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Abstract. A long-lasting Saharan dust event affected Eu-
rope on 18–23 May 2008. Dust was present in the free
troposphere over Greece, in height ranges between the sur-
face and approximately 4–5 km above sea level. The event
was monitored by ground-based CIMEL sunphotometric and
multi-wavelength combined backscatter/Raman lidar mea-
surements over Athens, Greece. The dust event had the maxi-
mum of its intensity on 20 May. Three-dimensional dust spa-
tial distribution over Greece on that day is presented through
satellite synergy of passive and active remote sensing using
MODIS and CALIPSO data, respectively. For the period un-
der study, the ground-based measurements are used to char-
acterize the dust event and evaluate the latest version of the
BSC Dust Regional Atmospheric Modeling (BSC-DREAM)
system. Comparisons of modeled and measured aerosol opti-
cal depths over Athens show that the Saharan dust outbreak is
fairly well captured by BSC-DREAM simulations. Evalua-
tion of BSC-DREAM using Raman lidar measurements on
20 May shows that the model consistently reproduces the
dust vertical distribution over Athens.
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1 Introduction

The Mediterranean area is strongly affected by the presence
of desert dust due to its proximity to North Africa. Limita-
tions on the description of the dust cycle are mainly related
to the lack of enough dense and regular measurements, but
also due to the incomplete understanding of dust processes
such as production, transport, physical and chemical evolu-
tion, optical properties and removal of dust (Sokolik et al.,
2001). Several regional models for simulation and prediction
of the atmospheric dust cycle have been developed over the
past decade (e.g., Kallos et al., 1997; Nickovic et al., 2001).
These models are essential to complement dust-related ob-
servations and to understand the dust cycle. In this context,
the BSC Dust Regional Atmospheric Model (BSC-DREAM)
(Nickovic et al., 2001; Perez et al., 2006a, b) has reached a
level of delivering reliable operational dust forecasts (http://
www.bsc.es/projects/earthscience/DREAM/) capable of pre-
dicting all the major dust events over the Mediterranean re-
gion. However, the current operational version still has large
development possibilities.

In order to implement new model versions for operational
applications there is a need for extensive checking and val-
idation with observations. Nowadays, ground-based moni-
toring systems include conventional surface observations op-
erating at urban and rural areas. Long range transport of
desert dust mainly takes place in the free troposphere (e.g.
Mattis et al., 2002; Ansmann et al., 2003). Thus sun pho-
tometers delivering spectrally resolved column-integrated
data in combination with aerosol lidar instruments providing
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information on the vertical structure seem the most appropri-
ate tools for such model evaluation studies.

Sun photometry, with variable measurement approaches
has been developed in recent years to deduce the variabil-
ity of critical atmospheric aerosol properties. The AErosol
RObotic NETwork (AERONET) program is a federated re-
mote sensing network of well-calibrated sun photometers
and radiometers located at over 200 sites covering all major
tropospheric aerosol regimes around the world (Holben et al.,
1998). AERONET stations provide columnar aerosol optical
parameter information (aerosol optical depth, size distribu-
tion, single scattering albedo etc.) through direct measure-
ments and inversion techniques. These data constitute a high-
quality, ground-based aerosol climatology and, as such, have
been widely used for aerosol process studies, as well as for
evaluation and validation of model simulations. However, it
should be noted that most inversion-based retrieval products
have not yet been systematically validated. In addition, no
information is provided regarding the vertical distribution of
aerosol properties, which is a limitation.

Lidar is the only technique that provides high resolu-
tion vertical profiling of aerosols. In recent years, Raman
Lidars and micro-pulse Lidars (MPL) have been increas-
ingly used to automatically and routinely retrieve profiles of
aerosol backscattering and extinction. The European Aerosol
Research Lidar NETwork (EARLINET) was established in
2000 to characterize the horizontal, vertical, and temporal
distribution of aerosols on a European scale (Bösenberg et
al., 2003). At present, EARLINET consists of 25 stations,
including backscatter lidar stations, 16 combined backscat-
ter/Raman lidar stations and 8 multi-wavelength Raman li-
dar stations which are used to retrieve aerosol microphysical
properties.

Lidar techniques play an increasing role in future Earth ob-
servation strategies. CALIOP (Cloud-Aerosol LIdar with Or-
thogonal Polarization) onboard the NASA/CNRS CALIPSO
satellite provides a first opportunity to study in detail the per-
formance and the scientific value of a space-borne aerosol
lidar during a long term mission. CALIOP lidar onboard
CALIPSO, provides information on the vertical distribution
of aerosols and clouds as well as on their optical proper-
ties over the globe with unprecedented spatial resolution
(Winker et al., 2006). However, CALIPSO observations pro-
vide global, but snapshot-like view of aerosol vertical dis-
tributions. Only combined studies with ground-based lidars
together with transport modeling techniques will allow a full
exploitation of these data for a detailed description of the
temporal and spatial aerosol distribution and evolution on
a global scale. Active and passive remote sensing satellite
data synergy on the other hand can improve aerosol charac-
terization and speciation. CALIPSO active remote sensing
data can be used in conjunction with the MODerate resolu-
tion Imaging Spectroradiometer (MODIS) (e.g. Remer et al.,
2008) to better indentify and characterize aerosol distribu-
tions and properties.

In this study, the spatial and temporal evolution, optical
properties and vertical structure of the Saharan dust plume
that affected Europe between 18–23 May 2008 as estimated
by the BSC-DREAM dust modeling system are validated
over Greece using synergistic passive and active remote sens-
ing techniques. First, we describe the Saharan dust out-
break over Greece using the latest updated version of BSC-
DREAM and satellite imagery from SEAWIFS. The three-
dimensional structure of dust outflow over Greece is then
presented as retrieved by MODIS and CALIPSO aerosol data
for a selected day when dust load over Greece showed max-
imum values. Qualitative evaluation of the evolution of the
modeled dust horizontal and vertical structure is performed.
Satellite/ground-based data and modeling results are used
to identify cases with pure dust presence in the free tropo-
sphere over Athens. Then, the columnar and vertical evo-
lution and the optical properties of the dust plume mea-
sured with ground-based instrumentation are analysed to-
gether with BSC-DREAM dust modeling estimations. The
main objective of the study is to present and formulate po-
tential methods to validate a dust modeling system using
new and well-known active and passive remote sensing tech-
niques from space and ground. The driving force behind
this study is the fact that aerosols over the Eastern Mediter-
ranean region originate from different sources, including a
marine component (mainly sea spray), a mineral dust com-
ponent mainly due to the proximity to Saharan desert dust
and an anthropogenic component (local and long-range pol-
lution) (Mihalopoulos et al., 1997; Papayannis et al., 2005,
2008; Formenti et al., 2001; Lelieveld et al., 2002; Zerefos
et al., 2002; Gerasopoulos et al., 2003; Balis et al., 2004;
Amiridis et al., 2005, Kazadzis et al., 2007; Kalivitis et al.,
2007; Fotiadi et al., 2006), demanding strong data synergy
for aerosol speciation. After the identification of pure dust
presence, model validation studies can become more quanti-
tative and accurate.

2 Instrumentation and methods

2.1 CIMEL sunphotometer

The sunphotometric observations reported in this paper were
performed by a CIMEL sun-sky radiometer, which is part of
the Aerosol Robotic Network (AERONET) Global Network
(http://aeronet.gsfc.nasa.gov). The instrument is located on
the roof of the Research Center for Atmospheric Physics and
Climatology of the Academy of Athens (37.99◦ N, 23.78◦ E,
elevation: 130 m). The campus is located in the city cen-
ter and 10 km from the sea. This newly installed sun-
photometric station is operated by the Institute for Space Ap-
plications and Remote Sensing (ISARS) of the National Ob-
servatory of Athens (NOA). The technical specifications of
the instrument and AERONET data products are given in de-
tail in Holben et al. (1998).
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2.2 Ground-based lidar system

The NTUA compact 6-wavelength Raman lidar system is
based on a pulsed Nd:YAG laser emitting simultaneously
at 355 nm, 532 nm and 1064 nm. The elastically backscat-
tered lidar signals (at 355, 532 and 1064 nm), as well as
those generated by Raman scattering by atmospheric N2 and
H20 (at 387, 607 and 407 nm, respectively) are simultane-
ously recorded by photomultipliers (PMTs) and avalanche
photodiode systems (APD), after the spectral separation of
the returned lidar signals (Mamouri et al., 2009; Papayan-
nis et al., 2005). The system is used to perform continuous
measurements for the retrieval of the aerosol optical proper-
ties over Athens inside the Planetary Boundary Layer (PBL)
and the lower free troposphere. In the frame of the EAR-
LINET and EARLINET-ASOS projects, the NTUA lidar sys-
tem was quality assured by performing direct intercompar-
isons, both at hardware (Matthias et al., 2004) and software
level (Böckmann et al., 2004; Pappalardo et al. 2004). The
lidar system of NTUA is located within 400 m distance from
the CIMEL sunphotometer.

2.3 Satellite measurements

The Cloud–Aerosol Lidar and Infrared Pathfinder Satel-
lite Observation (CALIPSO) mission (http://smsc.cnes.fr/
CALIPSO/), is an Earth Science observation mission that
launched on 28 April 2006 and flies in nominal orbital al-
titude of 705 km and an inclination of 98 degrees as part of a
constellation of Earth-observing satellites known as the “A-
train” (Hostetler et al., 2001). The CALIPSO mission pro-
vides crucial lidar and passive sensors to obtain unique data
on aerosol and cloud vertical structure and optical proper-
ties. CALIPSO is an elastically backscattered lidar operating
at 532 and 1064 nm, equipped with a depolarization channel
at 532 nm, that provides high-resolution vertical profiles of
aerosols and clouds (Winker et al., 2006). The Level 1 V2
(Version 2) attenuated backscatter and depolarization profile
product is used in this paper.

Finally, the Moderate Resolution Imaging Spectro-
Radiometer (MODIS) aerosol 5-min level-2 swaths (collec-
tion 5) were retrieved through NASA’s Earth Observing Sys-
tem Data Gateway. AOD values at 550 nm were extracted
with an uncertainty of±0.05±0.15*AOD over land (Remer
et al., 2008).

Summarizing, we have used a synergy of different re-
mote sensing instruments and techniques to derive a vari-
ety of dust aerosol optical properties. From measurements
at the ground we have retrieved AOD, Angstrom parameters,
aerosol size distribution and single scattering albedo and also
lidar backscatter and extinction coefficient profiles at UV
and visible wavelengths. In addition AOD, total attenuated
backscatter coefficient aerosol profiles and images in the vis-
ible have been retrieved from satellite sensors.

2.4 The BSC-DREAM model

DREAM (Nickovic et al., 2001) is a regional model designed
to simulate and/or predict the atmospheric cycle of mineral
dust aerosol. The Barcelona Supercomputing Center main-
tains dust forecast operations with DREAM and conducts
modelling research and developments for short-term predic-
tion. During model integration, calculation of the surface
dust injection fluxes is made over the model grid points de-
clared as deserts. Once injected into the air, dust aerosol is
driven by the atmospheric model variables: by turbulent pa-
rameters in the early stage of the process when dust is lifted
from the ground to the upper levels; by model winds in the
later phases of the process when dust travels away from the
sources; finally, by thermodynamic processes (atmospheric
water phase changes producing clouds, rain and dust wet
scavenging) of the atmospheric model and land cover fea-
tures which provide wet and dry deposition of dust over the
Earth surface.

One of the key components of the dust model is the treat-
ment of the source terms in the concentration continuity
equation. Failure to adequately simulate/predict the produc-
tion phase of the dust cycle leads to wrong representation
of all other dust processes in the model. Therefore, special
attention is made to properly parameterize dust production
phase. The dust emission parameterization in the model is
controlled mainly by the following factors: type of soil, type
of vegetation cover, soil moisture content, and surface atmo-
spheric turbulence. In the model, grid points acting as desert
dust sources are specified using arid and semiarid categories
of the global USGS 1-km vegetation dataset. Another data
participating in dust production calculations is the FAO 4-
km global soil texture data set from which particle size pa-
rameters are evaluated. The main general features of the last
version of the model (Perez et al., 2006a) used in this study
are listed below:

– Dust production scheme with introduced viscous sub-
layer (Shao et al., 1993; Janjic, 1994)

– 8 particle size bin distribution.

– Soil wetness effects on dust production (Fecan et al.,
1999)

– Dry deposition (Giorgi, 1986) and below cloud scav-
enging.

– Horizontal and vertical advection, turbulent and lateral
diffusion (Janjic, 1994) represented as for other scalars
in the Eta/NCEP model.

– Dust radiative feedbacks on meteorology (Pérez et al.,
2006a).

Eight size bins between 0.1 and 10µm are considered in the
dust transport process. In this interval, the aerosol effects on
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Fig. 1. Dust loading and 3000 m wind fields over Europe for the period 18–23 May 2008, as estimated by the BSC-DREAM model
(12:00 UTC).

solar radiation are the most significant. Within each trans-
port bin, dust is assumed to have time-invariant, sub-bin log-
normal distribution employing the transport mode with mass
median diameter of 2.524µm and geometric standard devi-
ation 2.0. The analytic sub-bin distribution allows accurate
prescription of physical and optical properties known to vary
across the bin width.

The model at the starting day is run using “cold start” con-
ditions, i.e., the zero-concentration initial state. The model
needs about 2–3 days for spinning up and for establishing
reliable dust concentration conditions. The cold start of the
model was initiated on the 14 May 2008. The resolution is set
to 50 km in the horizontal and to 24 layers extending up to ap-
proximately 15 km in the vertical. Meteorological fields are
initialized every 24 h and boundary conditions updated every
6 h with the NCEP/NCAR I global analysis (1 degree×1 de-
gree resolution). The choice of 24-h re-initialization is used
to avoid introducing large discontinuities in the simulation
(in contrast to 48-h or 72 h) while letting the model develop
its own dynamics and physics. The domain of simulation
covers northern Africa, the Mediterranean Sea, and southern
Europe (Fig. 1).

3 Results and discussion

3.1 Evolution of dust over Greece during 18–23 May
2008

A long-lasting Saharan dust event affected Europe from 18–
23 May 2008. Such events in terms of length and concen-
trations of transported dust load are limited during each year
for the particular area. In addition, it was the first time that
such an event could be captured by all instruments used in
this work for Athens area. The BSC-DREAM model esti-
mations of the spatial evolution of dust in terms of vertical
integrated dust concentration (gr/m2) are presented in Fig. 1.
Additionally, the wind fields at 3000 m are superimposed.
None of the days presented were accompanied by precipi-
tation or severe cloud conditions over Greece. The massive
export of dust from the Sahara is observed on 18 May over
Italy and Central Europe while on 19 May the center of the
dust plume spread over eastern parts of Europe. On 20 May,
the dust plume covers Greece and the dust load reached val-
ues of∼0.75 gr/m2. The dust concentrations over Europe
gradually reached smaller values on the following days, even
if dust particles were still present in the free troposphere as
the BSC-DREAM model indicates. Concerning the quali-
tative performance of the model, the spatial patterns of the
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Fig. 2. SeaWIFS visible satellite images for 18, 19, 20 and 21 May 2008.

dust plume show very good agreement with the correspond-
ing Seawifs visible satellite images (Fig. 2).

For 20 May, according to the model simulation (shown
in Fig. 1), Greece was mostly affected by dust aerosols. In
Fig. 3 we present satellite aerosol data from the MODIS and
CALIPSO space-borne instruments. The AODs at 550 nm
are plotted over Greece, taken by MODIS aerosol 5-min
level-2 swaths (collection 5) at 09:55 UTC. Dust AOD val-
ues for Greece on 20 May 2008 according to the model
(shown in Fig. 1) range between 0.15–0.75 at 12:00 UTC.
Concerning the qualitative performance of the model, the
spatial patterns of the dust plume show that the AOD val-
ues retrieved by MODIS at 550 nm are higher than AODs
estimated by the model, and this is attributed to the con-
tribution of the anthropogenic local pollution. This is ex-
pected since model delivers AODs concerning only dust. In
Fig. 3, the CALIPSO vertical cross section of the attenuated
backscatter coefficient at 532 nm is superimposed for 20 May
at 09:50 UTC. According to CALIPSO observations the dust
presence in the vertical is extended to the free troposphere
over Greece up to heights of 3000–5000 m. This argument is
moreover supported by CALIPSO’s depolarization measure-
ments at 532 nm (not shown here). The depolarization ratio
on 20 May reached values in the range between 0.3–0.7 in-
dicating the presence of dust particles in the free troposphere
over Greece. Few white out regions in the Fig. 3 indicate
CALIOP aerosol retrievals that were affected by clouds.

3.2 Characterization of the dust event using the CIMEL
sunphotometer and NTUA’s lidar

To characterize the dust properties over Athens for 20
May 2008, ground-based sun photometric and combined

Fig. 3. Three-dimensional representation of dust evolution over
Greece for 20 May 2008. Spatial distribution of AOD obtained at
550 nm by the MODIS sensor and CALIPSO cross section of the
attenuated backscatter coefficient at 532 nm.

backscatter/Raman lidar measurements are used in this study.
From the direct CIMEL sunphotometric measurements over
Athens, the AOD at selected spectral channels is derived,
following the well-known Beer-Bouguer-Langley law. The
Ångstr̈om exponent (α) is derived according to the̊Angstr̈om
power law, using the 440, 670 and 870 nm channels (e.g. Eck
et al., 1999). The data are processed within the AERONET
version 2 direct Sun algorithm, which is described in detail
on the AERONET web page. Such data define the aerosol
climatology of the site (Holben et al., 2001). From the
almucantar sky radiance measurements at the four highest
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Fig. 4. Temporal evolution of the AOD at eight wavelengths over Athens for the period 18–23 May 2008 according to CIMEL sunphotometric
measurements, MODIS AOD at 550 nm (white squares) and BSC-DREAM dust AOD at 550 nm (upper panel). Temporal evolution of the
Ångstr̈om exponent (440–870 nm) for the same time period (lower panel).

wavelengths an inversion algorithm (AERONET version 2
(Dubovik et al., 2002, 2006)) retrieves a large set of optical
and microphysical aerosol parameters. In Fig. 4 we present
the temporal evolution of the AOD and the̊Ansgtr̈om ex-
ponent (α) over the Athens AERONET site, as well as the
MODIS AODs at 550 nm which are found to be in good
agreement with CIMEL measurements. Additionally, BSC-
DREAM AODs for dust are plotted, showing that the evolu-
tion of the episode is well captured by the model. Figure 4
shows the quick arrival of the desert plume at Athens station
(the AOD increases significantly from 18 May to 20 May).
The highest AOD is registered on 20 May with a value of 0.8
(440 nm). The desert dust plume is also visible on 21 May,
while the following days (22–23 May) show a clear weak-
ening of the event as the desert plume quickly moved away,
as shown by the AOD, which dropped back to background
levels.

In Fig. 4 we can also observe the time series of the
Ånsgtr̈om exponent, which shows very low values (from
zero to 0.5) for 19, 20 and 21 May, in inverse correspondence
with the high AOD for desert aerosols. One of the charac-
teristics of the desert dust episodes is the high variability
shown by both parameters during each day. As can be seen
in Fig. 4, on 19 May partial cloudiness is observed and
some data were removed by the AERONET cloud-screening
algorithm. On 20 May at 00:00 UTC, a strong dust layer is
advected away from the observation location accounting for
the sudden drop of the AOD. The analysis of the dust model
maps at that time (not shown here) essentially explains this
sudden drop. For the period between 18 and 22 May, the

mean daily Volume Size Distribution (not shown here but
can be found on the AERONET web page:http://aeronet.
gsfc.nasa.gov/cgi-bin/typeonestationoperav2 new?site=
ATHENS-NOA\&nachal=2\&level=2\&place code=10)
exhibit two modes, but the relative importance of the modes
depends on the prevailing aerosol type: an accumulation or
fine mode with particle radius below 0.6µm, and a coarse
mode with particle radius between 0.6 and 15µm. In this
case, obviously we expect a predominant coarse mode
during desert dust conditions. The mode radii and volume
concentrations were analyzed in order to characterize the
aerosol dust evolution. The evolution of the desert dust
is clear in the coarse mode fraction. The Volume Size
Distribution exhibits well defined desert dust characteristics
from 19 to 21 May with more predominant effects for 20
May when the volume concentration peaks varying from 0.9
to 1.6µm3/µm2 with a mean of 1.4µm3/µm2.

From the backscatter lidar measurements performed over
Athens on 20 May 2008, time-height cross section of the
lidar range corrected signals at 532 nm are presented in
Fig. 5. According to lidar observations, there are two dis-
tinct aerosol vertical structures evolving during the day un-
der study. The first layer, which corresponds to the PBL, is
well located between the surface and 2500 m in the morn-
ing hours, showing a descent at around 13:00 UTC. Dur-
ing the afternoon and night-time measurements, the top of
the layer is located in height ranges between 2000–2700 m.
The second layer is located in the free troposphere well
above PBL, reaching high backscatter signal values during
the day and mostly during afternoon hours. In nighttime,

Ann. Geophys., 27, 3155–3164, 2009 www.ann-geophys.net/27/3155/2009/

http://aeronet.gsfc.nasa.gov/cgi-bin/type_one_station_opera_v2_new?site=ATHENS-NOA&nachal=2&level=2&place_code=10
http://aeronet.gsfc.nasa.gov/cgi-bin/type_one_station_opera_v2_new?site=ATHENS-NOA&nachal=2&level=2&place_code=10
http://aeronet.gsfc.nasa.gov/cgi-bin/type_one_station_opera_v2_new?site=ATHENS-NOA&nachal=2&level=2&place_code=10


V. Amiridis et al.: Synergistic use of passive and active remote sensing measurements 3161

Fig. 5. Time-height cross section of the lidar range corrected signal at 532 nm (arbitrary units) measured on 20 May 2008 over Athens.

this layer is located between the top of the PBL and approx-
imately 5000 m. Given the BSC-DREAM simulations and
CALIPSO’s depolarization ratio values presented above, this
layer is completely attributed to Saharan dust aerosols ad-
vected over Athens. High values of the backscatter signals
within the PBL indicate the possibility of dust presence also
in lower heights.

3.3 Validation of BSC-DREAM simulations

In our study, an attempt to validate BSC-DREAM model
simulations is made using the ground-based passive and ac-
tive remote sensing measurements presented previously. We
use sunphotometric measurements for the complete period
of the dust outbreak, while for the lidar case we focus on the
case study of 20 May when dust load was clearly present over
Athens and night-time Raman measurements were available.

In Fig. 6, we present the AODs measured by CIMEL
versus the dust AODs estimated by BSC-DREAM, for
the period under study. BSC-DREAM delivers AODs at
550 nm and CIMEL at 500 nm. For a direct comparison,
CIMEL AODs where converted from 500 to 550 nm using
the Ångstr̈om exponent (440/870). The correlation coeffi-
cient found to be of the order of 0.7, showing a quite good
agreement between BSC-DREAM and CIMEL AODs. Tak-
ing into account the urban pollution of Athens, the CIMEL
AODs should reach higher values than the model estimations
that account only for transported dust. Indeed, just taking
the mean of (AODcimel–AODdream) of all measurements we
can find an AOD equal with 0.10±0.07 that can be attributed
to the mean anthropogenic contribution in AOD during the
period of this event. For three cases during this event the an-
thropogenic pollution contribution was found as high as 0.4
to 0.6.

To further evaluate the model, we proceed with an in-
tercomparison of modelled vertical profile of extinction at
550 nm with Raman lidar-derived vertical profile of extinc-
tion at 532 nm for 20 August at 18:00 UTC, when correlative

Fig. 6. CIMEL versus BSC-DREAM AODs at 550 nm for dust
cases observed within the period between 18–23 of May 2008.

Raman lidar and model data were available (Fig. 7). Pro-
files are plotted for the complete overlap height region of
NTUA’s lidar (>800 m). Time averaging of lidar signals was
performed for∼60 min (17:25–18:38 UTC) around the exact
time that the model delivers vertical profiles of the extinc-
tion (18:00 UTC). Vertical sliding average of the lidar ex-
tinction was performed around model height levels. From
Fig. 7 it is evident that the dust layer is clearly lying be-
tween 2067–5135 m according to both lidar and model. Ra-
diosonde measurements over Athens at 12:00 UTC showed
a PBL height of the order of 1845 m (not shown here) while
lidar derived aerosol layer height at the time of our Raman li-
dar measurements found at 1975 m. Considering that PBL is
below 2000 m, the differences between lidar measurements
of extinction and model estimations in Fig. 7 are mainly
attributed to the presence of anthropogenic pollution. The
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Fig. 7. Comparison of extinction coefficient profile simulated by
BSC-DREAM at 550 nm (only for dust) and observed by Raman
lidar measurements at 532 nm over Athens, on 20 May 2008 at
18:00 UTC. Raman lidar signals were averaged between 17:25 and
18:38 UTC.

model follows well the vertical distribution of the dust layer
for the free troposphere since it provides extinction coeffi-
cients for dust particles only. Within the PBL, model esti-
mates a dust contribution much lower than that of the free
troposphere. The agreement between lidar and model re-
sults in the free troposphere could be considered as excellent,
keeping in mind that Raman lidar extinction retrieval uncer-
tainties are of the order of 15–30%.

Model’s capability to estimate the dust layer geometrical
and optical characteristics, is evaluated by the calculation
of the center of mass and the AOD. The calculations are
performed within the dust layer as estimated above (2067–
5135 m), in order to remove the anthropogenic effect. The
center of mass (CM) altitude (zc) from the extinction is cal-
culated as follows (Mona et al., 2006):

zc =

zt∫
zb

z · ext(z)dz

zt∫
zb

ext(z)dz

(1)

where ext(z) represents the extinction coefficient at 532 and
550 nm for lidar and the model respectively, whilezb and
zt represent the bottom (2067 m) and top (5135 m) height of
the dust layer. According to our calculations, the CM from
the model is estimated at 3054 m while our lidar measure-
ments locate CM at 3234 m. The difference of 180 m can
be attributed to the extinction minimum observed with lidar
at 3000 m, which is not predicted by the model. Specifically,
maximum extinction coefficients reached 234 Mm−1 accord-
ing to the model at 2933 m and 195 Mm−1 at 3420 m accord-
ing to lidar. Considering AODs within the dust layer, the

differences between the model (0.34) and lidar (0.36) are of
the order of−6%. Our results indicate that generally, BSC-
DREAM’s deviations from measured lidar geometrical and
optical characteristics are within the error of lidar measure-
ments and model’s performance for the presented Saharan
dust outbreak could be considered excellent.

4 Summary and conclusions

The spatial and temporal evolution, optical properties and
vertical structure of the Saharan dust plume that affected Eu-
rope between 18–23 May 2008 were analyzed in detail over
Greece using synergistic passive and active remote sensing
techniques together with BSC-DREAM dust modeling simu-
lations. The main results and conclusions are summarized as
follows: Comparisons of modeled and measured aerosol op-
tical depths over Athens show that the Saharan dust episode
is well simulated by BSC-DREAM simulations, both spa-
tially and temporarily. Direct comparison of CIMEL-BSC-
DREAM AODs showed an agreement with a correlation co-
efficient of the order of 0.8. Model vertical distribution esti-
mations of the extinction coefficient are in very good agree-
ment with Raman lidar measurements in the free troposphere
of Athens on 20 May 2008. BSC-DREAM-lidar intercom-
parisons of the geometrical and optical characteristics of dust
were studied only in the height ranges where the data indi-
cate the presence of dust particles. Following this approach,
the model simulations of the layer thickness, bottom and top
height, AOD and center of mass are in very good agree-
ment with lidar ground-based measurements. The model
showed better performance when compared with lidar mea-
surements than those revealed from sunphotometric observa-
tions. This is attributed to the fact that in lidar measurements
the comparison of the extinction is feasible for selected at-
mospheric layers in the free troposphere where dust prevails
than aerosol particles of anthropogenic origin.

Acknowledgements.We acknowledge support by the NASA GEC-
hri grant NNX06AF30G and by the technical officers Don Ander-
son and Lucia Tsaoussi. The support of Academy of Athens which
hosts the CIMEL sunphotometer is greatly acknowledged. The fi-
nancial support for EARLINET (EARLINET-ASOS) by the Eu-
ropean Commission under grant RICA-025991 and the European
Space agency (ESA-AO/1-5502/07/NL/HE) are gratefully acknowl-
edged. CALIPSO and MODIS data were obtained from the NASA
Langley Research Center Atmospheric Science Data Center. SK
would like to acknowledge the Marie Curie Intra European fel-
lowship “Validation of Aerosol optical Properties and surface Ir-
radiance measured from Ozone Monitoring Instrument on board
of AURA satellite” VAP-OMI, AOR A/119693 – PIEF-GA-2008-
219908. REM and EG acknowledge the support of the PENED
project (03-ED-169 and 03-ED-344, respectively). The PENED
2003 project is co-financed 75% of Public expenditure through EC –
European Social Fund and 25% of Public expenditure through Min-
istry of Development, General Secretariat of Research and develop-
ment and through private sector (Raymetrics SA.), under Measure

Ann. Geophys., 27, 3155–3164, 2009 www.ann-geophys.net/27/3155/2009/



V. Amiridis et al.: Synergistic use of passive and active remote sensing measurements 3163

8.3 of OPERATIONAL PROGRAMME “COMPETITIVE-NESS”
in the 3rd Community Support Programme.

Topical Editor F. D’Andrea thanks four anonymous referees for
their help in evaluating this paper.

References

Amiridis V., Balis, D., Kazadzis S., Giannakaki, E., Papayannis,
A., and Zerefos, C.: Four years aerosol observations with a Ra-
man lidar at Thessaloniki, Greece, in the framework of Euro-
pean Aerosol Research Lidar Network (EARLINET), J. Geo-
phys. Res., 110, D21203, doi:10.1029/2005JD006190, 2005.

Ansmann A., B̈osenberg, J., Chaikovsky, A., Comerón, A., Eck-
hardt, S., Eixmann, R., Freudenthaler, V., Ginoux, P., Komguem,
L., Linné, H., Márquez, M.Á. L., Matthias, V., Mattis, I., Mitev,
V., Müller, D., Music S., Nickovic, S., Pelon, J., Sauvage, L.,
Sobolewsky, Srivastava, M. K., Stohl, A., Torres, O., Vaughan,
G., Wandinger, U., and Wiegner, M., Long-range transport of
Saharan dust to northern Europe: The 11–16 October 2001 out-
break observed with EARLINET, J. Geophys. Res., 108(D24),
4783, doi:10.1029/2003JD003757, 2003.

Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and
Michaelis, W.: Independent measurement of extinction and
backscatter profiles in cirrus clouds by using a combined Raman
elastic backscatter lidar, Appl. Optics, 31, 7113–7131, 1992.

Balis, D. S., Amiridis, V., Zerefos, C., Kazantzidis, A., Kazadzis,
S., Bais, A. F., Meleti, C., Gerasopoulos, E., Papayannis, A.,
Matthias, V., Dier, H., and Andreae, M. O.: Study of the effect of
different type of aerosols on UV-B radiation from measurements
during EARLINET, Atmos. Chem. Phys., 4, 307–321, 2004,
http://www.atmos-chem-phys.net/4/307/2004/.

Balis D., Amiridis, V., Nickovic, S., Papayannis, A., and Zerefos,
C.: Optical properties of Saharan dust layers as detected by a
Raman lidar at Thessaloniki, Greece, Geophys. Res. Lett., 31,
L13104, doi:10.1029/2004GL019881, 2004.
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