E β1 α1 β2 α2

2008

16 2.83 2.68 2.66 5.96 0.88 0.51 0.37 0.55 4.86 0.48 16.9
17 3.23 4.49 2.85 5.80 0.85 0.53 0.35 0.34 11.6 0.32 22.0
18 2.66 0.97 2.82 5.87 0.76 0.48 0.36 0.43 11.9 0.41 21.9
19 3.23 1.19 2.49 5.92 0.78 0.42 0.36 0.95−0.7 0.78 13.6
20 3.56 4.89 1.76 5.44 0.74 0.46 0.51 0.55 9.29 0.53 21.4

2009

16 2.92 4.87 1.38 4.88 0.47 0.17 0.27 0.72−2.7 0.51 11.7
17 2.52 1.56 2.29 6.20 0.63 0.42 0.25 0.24 20.5 0.39 24.0
18 2.48 2.00 2.17 5.63 0.68 0.64 0.32 0.39 12.5 0.94−2.0
19 2.80 2.06 2.38 4.70 0.60 0.43 0.18 0.36 16.1 0.48 19.1
20 3.13 4.02 0.75 6.50 0.75 0.23 0.28 0.55 12.6 0.40 24.2

for the same spatial domain, while the ground measurements
are expected to provide an uncertain proxy forθ̄ over the
same area. We aim to obtain a robust estimate for the satellite
soil moisture error (e2

sat = 〈e2
z 〉) to quantify the accuracy of

the satellite data.
The triple collocation analysis will be either made for the

entire investigation period (01/05–30/10) or for a 30 day
moving window from the beginning to the end of the in-
vestigation period with steps of 15 days. The TC method
presumes that the three data sets used in the analysis rep-
resent the same geophysical quantity. A correlation analy-
sis is therefore used to investigate this purpose by calculat-
ing the correlation between each pair ofx,y,z. In case of
negative correlation, the data are not analyzed.Scipal et al.
(2009) further screened the data by applying a threshold of
0.2 to the obtained correlation coefficient which corresponds
to a significant correlation at the 95% level for time series
with a large number of samples. However, as we restrict our
analysis to much shorter timescales, we explicitly calculate
the significance (pxy,pxz,pyz) of the correlation between the
variables according to a t-test (Press et al., 1992). Neverthe-
less, it is emphasized that the correlation analysis provides
only a statistical measure of the relationship between the dif-
ferent data sets. However, if the signal to noise ratio in the
analyzed data is high, correlation might be very low, but the

TC method might neverless be able to provide realistic error
estimates.

5.2 Analysis results

The TC analysis is made in two parts. First, results from a
yearly analysis are presented (static approach) which are fol-
lowed by results from the TC analysis at shorter time scales
(dynamic approach).

5.2.1 Static triple collocation approach

The static approach exploits the full time series for the es-
timation of the error variances, which is similar to the ap-
proach ofScipal et al.(2009). The estimated errors for the
model simulated and satellite soil moisture show consistent
results for the different experiments (Table3). The model er-
rors (emodel) range between 0.0176 and 0.0285 (0.0075 and
0.0238) [m3/m3] for 2008 (2009). The AMSR-E soil mois-
ture error (esat) ranges between 0.047 and 0.0659 [m3/m3]
which is in the same order than results obtained from previ-
ous studies (Draper et al., 2007; Wagner et al., 2007). The
robust results for the satellite product error for different sta-
tions indicate that the selection of a particular station seems
to have minor impact on the uncertainty estimates.
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Fig. 4. Soil moisture time series for the station Steinbeissen #18 (red) and the corresponding model and satellite soil moisture time series.
Precipitation information (grey bars). Scatterplot illustrates correlation between the different data tuples (x:station,y:model,z:AMSR-E).

All stations show significant correlations between the in
situ measurements and the model simulations as well as the
satellite retrievals. Further it is observed that the correlation
between the station and the satellite data is in general higher
than the correlation between the model and the satellite data.

As the same model and satellite data are used for all simu-
lations, differences in the error estimates result only from dif-
ferences between the ground stations. Their representativity
for the large scale soil moisture dynamics changes through-
out the year as was shown previously.

The estimated gains (β1,β2) vary between 0.22 and 0.86
which would have been expected due to the lower spatially
aggregated soil moisture variability at larger scales compared
to local measurements. Different gains are observed for the
same station in different years. A comparison of the esti-
mated error for each station (estat) with the actual estimate
of the station error (estation) shows that they are in the range
between 0.0248 and 0.0356 [m3/m3] for estationsand 0.0097
and 0.0489 [m3/m3] for estat (Table3).

Considerable differences are observed between the two
years for the various stations. These results indicate that data
from the different stations can not be used to upscale the lo-
cal soil moisture measurements in a consistent way as their
representativeness for the larger area is changing with time,
which is consistent with the results of the temporal stability
analysis. This indicates that temporally adaptive methods are

needed for the inter-comparison of the in situ soil moisture
data with the footprint scale soil moisture estimates. This is
at least valid for the data used in the present analysis. We
will therefore investigate in the following if a dynamic TC
approach, applied on shorter timescales, might be used as an
alternative for the soil moisture validation problem.

5.2.2 Dynamic triple collocation approach

A temporal moving window of1t = 30 days is used for the
dynamic triple analysis which reduces the number of collo-
cated data points and thus the degree of freedom for the cor-
relation between the data tuples. As the analysis window is
shifted by 15 days, we obtain a 15 day overlap between the
different analysis periods. The results of all different 30-day
intervals are summarized in Figs.5–7. These show the tem-
poral variability ofr, e andβ. Data sets, where the corre-
lation for at least one out of the three data tuples (xy,xz,yz)
was not significant at the 95% level are marked with gray
bars. Dashed lines correspond toe, r, β as estimated from
the static TC approach in the previous section and are pro-
vided for comparison.

The estimated satellite product errors are in general lower
for the dynamic approach than they are for the static TC anal-
ysis. The obtained values foresat are consistent between
the different stations and show a similar temporal dynamic
which indicates that the choice of the reference station has
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Fig. 5. Correlation coefficients for dynamic TC analysis withdT = 30 days for relationship between station and model (xy,red), model and
satellite (yz,green) and station and satellite (xz,blue) for the years 2008 and 2009. Dates correspond to center of analyzed time period. Grey
bars indicate cases where at least one of the correlations was not significant at the 95% level.
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Fig. 6. Same as Fig.5 but for gains (β1,β2) from (6).

a minor effect on the calculation ofesat and that they pro-
vide a robust estimate of the uncertainty of the satellite data
product.

In a large number of sample intervals non-significant cor-
relations are found. In general, one can differentiate between
time intervals where all stations show a non-significant corre-
lation between at least one of the data tuples and those where
a single station indicates a correlation at a low significance
level. As an example, Fig.8 shows details of the analyzed

time series for the stations #17 (Lochheim) and #18 (Stein-
beissen) for consecutive time periods in 2008.

All three data sets capture well the decrease of soil mois-
ture until mid of May 2008 and the increase due to the pre-
cipitation between 16th and 19th of May 2008 (a). Highly
significant correlations are found between all data tuples.
Frequent precipitation in the first half of June results in a
couple of data gaps for the satellite data due to the precipita-
tion masking, decreasing especially the correlation between
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Fig. 7. Same as Fig.5 but for estimated errors of station (sx,red), model (sy,green) and satellite (sz,blue).

the satellite data and model results (b). The following time
period is dominated by low soil moisture dynamics until end
of June (c). The satellite data capture in general this low
variability, but no significant correlations with neither the
PROMET model simulations nor the in situ data are found
for this period for both stations. The satellite soil moisture
product has large noise compared to the small soil moisture
signal. The satellite data capture the increase of soil mois-
ture after 10th of July 2008 (d) for both stations although
there are data gaps during this rain period. However, no sig-
nificant correlations are found between the in situ data and
the satellite product for station #18 (p = 0.74), while signif-
icant correlations are found for station #17 (e). This station
is the only one that shows no significant correlations during
that time period (see also Fig.7). In this case, the lack of a
significant correlation is caused by a data gap in the in situ
soil moisture data from 17th to 23th of June which has been
identified by the TC method.

5.2.3 Effect of temporal sampling

The temporal window used for the dynamic TC analysis de-
termines how many data points are used in the analysis and
thus determines the degree of freedom for the correlation.
The previous analysis with1t = 30 days did show that an
analysis on short time scales is feasible and helps to make an
appropriate error assessment of the satellite data. The signif-
icance of the correlations between the time series has been
shown to be a useful tool for the detection of gaps and arte-
fact’s in the time series. However, large parts of the time se-
ries show no significant correlation at the 95% level in these
cases.

On the other hand, the yearly analysis did show significant
correlations for all data tuples as a larger time interval results
in a higher degree of freedom for the correlation threshold.
A further analysis using1t = 60 [days] (not shown here) did
show very consistent results for the satellite error as esti-
mated from different stations. The estimated satellite error
was smaller than the one obtained from the yearly analysis,
but did show less temporal variability than the one obtained
using1t = 30 [days]. However, the low soil moisture vari-
ability in the mid of June 2008 does still affect this analysis
and non-significant correlations are identified for all stations
during that time period using1t = 60 [days] which provides
additional information on the lack of significant information
on soil moisture dynamics in the remote sensing data.

5.2.4 Accuracy of error quantification

To assess the reliability of these estimates, we compareesat
against the reference errorestation. The latter is an approxi-
mation to the actual uncertainties in representing large scale
soil moisture dynamics using a single station, as has been dis-
cussed previously. In case that the TC method provides good
predictive skills for the actual error of a station it should also
provide reliable estimates of the error of the satellite product.

Figure 9 shows a comparison between the results of the
error analysis for the two years. Each point corresponds to a
single triple collocation result of a 30 day period and a single
station. The different number of points per station and year
results from the fact that only periods with significant cor-
relations (95% confidence) between the data sets have been
used. The root mean square deviation (RMSD) between the
estimated and reference error is 0.00841 (0.00835) [m3/m3]
in 2008 (2009). These results are very close to the results
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Fig. 8a. Details of soil moisture time series for stations Lochheim #17 and Steinbeissen #18 (red), model (green) and satellite (blue).
Correlationsr between the time series and their respective significancep are provided. Information on precipitation dynamics is provided
(x:station,y:model,z:AMSR-E).

obtained by (Miralles et al., 2010) who found that the triple
collocation methods could provide error estimates with an
accuracy between 0.00694 [m3/m3] and 0.0150 [m3/m3] us-
ing data from different test sites. It is very encouraging that
the obtained error estimates are close to those estimated from
the in situ data and those obtained byMiralles et al.(2010)
who conducted their study in completely different test sites
with different soil moisture dynamics. However,Miralles
et al. (2010) estimated their errors using an anomaly ap-
proach, by removing a running mean 31-day average from
the original time series to obtain longterm errors. The pro-
posed dynamic TC approach is therefore somewhat different
and even more challenging as it attempts to retrieve the errors
from shorter time periods. However, while the dynamic TC
is technically different, the adaptive rescaling resulting from
the TC approach might be somehow considered to be similar
to the removal of a climatological mean value.

6 Discussion and conclusions

The present study did investigate different approaches for the
inter-comparison of coarse scale remote sensing soil mois-
ture data with in situ measurements on soil moisture dynam-
ics. The temporal stability approach was found to be not

appropriate for the data set used, while it could be shown
that the TC method provides very promising estimates of the
random errors of different soil moisture data sets at different
temporal scales.

The TC method was successfully applied to quantify the
uncertainties of AMSR-E soil moisture data in the Upper
Danube catchment. While temporary persistent soil mois-
ture patterns could be identified in the test site, no single soil
moisture station was found to provide a robust proxy for the
large scale soil moisture dynamics within the test site.

Combining single location in situ data with land surface
model simulations and remote sensing soil moisture esti-
mates using the static TC method did provide consistent esti-
mates of the error of the satellite soil moisture product. The
rescaling of the soil moisture data in the TC analysis com-
pensates for systematic differences between the various data
sets. The spatially averaged long term AMSR-E soil mois-
ture RMSE was estimated as 0.057 [m3/m3] . The such ob-
tained satellite product uncertainties are very valuable to pro-
vide a general estimate of the quality of the data product from
a user’s point of view.

However, the analysis of satellite soil moisture products
at shorter timescales provides additional quantitative infor-
mation on the temporal dynamics of its error. The proposed
dynamic TC method compensates for the lack of represen-
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Fig. 8b. Continued.
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Fig. 8c. Continued.
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Fig. 8d. Continued.
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Fig. 8e.Continued.
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Fig. 9. Comparison of the estimated station error (estat) with the
reference soil moisture error (estation) for the years 2008 and 2009
using periods with significant correlations between all soil moisture
data sets. Different colors correspond to different stations.

tativeness of a single soil moisture station by taking into ac-
count the temporal varying relationships between in situ and
satellite soil moisture dynamics.

Consistent satellite error estimates were obtained using
data from different soil moisture stations as a reference. The
such obtained errors were smaller than those estimated from
the long term static TC approach which indicates that the
satellite product can have a higher accuracy in specific pe-
riods than those estimated from the annual analysis. Signif-
icant correlations between the used soil moisture data sets
were found at these shorter timescales as well. The signifi-
cance of these correlations provides important additional in-
formation on the quality of the error estimates. It could be
shown that increasing uncertainties of the satellite soil mois-
ture product are reflected in a decrease of the significance of

the correlation.
Time periods with higher errors of the satellite data prod-

uct could be clearly identified when the analysis from several
stations did show non-significant correlations. In case that
only a single station did show a non-significant correlation,
we could show that this is an indicator for a reduced quality
of the reference data. Thus, there is a strong need for us-
ing multiple in situ soil moisture stations for the validation
of remote sensing satellite products in a test site as these pro-
vide complementary information for the evaluation of the TC
results.

In practice, periods without significant soil moisture in-
formation could not be identified without appropriate refer-
ence soil moisture information. The obtained error estimates
therefore represent a lower boundary of the possible range
of soil moisture errors, while the annual TC method (static)
provides the upper limit. The actual soil moisture error is
therefore likely to range somewhere in between these two
extremes. However, in case of a low signal-to-noise ratio
(SNR) as it might occur under constant dry conditions, the
correlations might be very low, while the TC method might
still be able to provide correct error estimates.

The dynamic TC method thus provides additional infor-
mation on the accuracy of the satellite data product as well as
the reference soil moisture data which is in particular useful
for improving the validation and further development of re-
mote sensing soil moisture products. The accuracy of the cal-
culated soil moisture errors was estimated as 0.0084 [m3/m3]
for the used soil moisture stations.

The triple collocation method provides a useful framework
for the quantification of errors of satellite soil moisture prod-
ucts. The proposed extension to shorter timescales makes it a
useful tool for a more detailed quantitative analysis of satel-
lite soil moisture time series and their validation. The method
is in general applicable to time series of different satellites as
well as different geophysical variables. A further evaluation
of the method in other test sites as well as an extension of the
method to SMOS soil moisture data products is foreseen.
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