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THE THEORY OF JACOBI FORMS
OVER THE CAYLEY NUMBERS

M. EIE AND A. KRIEG

Abstract. As a generalization of the classical theory of Jacobi forms we discuss

Jacobi forms on /xC8 , which are related with integral Cayley numbers. Using

the Selberg trace formula we give a simple explicit formula for the dimension

of the space of Jacobi forms. The orthogonal complement of the space of cusp

forms is shown to be spanned by certain types of Eisenstein series.

Introduction

The classical theory of Jacobi forms on H x C was described by Eichler and
Zagier [4] in 1985. There also exist more general types of Jacobi forms on H x

C" considered by Gritsenko [8] or for the Siegel half-space considered by Ziegler
[14]. These Jacobi forms naturally appear in the Fourier-Jacobi expansion of

Siegel modular forms (cf. [12]).
Jacobi forms over the Cayley numbers are defined on H x C8. They were

introduced in [5 and 6], where they appeared as Fourier-Jacobi coefficients of
modular forms on the half-plane of the Cayley numbers of degree 2. They are

of special interest, since they are related with modular forms on the exceptional
domain (cf. [1, 9]). On the other hand, the arithmetic of integral Cayley num-

bers (cf. [2]) leads to special results, which cannot be obtained in the general

case.
In this paper we show that the space of Jacobi forms over the Cayley numbers

has finite dimension. We can demonstrate that the orthogonal complement of

the space of cusp forms is spanned by certain Eisenstein series. Moreover the

Selberg trace formula can be applied in order to determine the dimension of

the space of Jacobi cusp forms explicitly. This leads to a very simple dimension

formula involving a weighted summatory function of Euler's totient function

(p(n). Surprisingly the result is simpler than in the classical situation (cf. [4])
or for Jacobi forms of index 1 on H x C" (cf. [13]).
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794 m. eie and a. krieg

1. Notations

Let f be a field. The set £P = ^ of the Cayley numbers over f is an eight di-

mensional vector space over f with the standard basis eo, e\, e2, e^, e4, e$, e¿,
e-i satisfying the following rules for multiplication:

xeo = eox = x   for all x e fê,

ef = -e0,        i = 1, 2, 3, 4, 5, 6, 7,

e{e2e4 = e2e^e^ = e3e4e6 = e4e5e-i = e^ex = e6e7e2 = e1e\ <?3 = -*o •

Write x e ? in the form x — Yl]=o xiei > x; e f •   Then we consider the

following mappings:

(a) involution: W -» W, x i-> x = 2xo^o - x = xo^o - Yl]=\ xjej >

(b) norm: & -+ f, /V(x) = xx = £77=0 */ «

(c) bilinear form: f x f -► f, <r(x, y) = 2 Ej=0X/J>; , if y = E]=o W •
In particular, one has

(1) Ar(x+y) = /V(x) + /V(y) + tT(x,y)   for all ;c, j; e g7.

Cf. [3, Chapter 9], for further details.
Let o c 8q be the Z-module of integral Cayley numbers investigated by

Coxeter [2]. A basis of 0 is given by ao, ... , a-j where

an = en,     ai=ei,     Q2=e2,     a3=e4,

a4 = 5(^1 + e2 + <?3 - e4),     a5 = \{-eQ -ei-e4 + e5),

a6 = \{-eo + ex - e2 + e6),    a7 = j(-en + e2 + e4 + e7).

We can identify Wc with C8 via the standard basis eo, ... , ej. Let H stand

for the upper half-plane in C,

H = {z eC\z = x + iy, y > 0}.

Let k, m be integers and m > 0. A holomorphic function f:HxWc—>C

is called a Jacobi form of weight k and index m, if it satisfies the following

conditions:
(j.l)

f(z,w) = f\k>m[M](z,w)

— (rz + (]\-kp-2mmcN(w)l(cz+d) f ( az + b W      \

-[    +   ' J\cz + d' cz + d)

for all M =(^   ^er:=SL2(Z).

Ü.2)

f(z, w) = f\m[X, p]{z, w) := e**mW)'+*Q.»)]f(z ,w + lz + p)

for all X, p € o.

(j.3) / has a Fourier expansion of the form

00

f(z,w) = Y^      Yl      aAn' t)e2ni[nz+ait'w)].

n=0 t€n,nm>N(t)
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THE THEORY OF JACOBI FORMS 795

/ is a Jacobi cusp form, if it moreover satisfies

(j.4) af(n, t) = 0, whenever nm = N(t).

We denote by Ji^mi") (resp. 7° m{o)) the space of Jacobi forms (resp. Jacobi

cusp forms) over the Cayley numbers of weight k and index m . Examples of

functions in Jk,m(") are given by the Fourier-Jacobi coefficients of modular

forms on the half-plane of the Cayley numbers of degree 2 (cf. [6]).

Given a congruence subgroup V of T = SL2(Z) let Mk{Y') (resp. Sk{T'))
denote the space of entire modular forms (resp. cusp forms) of weight k with

respect to P (cf. [11]). Using (j.3) and (j.l) we get

(2) Jk¡z{*)*Mk{T),    4tQ{*)*Sk{Y).
Therefore we will always assume m > 1. It follows from [6] that

(3) Jkty{*)*Mk_4{T),    Jlx{*)*Sk-4{r)   for even k>0.

2. THETA SERIES

Given m > 1 and q e e> we define the theta series

(4) um¡q(z,w)=  £ e2Kim{N{-v)z+'Jl>''>w)\

v£\(q)

where A(q) := {i + q/m\t £ ¿>} . Then ûm<o £ ^4,1 was shown in [6]. Due to

(1) an easy calculation yields

(5) $m,q\m[k,p] = -ôm,q     for allA , ¿U € * ,

(6) ûm,q(z + l,w) = e2«iN«>»mûm,q(z,w).

Given w e %c we define
7

w — (t^o, ... , w-j)' € C8,    whenever w — ̂  WjUj.

j=o

The 8x8 matrix S = (<r(a,, a,-)) is positive definite, even and unimodular

(cf. [6]). In the notation of [10, p. 101], we therefore have

ûm,q(z,w) = &g,mSw/m(z, mS;Zs).

Using [10, IV.2.3], we obtain

K,qU,m[J](z,w) = z-4e-*imSW'2eg/m,mSl!)/z(-\/z,mS; Z8)

= m-4e-ximSm/z+2*i9<S*/zemSt!¡f2^/miZ} {mS)-l . z8}

= m~4 y^ eniz(mS)-l[g]+2nig'w-2nig'q/m _

Here J = (° q1 ). If one sets g = mS{h + p/m), h e Z8, p : ojmo, the result

is

(7) ûm,qU,m[J](z,w) = m-4   Y   e'2^"'Pymûm,p(z,w).

p :  ûjmo

Next a combination of [10, IV.3.6 and IV. 1.3], yields

(8) &m,qU,m[M] = $m,q,    whenever M e T, ^=(0   1) (mod/n).

Let  U(n) denote the unitary group contained in GL„(C).   We fix a set of

representatives q\, ... , qm» of ¿>/m¿> and set

(9) 6 :=(«„,„,...,«„,,.)'.
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796 M. EIE AND A. KRIEG

The operations in (j.l) and (j.2) can be applied to each component of 8.

Proposition 1. There exists a unique homomorphism of the groups y/\ T
U(ms) such that

(10) e\4,m[M] = y/(M)-e   forallM eT.

The principal congruence subgroup

T[m] = ¡M£r\M= (l0   J J (modm)j

is contained in the kernel of y/.

Proof. According to the uniqueness of the Fourier expansion with respect to

w in (4), the m% components of O are linearly independent functions. This

implies the uniqueness of ^ . It suffices to demonstrate (10) for generators of

T. Thus (10) follows from (6) and (7). The last statement isa consequence of

(8).   D

In particular one has

(11) y/{T) = diag(e-2niN^m,...,e-2niN{<l^m),        T = (lQ    lA;

(12) W{J)=WT)t = {m-4e2*'°^^l"')Vill=u^tmi,        /=(°   -1),

according to (6) and (7).
Let f e Jk,m(?) with the Fourier expansion (j.3). Given q e o we set

(13) Fq(z):= Y        af(n, q)e2*i[n-NWm]z.

n€N0,n>N(q)/m

Proposition 2. Given f&Jk,m{0) one has a unique representation

(14) f(Z,W)=      Y      Fq(z)-K,q(z,W).
q :  û/ma

Proof. Using (j.2) we have

f(z, w) = e2nimiNWz+a{X'w)]f(z,w+Xz)

- y^      V^      a   („; ty2ni[(n+o(t,X)+mN(X))z+o(t+mX,w)]

te^ n>N(t)/m

for all X e o . Comparing the coefficients we get

(15)       ctf(n + a{t, X) + mN(X), t + mk) = a/(«, t)   for all n, f, ¿.

Hence we have Fq+mx = Fq in (13). Thus the right-hand side of (14) is well

defined. Setting t = mX + q, X e # , q: o/mo, a rearrangement of the Fourier

expansion of / yields (14).   o

Just as in (9), now set

I1  := \^m,q, -, ■ ■ ■ ) ^m,qmg )   ■

Given a function <&: H —> C, set

•W#(x)^(« + fl-^(H±|)    forM=(^   J)er.

Apply this definition to each component of F.
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Theorem 1. Given k, m e Z, m > 1, the mappings

{FeMk_4(T[m]r>\F\k_4M=¥(M)-FforallMeT}^Jk>M,

F^F'-e,

as well as

{F 6 Sk_4{Y[m])mi\F\k_4M = y,{M) ■ F for all M e T} - /° „»,

F^F'-e,

are isomorphisms.

Proof. Given / e Jktm{a), apply (14) and Proposition 1,

F'-e = f = f\k,m[M] = (F\k_4M)' • {Q\4,m[M])

= {y/(M)F\k_4M)'-e.

Since the components of theta are linearly independent and y/(M) is unitary,

we get

F\k_4M=y/(M)-F   for all M eT.

Proposition 1 leads to Fq € Mk_4(T[m]) for each q e o. Comparing the

Fourier expansions we conclude that / is a cusp form if and only if each Fq ,

q e o, is a cusp form.

Starting with F e Mk_4(T[m])mS such that F\k_4M = y/(M) • F , we obtain

f\k,m[M] = / for f - F' •& and Af e T from Propositions 1 and 2. Finally
(5) yields (j.2). Since (j.3) is clear, we get / 6 Jktm{¿>).   □

As an immediate consequence of Theorem 1 we obtain

Corollary 1. (7/ve« /c, m 6 Z, m> I, one has

dimJkm(û) < m8 • dimA/fc.^rtm]) < oo,

/« particular,

dimJki(e>) — dimA4_4(r),       dxmJk x{e?) — dim5'fc_4(r),

/*,*(*) = {0},    i/fc<4.

3. Eisenstein series

Let Foo = {(¿ ")\n e Z}. Given <? € * with TV(^) = 0 (raodm) we define

the Jacobi-Eisenstein series

(16)
Ekttn{z, w; q)

■=2    Y   (cz + d)~k Y e*p\2ni
N(X)aZ + b

cz + d

w    \     cN(w)
+ a\ X,

cz + dl     cz + d

\      Y        Y    l\m[l,0]\k,m[M](z,w),
M:T00\rXeA(q)
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798 M. EIE AND A. KRIEG

where M = (* *) and A{q) = {t + q/m\t £ o} . Due to mN(X) £ N0 for ail

A e A(q), the definition does not depend on the choice of representatives of

roo\r. It is obvious that

(17) Ektm(z, w; q) = Ekm{z, w ; q'),    if q = q' + mX for some A £ o,

(18) Ektm{z,w; -q) = Ekttn{z, -w; q) = (-1)*Ek>m(z, w; q).

Proposition 3. Let k,m £ N, k > 10 and q £ ¿> with N(q) = 0 (modm).
Then the series (16) converges absolutely and locally uniformly in H x ^c.

Proof. It is well known from the theta transformation formula that

Ye~nn2y = 0(l+y~l/2)   fory>0.

nez

Hence we obtain

Y e-2KmyN^ = 0( 1 + y~4)   for y > 0.

Given (z, w) in a compact subset of H x fc we get

E
AeA(</)

exp < 2^/w ArW^±4 + CT(/l,
t     w\_cm^r\
\    cz + d J     cz + d \)

<y V exp< -2nm

cz + d '     V"' cz + d)     cz + d

az + b
Im

cz + ¿
/V(A) - Ô^MXjJlm

az + b

cz + d

where the positive constants y and á only depend on the compact set. There

exists a constant e > 0 such that

T    ai + Z>     T    az + b „   _,T   íz¿ + A
elm—-? < Im-7<e    Im-

ci + d cz + d ci + d

holds for all (jJ)eT and z in the compact set. Hence the above sum over

A is uniformly majorized by

£exp{-*W(lm^W)} = 0 1 + Im
ai + b

ci + d

Since the series Y,m ■. r^rl^ + ¿|8-,c converges for k > 10, the series (16)

converges and defines a holomorphic function on H x ^c .   D

From the group property of T - SL2(Z) and (16), it is easy to verify that

Ekjm(z, w; q) satisfies (j.l). Given A, p. £ o we obtain

Ek,m{-, S tf)|m[A,/i](z,u;) = -     Y    (cz + d)\-k

•  Y exP i 2tti"
i/€A(?) ''

m : roo\r

.... xaz + b        f     w+Xz + u
i  N(u)-j + alu,-—

v    cz + d        \        cz + d

cN(w + Xz + p)

cz + d
+ N(X)z + a(X,w)

}■
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Next a simple calculation leads to

799

-T.  .az + b        f     w+Xz + p\     cN(w+Xz + p)     ..... ,.      ,
N^)TTT^ + a   ".     „, , j     )-„, , a        +N{X)z + a{X, w)

cz + d cz + d cz + d

= N(v + dX - cp)--7 -f- er ( v + dX - cp.
w cN(w)

cz + d)     cz + d
+ a,

where a = a{y , ap - bX) + be • a(X, p)-bd • N(X) - ac • N(p) £ ^Z. Hence a
rearrangement yields (j.2) for Ek¡m(z,w;q).

Theorem 2. Let k, m £ N, k > 10 and q£e> with N(q) = 0 (modm). Then
the Jacobi-Eisenstein series Ek>m(z, w; q) belongs to Jk<m(o) and possesses a

Fourier expansion of the form

(19)

Ek>m(z,w;q) = ±(<9m>(?(z, w) + {-l)kt)m,_q(z, w))

oo

+ Y      Y      aq{n,t)e2Kilnz+a{t>w)].

n=\ tee,nm>N(t)

Proof. Convergence and analyticity were proved in Proposition 3.   (j.l) and

(j.2) were shown above.

Choosing c = 0 the sum over A £ A(q) as well as d = ±1 in (16) exactly

yields dWj?(z, ti;) + (—l)fcr3OT>_^(z, to). Now let c ^ 0. Setting A = %+P+ct,

p : o I ce>, t £ o, we get

Y, exp<2nim  N(X)— + a ( A
AeA(i)

\    cz + d)     cz + d\)

= Y exp{

cz + rf        \'cz + d)     cz + d

2niaN(q + mp) \

p :   û/cc
mc 7

x £exp{-27um [/V (u, - ^ - P- - t) /(z + d/c)]}
t€t>

z + d/c

m
Y exp

p :   ojeo

2niaN(q + mp) 1

mc

^exp < 2ni
te«        *■

.... .z + d/c        ( q      p
N(t)-— + o[w- — --

m \       mc     c
■')

where we applied the theta transformation formula [10, IV.2.2], just as in §2.

For fixed O^ceZ we now sum over d = d' + mcl, 1 < d' < m\c\, (c, d') =

1, / e Z. In view of the well-known identity

t-~i \ m       mr
lez

m     mc

4-fc
(-2m

(k
^¿«^exp{2^(^ + ^)},

n=\
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800 M. EIE AND A. KRIEG

we obtain a Fourier expansion of the form

-        Y       (cz + d) k Y exP 1 27t/m
M :   TocW^O XeA(q) I

JV(A)^4
cz + d

I,       w     \     cN(w)
+ a[X,

cz + d )     cz + d

oo

= V Vq(«, t}e2ni[z(n+N(t))/m+o(t,w)]_

n=\ te»

Since Ekm(z, w; q) and $m,q{z, w) + (-l)k-&m>-q(z, iu) are invariant under

z m z + 1, we conclude a(n, t) = 0 unless « + JV(i) = 0 (mod m). This gives

(19).   G

Remark 1. Let fc, m e N, k > 10 and ?£* with /V(#) = 0 (modm). A
look at (17), (18) and at the Fourier expansion (19) yields

Ek,mi'> • ; 0.) — 0   if and only if k is odd and 2q £ mo.

Moreover fix representatives ±qi, ... , ±qr, qr+\, ■■■ , qr+s of q: ojmo with

N(q) = 0 (modm) such that 2q¡  $ mo for 1 < j < r and 2q¡ £ mo for

r < j < r + s . Define

(20) %k,m'-={Ek,m{',-;qj)\l<j<r},    if^isodd,

gfc)W:={£fc,m(-, •\qj)\l <j<r + s},    if k is even.

Then (19) and the linear independence of the theta series imply that the set

ifc „, is linearly independent.

Now let m = I and therefore q = 0 and k be even. Then our proof

describes the Fourier development explicitly. If ak denotes the divisor sum,

Bk the Bernoulli number and Ek(z) £ Mk(T) the normalized Eisenstein series
(cf. [11]), we obtain

Corollary 2. Let k > 10 be even. Then the Fourier expansion of the Jacobi-

Eisenstein series of weight k and index 1 is given by
oo

EkA(z,w;0) = Y     Y     7{n,t)e2ni[nz+^z'w^,

n=Qt€e,N(t)<n

where
ifn = N{t),

_}ak-5(n - N(t))   ifn>N(t).

One has

Ekii{z,w;0) = Ek_4{z)-ûm,o{z, w).

4. The orthogonal complement of the cusp forms

The Petersson inner product for /, g £ Jk,m{o), where at least one of /

and g is a cusp form, was already introduced in [6],

(f,g):= [ f(z,w)g(z,w)yke-4"mNW/ydco,

where w = u+iv and dœ = y~l0dxdydudv is the invariant volume element.

We use the standard identification of ^r with R8 for normalizing du, dv .
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Lemma 1. Let k, weN, k > 10, q £ o with N(q) = 0 (modm) and

f £ Jk m- Then one has

{Ek,m(z,w;q),f(z,w)) = 0.

Proof. We can write the Eisenstein series in the form (16). Hence the usual

unfolding trick gives

(Ek m{z,w;q),f{z,w))= [ f(z, w)yk-ioe-4„mN(v)/ydxdydudv
J&

where

3 = < (z, w) £ H x ffc\0 <x<l, u = Y uJaJ >  0 < u, < 1

is a fundamental domain with respect to the translations in (j.l) and (j.2). If

one inserts the Fourier expansion (j.4), the integration over x already shows

that the integral vanishes.   D

Next we count the number of possible q. Therefore let <p denote Euler's

totient function.

Lemma 2. Given m e N one has

(21) #{q: o/mo\N{q) = 0 (modm)} = m7£ ^p ■

d\m

Proof. Both sides of (21) are multiplicative arithmetical functions. Hence it
suffices to consider m = pr for some prime p and reN. Due to the corollary

in §2 of [9] the left-hand side of (21) is equal to

P4r Yp3t~Yp
r-l

3t-1 = plr i+Y(p-i)p- m'Y^-
,  d4

-3t-l
y -y     » -r ¿_^\y - ijy

T=0 T=0 J L T=l

In particular the number s in (20) can be computed to be

#{q : o/mo\N(q) = 0 (mod m),  2q € mo} =: Nm ,

where

{1    if m = 1 (mod 2),

136   ifw = 2(mod4),

256   ifm = 0(mod4).

Denote the orthogonal complement of the space of Jacobi cusp forms by

■#.«(') = {/€ 4.«WI</, S> = 0 for all g £ #»}.

Theorem 3. Let k, m £ N, k > 10.   Then the set of Jacobi-Eisenstein series

%>ktm in (20) forms a basis of Jk'^{o). Moreover one has

where Nm is given by (22).

21   :r d4
d\m
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802 M. EIE AND A. KRIEG

Proof. Apply Lemmas 1 and 2, Remark 1 and (17). Given g £ Jk,m{o), we

conclude from Theorem 2 and (15) that

S - 2 Yas(N^j)/m > Qj)Ek,mi-, • ; Qj)
7 = 1

, r+s

-¿(l + í-l)*) Y ag(N(qj)/m,qj)Ek,m(.,.;qj)
j=r+\

is a cusp form. Hence the claim follows.   D

5. The Selberg trace formula

Given a subset S of T and z, z' £ H we define

Hsk(z,z'):=      Y      (¿jiz-MÏKyz' + ô))

for k>2, where Mz = ^§ . Then it is well known (cf. [7, 11]) that

(23) ôm<i>(z) = £¿! /        /*#™(z, z')<D(z') <*„(/)
4&    Jr[m]\H

holds for all <I> e ■S/t(r[m]), when r[w]\// denotes a fundamental domain

of if with respect to F[m] and dp(z) = y~2 dx dy stands for the invariant

volume element. Clearly 6m = 1 holds for m > 2 and 5\ =¿2 = 2.

Lemma 3. Given k > 6 <2«âf m £ N one has for all f £ J® m(o),

F{z) = 1^irl ylk~A  5Z  tf[LT(^>w-^V/^').
Jr\H M : r[m]\r

Proof. Let F be a fundamental domain with respect to T and T={jj=\T[m]Mj.

Then |J;=i -M)F covers a fundamental domain of /i exactly ^-times. Thus

Theorem 1 and (23) yield

In the next step we obtain

Lemma 4. Give« A: > 6 and m £ N one has for all f £ J® m(o),

f(z , W) = 210m4^—^   /   y'ke-4nmN(v'y/        V-       //nm]M(z > ̂

(24) *     i9- M:r^]\r

• 0(z, w)' • ̂ (M).6(z',w')/(z', w')dœ(z', w').

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE THEORY OF JACOBI FORMS 803

Proof. Note that the set of all (z, w), where z £ ¥ and w runs through a

fundamental parallelotope of Wc/oz + o contains 2 copies of a fundamental

domain. Write f = F' • O — Q' • F . The standard procedure yields

J&c

ûm^(z',w')-ûm^(z',w')e-4nmN^y'du'dv'

(25) í(^)4 ify-i.

\0 if;V/.

Hence the integral on the right-hand side of (24) equals

^ / y,k-4   y   h£T(*> *')©(*> *»)' • ̂ w • W <W) ■
,/f        m : r[m]\r

Due to Lemma 3 and f = & - F , the claim follows.   D

Hence we have computed the Bergmann kernel of J® m(o). Thus the stan-

dard procedure (cf. [11, 6.4.1]) yields the Selberg trace formula. The orthogonal

relation (25) then leads to

Theorem 4. Given k > 6 and m £ N one has

dim/°>) = ^ /*    yk~4      Y     H™M(z,z)(tmce¥(M))dp(z).
Jt\h        M : r[m]\r

Now we are going to calculate the terms explicitly. Note that trace y/{M) is

constant on the conjugacy class of M due to Theorem 1. It is well known (cf.

[7, Chapter II]) that the conjugacy classes of hyperbolic elements do not give

any contribution.

(A) Contribution from ±1,1 = (¿ °). One has trace y/(I) = m8 and trace

y/(-I) = g.c.d.(m, 2)8. Hence the contribution is

^(m8 + (-l)*g.c.d.(m,2)8).

(B) Contribution from elliptic elements. There are 6 conjugacy classes of elliptic

elements in F, which can be represented by ±J, ±TJ, ±T~XJ. We apply (11)

and (12) and evaluate the arising Gauss sums in the usual way in order to get

trace y/{J) = trace y/(-J) = g.c.d.(w, 2)4

trace y/(TJ) = trace y/(-T~lJ) = I,

tracey/(T~xJ) = tracey/(-TJ) = g.c.d.(m, 3)4.

The integrals are evaluated according to [7, Chapter II]. Setting p = |(1 + iy/3)

the total contribution is

|i-*g.c.d.(m, 2)4(1 + (-l)k) + i££(l + (-l)kg.c.d.(m, 3)4)

+ -^-7=-(g.c.d.(m,3)4 + (-l)*)

= ir*g.c.d.(m, 2)4(1 + (-l)k) - (£±!) ¿(g.c.d.(m, 3)4 + (-l)k),

where (^ ) denotes the Legendre symbol.
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(C) Cusp contributions.    Representatives of the conjugacy classes of the para-

bolic elements are given by ±TJ, j £ Z, j' ± 0. Note that

y/(P) = i//(TJ'),        y(-TJ) = ¥(-P'),    if j = f (modm).

According to [7, Chapter II], the integral over all the conjugacy classes ±TJ', j'

= j (modm), j - I, ... , m , is evaluated to be

-(il^trace^iTV).

Due to (11) the total contribution is

/ \

V^     e-2nijN(q)/m + (_^k     V^     e-2nijN(q)/m

1      m

--Y
Am ¿-*1

7=1 . q :  ojmo q :  a/mû

\ 2qem<> I

= -^{#{q: o/mo\N(q) = 0 (modm)}

+ (-l)k#{q:o/mo\N(q) = 0 (modm), 2q e mo})

d\m

if we regard Lemma 2 and (22).
Gathering all the contributions we obtain our final

Theorem 5. Let k > 6 and m £ N. Then one has

dimJlm(o) = ^-(m" + (-l)kg.C.d.(m,2)&)+l-i-kg.c.d.(m,2)4(l + (-l)k)

-(^^(m.J^HlVjím^f + í-l^j.

Combining Theorems 5 and 2 we also have an explicit formula for dimJkrn(^).

Corollary 3. Let k > 10 and m £ N. Then one has

dimJk^m(o) = ^(m% + (-l)kg.c.d.(m,2f)+X-i-kg.c.d.(m,2)4(l + (-l)k)
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