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Abstract

Covariate and confounder selection in case-control studies is most commonly carried out
using either a two-step method or a stepwise variable selection method in logistic regression.
Inference is then carried out conditionally on the selected model, but this ignores the model
uncertainty implicit in the variable selection process, and so underestimates uncertainty
about relative risks. We report on a simulation study designed to be similar to actual
case-control studies. This shows that p-values computed after variable selection can greatly
overstate the strength of conclusions. For example, for our simulated case-control studies
with 1,000 subjects, of variables declared to be “significant” with p-values between .01 and
.05, only 49% actually were risk factors when stepwise variable selection was used.

We propose Bayesian model averaging as a formal way of taking account of model un-
certainty in case-control studies. This yields an easily interpreted summary, the posterior
probability that a variable is a risk factor, and our simulation study indicates this to be rea-
sonably well calibrated in the situations simulated. The methods are applied and compared
in the context of a previously published case-control study of cervical cancer.
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1 Introduction

Case-control studies ([1], [2]) represent a high proportion of epidemiological practice. For
example, at least 49 such studies were published in the American Journal of Epidemiology
alone in 1996 (see below).

The aim of case-control studies is to test the existence of possible risk factors of interest,
and to estimate their association with the presence or absence of a disease, after adjusting
for possible confounders. A sample of n; cases and ny controls is taken, where often ny is
roughly an integer multiple of ny (n; & ns is common). Although the sample is drawn based
on the disease outcome, the sampling plan is much more efficient than random sampling.
Remarkably, consistent and near-optimal estimates of adjusted relative risks can be obtained

if the model used is logistic regression, namely
log (%(%%) = Bo+ /Xy + B Xo + ...+ B, X, (1)

where Y is 1 if the disease is present and 0 if it is absent, X is a dichotomous risk factor
of interest, X,,..., X, are confounders, and 0y, 31,..., 3, are regression parameters. An
attraction of this model is that the adjusted relative risk, exp(f;), is the same for all values of
the confounders, and does not involve any coefficients other than 3;. This greatly facilitates
reporting and interpretation of the results. This adjusted relative risk can be approximated
by the odds ratio, namely

OddS(Y == 1|X1 == 1,X2, Ce ,Xq) (2)
OddS(Y == 1|X1 == O,Xz, ce ,Xq)7

where Odds = Probability/(1—Probability).

The choice of the confounders, X,,..., X, to include is a major issue. In most studies,
the potential confounders are numerous, including demographic, socioeconomic, familial dis-
ease history, smoking and other lifestyle variables, as well as medical measurements; often
something like 20 to 50 such variables are initially considered. It is vital not to omit im-
portant confounders, which would point towards including all confounders considered, but
doing so tends to lead to inefficient estimation, both in theory (e.g. [3], chap. 9) and in
practice [4]. Thus, investigators have tended to use statistical methods to choose among the

many confounders indicated by substantive considerations. The two most commonly used



methods are a two-stage method [4] and backwards stepwise regression; both of these are
described, for example, in the influential textbook [5].

Investigators typically carry out tests and compute confidence intervals [6] conditionally
on the selected logistic regression model, without taking account of the fact that variable
selection has been done. It has been shown, particularly in the linear regression context,
that doing this can yield misleading results, often tending to reject null hypotheses more
often than the nominal levels would suggest, and to produce confidence intervals that are
too narrow (e.g. [7], [8]).

Here we present a method, Bayesian model averaging, that provides a formal way of taking
account of this uncertainty in both tests and confidence intervals. We carry out a simulation
study designed to be representative of actual case-control studies, and show that p-values
computed after two-stage or stepwise variable selection can be quite misleading, while the
posterior probabilities from Bayesian model averaging achieve roughly their nominal error
rates. In addition, Bayesian model averaging point estimates of adjusted relative risks are
more accurate on average than those from the variable selection methods. We illustrate the
method with an application to a case-control study investigating risk factors for cervical

cancer [9].

2 MATERIALS AND METHODS

2.1 Bayesian Model Averaging
2.1.1 General Principles

Bayesian model averaging (BMA) is the Bayesian solution to the problem of inference in the
presence of multiple competing models ([10], [11], [12], [13], [14], [15], [16], [L7]). For general
introductions to Bayesian inference, see [18], [19] and [20].

BMA starts by acknowledging that in the situation of equation (1) there are up to K = 2¢
possible models (assuming that no interaction exists between the risk factors) defined by
allowing each of Xj,..., X, to be either in or out of the model. We denote these models by
My, ..., Mg. We do not know in advance which of these is the best model, and so there is
model uncertainty. BMA simply propagates this uncertainty through to inference about any

quantity of interest in the same way as the Bayesian approach propagates any other form of



uncertainty. This is done using the law of total probability, i.e. by summing or integrating
over the quantities that are not of primary interest and about which there is uncertainty.

Suppose that ) is a quantity of interest, which here is an adjusted relative risk, but could
also be a future observation, or the utility of a course of action. Its posterior distribution,
taking account of model uncertainty, is

K

p(QID) = _ p(Q|D, My) p(M|D), (3)

k=1
where D denotes the data at hand (here, observations on disease, risk factors and con-
founders), p(Q|D, My) is the posterior distribution of @) under model My, and p(My|D) is
the posterior probability of model M}, given the data. Thus the overall posterior distribution
of @) is a weighted average, or mixture, of its model-specific posterior distributions, where
the weights are the posterior model probabilities.

The posterior model probability, p(M|D), of model M), given the data, is given by
p(M| D) o< p(D| My )p(My), (4)

where the constant of proportionality is chosen so that the posterior model probabilities add
up to one. In equation (4), p(My) is the prior model probability of model My; these are
often chosen to be equal so as not to favor one model over another a priori. The quantity
p(D|My) is the integrated likelihood of model My, which follows again from the law of total
probability as the multiple integral

P(DIML) = [ p(DIB* M)p(8 M) 5" (5)

where 3% is the vector of regression parameters for model My, p(D|3*, M}) is its (ordinary)
likelihood, and p(3%|My) is its prior distribution, both under model M.

Equation (5) poses two problems. The first is the evaluation of the integral, which does
not usually have an analytic form and can be of high dimension. Fortunately, for logistic
regression, and indeed for generalized linear models more broadly, an accurate and quite
tractable approximation is available using the Laplace method [15]. This can be imple-
mented, and BMA carried out for logistic regression, using the glib software, which runs
under S-PLUS and is available on the Web at www.research.att.com/ volinsky /software/glib,
or at lib.statlib.cmu.edu/S/glib.



The second problem is the choice of the prior distribution of the parameters, 3*. A prior
distribution in which each of the ﬁjk is independent and normal, with mean zero for all the
parameters except the intercept, and with a prior standard deviation equal to a common scale
parameter, ¢, divided by the standard deviation of X; if X; is continuous, seems capable
of representing a reasonable range of prior distributions while requiring the specification of
only a single prior parameter, ¢ [15]. We will discuss the choice of ¢ below.

BMA has three appealing theoretical long-run properties. First, for the prediction of new
observations, it gives better predictive performance on average (using a log score to measure
performance), than any single model that could reasonably have been selected [11]. Second,
inferences are well calibrated in the sense that, for example, confidence intervals have the
right coverage on average [21]. The third property relates to Bayesian hypothesis testing
using Bayes factors, when the null model is rejected against an alternative if it has lower
posterior model probability. This test has lower total error rate (i.e. sum of Type [ and Type
IT error rates) than any other test on average over the models and the prior distributions
([22], p. 396), and hence can be viewed as an automatic way of choosing a significance level
so as to optimally balance power and significance.

This general approach has been used in several previous analyses of medical and epi-
demiological data. Racine et al [23] showed how this method may be used to make inference
about a treatment effect in the presence of uncertainty about the existence of a carryover
effect. An epidemiological study of fat and alcohol consumption as risk factors for breast
cancer [24] was reanalyzed using Bayesian model averaging [25].

Similar analyses of coronary heart dise ase risk factors and the diagnosis of scrotal
swellings have been reported [11]. In their examples, the authors found that out-of-sample
predictive performance was better if one took account of model uncertainty than if one

conditioned on any single model that might reasonably have been selected.

2.1.2 BMA Inference for an Adjusted Relative Risk

BMA provides hypothesis tests, point estimates and confidence intervals for an adjusted
relative risk, all of which take account of model uncertainty.
For hypothesis testing, from a Bayesian point of view, the question becomes “what is the

posterior probability that X is a risk factor, i.e. that 3y, the adjusted log relative risk, is



not equal to zero?” This is simply

Prpi #0[D] = > p(M|D). (6)

My X1 €My

Conventional rules of thumb for interpreting this quantity verbally are that if Pr[3; # 0|D]
is less than 50%, there is no evidence for X; being a risk factor, if it is between 50% and
75% there is weak evidence for X; being a risk factor, if it is between 75% and 95% there
is positive evidence, between 95% and 99% the evidence is strong, and beyond 99% the
evidence is very strong ([22], Appendix B; [13]).

A Bayesian point estimate of 3y is its posterior mean, given that X; is in the model,

namely

EBIDl = > Bip(My|D), (7)

My: X1 €My
where Bf is the posterior mean of (J; under model My. This is a weighted average of the
model-specific point estimates, where once again the weights are the posterior model proba-

bilities. A Bayesian standard error, or posterior standard deviation of (31, is the square root

of
Va(@lp) = {(Var@p.at) + (1)) p0giD) - EBIDEL. (8)

Mj:X1€My,
If the sample size is moderate or large, Bf will often be well approximated by the maximum
likelihood estimator, and Var(3:|D, M) will be well approximated by the square of the usual
standard error under model M.

Inference about i, including testing, point estimation and confidence intervals, is sum-
marized by equations (6), (7) and (8). A difficulty is that each of these equations involves
summation over all K = 2? possible models, and K will often be impracticably large. For
example, in the application we present later, ¢ = 35, and so K could be as large as 2%°, which
is about 34 billion. To get around this, we approximate the full sum by excluding models
that are far less probable a posteriori than the best model; here we adopt the convention of
excluding models whose posterior probability is less than one-twentieth of that of the best
model. This device, known as Occam’s window [11], reduces the number of models enor-
mously but still seems to provide a good approximation to the full sum [26]. There are also

scientific arguments supporting its use in its own right, and not just as an approximation



[11]. The models in Occam’s window can be found rapidly using a generalization of the leaps
and bounds algorithm ([27], [12], [28]). Details are given in Appendix.

The BMA approach requires the specification of some prior quantities:

- the prior probabilities P(My) of the models, which will be taken to be equal, so as not
to favor any model a priori, and

- the prior distribution of the parameters 3;. As suggested in [15] for the case of weak prior
information, we assume that the distribution of 3 is a centered Gaussian with a standard
deviation ¢ to be specified.

To choose a value of ¢, we noted that ¢’ is the odds ratio (OR) corresponding to exposure
to a dichotomous X;. Hence a choice of ¢ can be translated into probability statements
relating to the distribution of typical OR’s. We chose ¢ so that the prior probability of finding
an OR greater than 7 will be less than 5 %. This was motivated by the shared expectation,
based on our own experience and on discussions with epidemiologists at INSERM, that most
OR investigated in case-control studies will be less than 7. This is in part because stronger
associations will often already have been identified, and with strong associations interest is
more likely to focus on the strength of the association rather than its existence, with dose-
response or other specifically designed studies. Our choice was reinforced by consideration
of the range of OR’s found in our review of case-control studies published in 1996 (see the
next sections and Table 1). Note that this prior choice can be easily modified by simply
changing the value of ¢.

2.2 Standard Methods

The difficulties of variable selection techniques have been discussed by many authors ([29],
[30], [31], [1], [5]). In order to characterize variable selection approaches commonly used
for logistic regression in epidemiology, we reviewed the case-control studies published in the
American Journal of Epidemiology in 1996, as well as the recent methodological literature.
The results of case-control studies published in the American Journal of Epidemiology in
1996 were usually presented in terms of just one single model: the choice of this single final
model corresponds most of the time to a complex mixture of statistical and epidemiological
arguments. We cannot model the full range of epidemiological considerations which influence

the choice of the final model. We will oversimplify this procedure by considering the choice



of models to be based only on significance level criteria, in two “classical” strategies.

2.2.1 The Two-Step Procedure

This procedure, described in [5], has been considered and examined in [4] as a possible strat-
egy to identify confounders. A first step of selection is carried out by univariate logistic
regression. In a second step, each variable with a p-value in the first stage less than a thresh-
old, is retained for inclusion in a subsequent multiple logistic regression. The threshold is
frequently taken as o = .20. The associations interpreted are essentially those corresponding

to variables having p-values less than a = .05 in the second stage.

2.2.2 Stepwise Backwards Selection

In this strategy, all the variables are included in the first model, then some are eliminated
in a stepwise manner. One iteration of the procedure consists of the evaluation of the p-
value of each variable in a multiple logistic regression, and the elimination of the variable
which has the highest p-value. The process stops when the p-values corresponding to all
the remaining variables are less than .05, or some other threshold. The coefficients of the

remaining variables are then re-estimated in this model.

2.3 Design of the Simulation Study

2.3.1 Basis for the Simulation Study Design: The Case-Control Studies in AJE,
1996

Determining a few cases of “typical” datasets to be simulated and analyzed is a delicate task
and we have based our choice on a review of case-control studies published in the American
Journal of Epidemiology in 1996. We have selected 49 case-control studies, which are used
essentially as providing useful guidelines for the design of our simulation study.

Most of the studies were conducted to establish the link between a specific set of variables
and a health outcome, or to evaluate the strength of the association for a variable already
established as a risk factor. In this case, many other variables are entered in the multiple
logistic regression as potential confounders. Other studies were more exploratory in nature

and included a substantial number of variables, all considered to be potential risk factors.



In the setup of our simulation study, we have not focused on a particular variable, but have
considered them all symmetrically.

The 49 selected studies had numbers of subjects ranging from 118 to 9,913, with a median
of 894. We chose two different cases, each representative of substantial numbers of published
studies : “Simulation 1”7 includes 300 subjects, and “Simulation 2,” 1,000. In most studies,
the number of controls was close to the number of cases and we chose equal numbers of cases

and controls in each of the two simulation designs.

2.3.2 The Variables

The total number of variables initially considered is rarely fully reported in the articles.
Indeed, the focus on one particular variable, or simply the need to summarize the results,
often leads to the presentation of a small number of tables, including only some of the
variables mentioned in the “Data Collection” paragraph. In the 49 studies, the total number
of variables examined in the tables was between 3 and 39, with a mean of 16. This is likely
to be an underestimate, due partly to the fact that the tables presented in a published
study are a summary of the analysis itself and therefore frequently do not include all the
variables examined, especially in the case where a particular risk factor is of prime interest.
A detailed examination of the 49 studies, with special attention to the ones where variables
were considered symmetrically as potential risk factors, led us to choose ¢ = 32, which is
also close to the number of variables in the cervical cancer study that we reanalyze later.

The number of variables actually associated with the health outcome, ideally correspond-
ing to the typical dimension of a “final model” found in case-control studies, was chosen as
10, again based on our review of the published studies. We split this group into a subgroup
of five variables correlated with each other and five others independent of each other. Among
the 22 remaining variables which are not linked to the health outcome, some are also corre-
lated with each other. This is aimed to encompass typical classes of “explanatory” variables
recorded in epidemiological studies.

Before being entered in a logistic regression, the variables are almost always categorized
or dichotomized. This is also the choice in our two simulations : independent variables
were Bernoulli, while the variables correlated with each other were simulated as centered

multivariate normal with all correlations equal to 0.4, then dichotomized. The frequency of



exposure to the risk factors has been set at 20%, which is, for example, the approximate
frequency of exposure to solvents in the general population, and seems reasonable to mimic
the frequency of exposure in many case-control studies.

In order to choose the values of the logistic coefficients (3;, we have listed the OR of the
variables of interest in the 49 studies selected: we considered the value(s) quoted in the
summary when there were any, and if not, we took the estimated OR’s corresponding to the
risk factor investigated from the most complete model. Some OR’s came from a univariate
logistic regression, but most of them came from a multivariate model. Because of an obvious
reversibility, we decided not to consider the case of protective factors and simply inverted
their coefficients. Table 1 shows the distribution of the estimated OR, separately for the
smaller and larger studies, with 200400 and 700-1300 subjects respectively. The observed
ORs were higher in the smaller studies. This is not unexpected as smaller studies have the
power to detect only stronger associations. Correspondingly, we chose different coefficients
B; in the two simulated cases, with odds ratios in the interval [1.6-5.5] for Simulation 1, and

in the interval [1.3-3.0] for Simulation 2.

Table 1: Distribution of the values of OR’s of primary interest found in 49 case-control
studies, for smaller and larger studies separately

Minimum | Ist Quartile | Median | 3rd Quartile | 90% percentile | Maximum

n € [200 — 400] 19 ORs 1.4 2.2 2.5 2.9 8.3 15.2

n € [700 — 1300] 41 ORs 1.0 1.1 1.5 2.2 4.4 10.7

The outcome variables were simulated using the model in equation (1), where 3, was
adjusted so as to yield a number of controls almost equal to the number of cases (8y = —2
in Simulation 1, and #y = —1.5 in Simulation 2). For each simulation setup, 200 datasets

were generated. Table 2 summarizes the design choices.

3 RESULTS

We analyzed our simulated data sets using the two “classical” methods and Bayesian model
averaging. For the classical analyses, we recorded the p-values in the “final single model”
when X; was listed among the selected variables. When X; did not appear in the final model,
we proceeded differently for the two methods. If X; had been excluded in the first step of



Table 2: Design of the simulations

Simulation 1 | Simulation 2
number of subjects, n 300 1000
total number of variables 32 32
TYPE OF VARIABLES
variables associated with Y and independent of each other 5 5
variables associated with Y and with each other 5 5
variables independent of Y but correlated with the 5 last ones 2 2
variables independent of Y but correlated with each other 2 groups of 5 | 2 groups of 5
variables independent of Y and of each other 10 10
Simulated odds ratios 1.6-5.5 1.3-3.0

the two-step procedure, we kept the p-value from this previous univariate analysis. If X; had
been excluded during the stepwise process, we kept its p-value in the last model in which
X, figured among the variables. In the Bayesian approach, we simply recorded the posterior

probability that X; is associated with Y, Pr(3; # 0|D), from equation (6).

3.1 Posterior Probabilities and p-Values

We first compare the observed and nominal performances of the methods. We thus consider
the p-value associated with a coefficient for the classical methods, and the Pr(3; # 0|D)
for Bayesian model averaging. For each simulation design, the 200 repetitions give 32 x
200 = 6400 p-values to consider for each of the two classical methods, and 6400 values of
Pr(8 # 0|D) for the Bayesian approach.

3.1.1 Standard Methods

For the two-step and stepwise methods, we selected the p-values that were less than .10,
and classified them between the bounds 0.10, 0.05, 0.01, 0.001 and 0, yielding four intervals.
This type of classification corresponds to usual epidemiological practice. It is conventional
to view p-values between .05 and .10 as “barely significant”, “nearly significant” or “just
missing significance”, those between .01 and .05 as “significant”, those between .001 and .01
as “highly significant”, and those that are less than .001 as “very highly significant”.

We recorded the number of p-values falling in each of these intervals (columns 4 and 6 of

10



Tables 3 and 4 ). This number corresponds to variables that are declared by the method to be
associated with Y at the given significance level. Then we calculated the proportion of these
variables which are actually associated by design. This ratio figures in columns 3 and 5 of
Tables 3 and 4 and gives the observed proportion of explanatory variables declared associated

with this level of confidence which were actually associated with Y in our simulation.

Table 3: Two-Step Method: Nominal significance levels and proportions of variables actually

associated with the outcome

Significance of an Recorded Simulation 1 (n=300) Simulation 2 (n=1000)
association with Y p-values Observed proportion of vari- | # of p-values Observed proportion of vari- | # of p-values
ables with 8 # 0 by design ables with 8 # 0 by design
Barely significant 0.05-0.10 0.44 281 0.30 253
Significant 0.01-0.05 0.68 414 0.57 377
Highly significant 0.001-0.01 0.92 421 0.87 298
Very highly significant < 0.001 0.996 747 0.997 1161

As an example, consider Simulation 2, the two-step analysis, and the [0.01-0.05] interval.
If the p-value for a coefficient was less than .05 but greater than .01 (i.e. “significant”), how
likely was it that the corresponding variable was actually associated with the outcome in
the situation we simulated? We found 377 p-values in the [0.01-0.05] interval. In an article
reporting a case-control study, the corresponding X; would typically have figured in a table
summarizing the single final model marked with “p-value < 0.05”. In reality, only 214 of
these 377 p-values corresponded to variables that were actually associated with Y by design.
Thus the observed proportion of “significant” variables with p-values in the range [0.01-0.05]
that were actually associated with Y was only 57%. Thus commonly used interpretations
such as “the probability of such a significant result occurring by chance is less than 5%”
can be misleading when two-step (or stepwise) variable selection is carried out first; here the
empirical probability of such a significant result occurring by chance was 43%. Hence the
observed proportion of being truly a risk factor for X; when the quoted p-value belongs to
[0.01-0.05] is only 57%. One might well have expected a much higher value.

For the two classical methods, the observed proportion was well below 1, and also far
below one minus the nominal significance level, for p-values in the range .10 right down to
.001. Only when the p-value was very small, below .001, was the chance of a false association
small and close to its nominal value. The two classical methods gave similar results, although

the two-step method had somewhat better performance than the stepwise one. Hence, for

11



Table 4: Stepwise Method: Nominal significance levels and proportions of variables actually

associated with the outcome

Significance of an Recorded Simulation 1 (n=300) Simulation 2 (n=1000)
association with Y p-values Observed proportion of vari- | # of p-values Observed proportion of vari- | # of p-values
ables with 8 # 0 by design ables with 8 # 0 by design
Barely significant 0.05-0.10 0.34 350 0.28 302
Significant 0.01-0.05 0.55 448 0.49 414
Highly significant 0.001-0.01 0.89 432 0.86 283
Very highly significant < 0.001 0.99 858 0.995 1204
most of the range of p-values usually viewed as “significant”, the p-value resulting from
the classical variable selection methods is very different from the actual proportion of false
positive significant results. Thus we should be wary of interpreting p-values in terms of the
probability that a coefficient corresponds to an actual association.
3.1.2 Bayesian Model Averaging
For the Bayesian approach, we repeated our comparison by recording, among the 6400
posterior probabilities of a variable being a risk factor, Pr(3; # 0|D), the ones which led to
the declaration of a link between X; and Y, i.e. the Pr(3 # 0|D) > 50%. To categorize these
posterior probabilities, we used the bounds cited in [13] : 50, 75, 95 and 99%), corresponding
to weak, positive, strong and very strong evidence for an association with Y. The results are
presented in Table 5.
Table 5: Bayesian Model Averaging: Posterior probabilities and proportions of variables
actually associated with the outcome
Evidence for Simulation 1 (n=300) Simulation 2 (n=1000)
an association | Pr(3 # 0|D) Observed proportion of vari- | Number of Observed proportion of vari- | Number of
with Y ables with 3 # 0 by design post.prob. ables with 3 # 0 by design post.prob.
Wealk 50-75% 0.65 156 0.57 161
Positive 75-95% 0.77 206 0.72 169
Strong 95-99% 0.92 109 0.90 93
Very strong > 99% 0.98 1037 0.99 1310

For example, among the 6400 values of Pr(3 # 0|D) obtained in Simulation 1, 206 were
in the [0.75-0.95] interval, 159 of them corresponding to the last ten variables, which were
actually associated with Y in the simulation. This gives 0.77 as the proportion of times that
X; was actually a risk factor for Y, among the times when its posterior probability was in
the interval [0.75-0.95].

Overall in Table 5, we see reasonably good agreement between nominal and observed

12



probabilities of an association. The interpretation of the uncertainty concerning the effect
of a potential explanatory variable, quantified by its posterior probability Pr(8 # 0|D) is
thus transparent and direct in the Bayesian results, in contrast to that of the p-value given

by the classical analyses.

3.2 Estimation of the Coefficients

Here we compare the estimation of the logistic regression coefficients, 3;, given by the different
methods by summing the squared errors over the 200 simulations:

200

SSE =33 (- Br:)*

j=1 i
(where (Or; is the true value of 3; in the simulation), calculated separately for the subgroups
of variables associated and not associated with Y. The BMA estimate of BZ is given by
equation (7). It was not meaningful to evaluate this sum for the stepwise selection method,
as BZ is undefined if X; is not retained in the model. Table 6 contains results for the two-step

method and for BMA, for the two different simulation setups.

Table 6: Estimation of Logistic Regression Coefficients: Sums of Squared Errors

Simulation 1 (n=300) || Simulation 2 (n=1000)
Variables || Two-step ‘ BMA Two-step ‘ BMA
Xi1-Xo0 438 288 108 121
Xo1-Xoo 65 41 15 14
Xo3-X3a2 387 307 82 71

For Simulation 1, BMA gives smaller sums of errors for all the types of variables. Hence
in smaller studies, where the uncertainty due to model choice is greater, Bayesian estimation
via BMA gives an estimate that is closer to the true value on average. In Simulation 2,
the mean squared error is smaller, as expected when n increases, and the results of the two
methods become closer. The only case where the two-step approach gives a smaller SSE
than the Bayesian one is for the variables X; — X5, simulated independently from Y, when
n = 1,000. Note that, in this case, the values of Pr(f;|D) for such variables are very low,

and so these are estimates that one would not usually interpret anyhow.
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Table 7: Cervical cancer study: Adjusted effects published in [9]

| | 8 SE p-value ||
Sexual partners before age 20 0.62 0.21 < .01
Years using barrier contraceptives -0.142 0.043 < .01
Episodes of genital warts 1.32 0.45 < .01
Years of education -0.252 0.073 < .001
Years since last Pap smear (log) 0.86 0.18 < .001
Cumulative smoking exposure 0.00229 | 0.00063 | < .001
Cumulative douche use 0.0081 | 0.0022 | < .001
Yrs. from menarche to first intercourse | -0.078 0.049 < .10

4 APPLICATION

We now present an application of Bayesian model averaging to a case-control study on
cervical cancer conducted by R. Peters and collaborators [9]. It included 400 subjects:
200 women with invasive squamous cell carcinoma of the uterine cervix and 200 controls
matched on age, neighborhood of residence and preferred language (Spanish or English).

For comparison, we will refer to the results published in [9].

4.1 Classical analyses

In [9], this dataset was analyzed as matched pairs, considering 35 risk factors classified in
categories (sexual history, method of contraception, genital infection, risk inducing behavior
and demographic characteristics). The authors did not include any interaction terms. First,
they performed a univariate analysis for each of the 35 variables, of which 25 had two-sided
p-values smaller than .10. In the multivariate analysis, they then constructed meaningful
combinations of some of the 35 variables, for example those related to smoking, leaving a
total of 28 variables. Of these 28 variables, 18 had two-sided p-values smaller than .10.
Starting with these 18 variables, they then carried out a multiple logistic regression based
on a stepwise forward analysis. This led to a final model with 8 variables. Seven of these 8
variables were statistically significant at the 5% level, and the eighth, “Years from menarche
to first intercourse”, was significant only at the 10% level. Because excluding it from the
final subset consistently changed the estimates of most of the seven other logistic coefficients,
the authors decided to keep it in their “final model”, reproduced here in Table 7. We will
do the same in the following classical analysis.

To complete this classical approach, we also ran a stepwise forward analysis starting from
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all the available variables. Unfortunately, two of them (“estimated number of others partners
of current partner”, and “douched with water-vinegar, (ves/no)”) were no longer available,
but these two missing variables had not been statistically significant in the univariate analysis
[9]. This left a total of 26 available variables. We thus carried out a stepwise procedure
starting with all the 26 variables ; this led to 10 of them being included in the final model,
including “Years from menarche to first intercourse”. Table 8 presents the logistic regression

coeflicients and standard errors estimated in the “final” model.

4.2 Bayesian Model Averaging

For comparability, we used the same variable definitions as in [9], we did not consider interac-
tions, and we analyzed the data as matched pairs. The BMA approach starts by considering
all possible combinations of the 26 available variables, yielding an initial set of 2?° models.
This is then pared down to the models in Occam’s window, namely the most likely model «
posteriori and the models whose posterior probabilities are within a factor of 20 of that of
the most likely one. To do this, highly unlikely models are first excluded using the adapted
leaps and bounds algorithm as implemented in the bic.logit or bic.glm 5-PLUS func-
tion (available at www.research.att.com/ volinsky/bma.html or at lib.stat.cmu.edu/S), and
then the posterior probabilities of the remaining models are computed using the Laplace
approximation, as implemented in the glib S-PLUS function' (see Appendix for details).

The prior distribution of ; is a centered Gaussian distribution whose standard deviation,
¢, was chosen so that the OR between unexposed and exposed subjects would fall in the
interval [1/7,7] with prior probability 95%. For a dichotomous variable, this OR is ¢”, and
the interval [1/7,7] corresponds to choosing 3; ~N(0,1) a priori. For a continuous exposure
variable X;, we chose the prior standard deviation of 3; so that the OR between subjects
at the 25th and 75th percentiles would also fall in the interval [1/7,7] with probability
95%. The resulting prior standard deviations thus depend on the variability, specifically the
interquartile range, of the corresponding continuous variables.

There were 76 models in Occam’s window, and these were used to calculate the BMA

!The treatment of matched data required some modification of the S-PLUS functions used for the Bayesian
analyses. The calculation of the posterior probabilities 1s usually based on a comparison of each model with
the empty one, in which only the intercept figures. As matched analysis are performed on models with no
intercept term, comparisons were made with the full model, ¢.e. the model including all the 26 variables.
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Table 8: Cervical cancer study analyses

Classical Variable Selection Bayesian Model Averaging
5 SE  pvalue | E(B|D) sd(8|D) Pr(8#0|D)

Sexual partners before age 20 0.70 0.25 < .01 0.61 0.23 100%
Years using barrier contraceptives -0.15 0.046 < .001 -0.12 0.044 100%
Episodes of genital warts 1.48 0.48 < .01 0.93 0.44 97%
Years of education -0.26 0.079 < .001 -0.24 0.076 100%
Years since last Pap smear (log) 0.99 0.20 < .001 0.71 0.18 100 %
Cumulative smoking exposure 0.0029 | 0.00073 | < .001 0.0024 | 0.0007 100%
Cumulative douche use 0.0089 | 0.0023 < .001 0.0078 0.0023 100%
Yrs. from menarche to first intercourse | -0.078 0.051 0.13 -0.074 0.05 39%
Genital herpes (yes/no) NS 0.31 0.69 13%
Age at first intercourse NS -0.047 0.065 12%
Income NS -0.085 0.12 9%
Partner with genital warts NS 0.11 0.51 7%
Age at first regular intercourse NS -0.03 0.04 6%
Gonorrhea or syphilis (yes/no) NS -0.88 0.61 66%
Other cervicitis (yes/no) 1.23 0.54 < .05 0.73 0.46 82%
Intra-uterine devices -0.14 0.074 < .10 -0.11 0.073 13%

estimates of the regression coefficients (see the right hand side of Table 8). The posterior
probability of being a risk factor, given by Pr(f; # 0|D), is also shown. Table 8 summarizes
the estimation of the logistic coefficients as well as the associated probabilities: the p-values
and the Pr(3; # 0|D) for the “classical” and Bayesian analyses, respectively. The variables
which do not figure in Table 8 had both a nonsignificant p-value and a posterior probability
lower than 5%.

We now compare the results of the classical analysis with those of BMA. Six variables
had p-values below .01, and these all had posterior probabilities of 100%?2, so that for these
variables the two approaches were in agreement.

Two variables had p-values between .01 and .05. For one of these, the number of genital
warts episodes, the posterior probability was 97%, so the two analyses agreed. For the other
one, “other cervicitis”, the posterior probability was 82%, so that the p-value seems too

decisive once model uncertainty is taken into account. An interesting point about the “other

ZNote that a reported posterior probability of 100% results from the use of the Occam’s window ap-
proximation and indicates that all the models that were plausible a posteriori contained the corresponding
variable. If full BMA were carried out, averaging over all possible models, the posterior probability would
be close to, but not exactly equal to, 100%.
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cervicitis” variable is that it did not figure in the published results (Table 7), because the au-
thors initially excluded variables whose p-values was greater than .10 in a univariate analysis,

which was the case for “other cervicitis”?.

Thus it seems that the classical analysis either
indicated significant evidence for “other cervicitis” being a risk factor, or excluded it com-
pletely, depending on the precise methodology used. BMA, on the other hand, consistently
indicated positive but not strong evidence for this variable.

The variables that were “not significant” in the classical analysis generally had posterior
probabilities below 50%, in most cases well below. There was one notable exception, however,
namely “gonorrhea or syphilis”, whose posterior probability was 66%. Thus the classical
analysis missed the (weak) evidence in the data for an effect of this variable. This high
posterior probability seems to indicate that this variable is a good marker of past sexual risk
factors. Note nevertheless that only 14% of patients were exposed. In this context of low
exposure frequency, the choice of ¢ is more influential and might have contributed to the
difference between classical and Bayesian analyses concerning the selection of this variable.

The only other non-significant variable for which the posterior probability approached
50% was “years from menarche to first intercourse” (39%). Again, BMA gives a more
nuanced result than the classical approach, not indicating evidence for this variable but not
ruling it out either. If this were an important variable, this result would point towards the
need for more research on its possible effect.

Note that the regression logistic parameter estimates from the Bayesian analysis are
shrunk towards zero in comparison with the classical analyses. This is a usual phenomenon
in Bayesian estimation and is related to the choice of prior variances for these coefficients

which will be discussed later.

5 DISCUSSION

In observational case-control studies with many potential confounders, it is common to carry
out statistical confounder selection using a two-step or stepwise procedure, and then to make

inference using the selected model as if standard statistical methods were valid after variable

3The results published in [9] were based on stepwise variable selection starting from 18 rather than 26
variables.
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selection. Our simulation study, designed to resemble typical case-control studies, has shown
that among variables with a given range of p-values, for example the range [.01,.05] commonly
declared to be “significant”, the proportion that actually are risk factors tends to be much
lower than one minus the p-value (only 49% actually were risk factors in our simulated
case-control studies with 1,000 subjects when stepwise variable selection was used). Thus,
commonly made statements such as, “The probability of obtaining such a result by chance
is less than one in twenty”, are grossly misleading in this context.

If Bonferroni-corrected p-values had been used instead, the correspondence between nom-
inal and observed levels would have been better, but the Bonferroni correction assumes un-
correlated variables and is rarely used in case-control studies. It was not used once in our
sample of 49 case-control studies from the AJE.

We have proposed Bayesian model averaging as a formal way of accounting for model
uncertainty in case-control studies analyzed using logistic regression. In our simulations, it
was well calibrated, unlike the classical p-value methods considered. BMA can be easily
implemented, and S-PLUS functions to do it automatically are available on the Web. The
posterior probabilities, Pr(3; # 0|D), have a clear interpretation, which our simulation
suggests is a valid one.

It should be emphasized that BMA is not a substitute for careful incorporation of available
scientific knowledge, or for careful data analysis. These together should lead to a set of
candidate confounders, or potential risk factors in a more exploratory study. The role of
BMA is merely to account for the uncertainty remaining at the end of the scientific and data
analysis; model uncertainty should be minimized on the basis of scientific considerations to
the extent possible. But the model uncertainty that remains should be taken into account
when final conclusions are drawn.

In any Bayesian analysis, the prior distribution is important. For BMA, there are two
major components to the prior distribution. The first consists of the prior model probabil-
ities, and there we have taken all 2? models to be equally likely a priori. Our experience
has been that the results tend to be relatively insensitive to deviations from this specifica-
tion. There are important ways in which this prior distribution may need to deviate from
equiprobability should be noted, following [1]. If a variable C' is known from other studies to

be undoubtedly related to the disease, and if this association is not subsidiary to a possible
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exposure/disease association, then €' should be included in the model; this can be thought
of as assigning prior probability zero to all models that do not include C'. Moreover, if a
factor is thought to be sufficiently important to be used as a matching or balancing factor
in the study design, it should be included in all the models considered.

There are various possible ways other than equal probability to assign prior model proba-
bilities. One approach that seems promising is to elicit prior model probabilities from health
professionals [32]. In the results reported in [32], this gave better predictive performance
than BMA with equal prior model probabilities.

Regression estimates also depend on the prior distribution of 3;, and more precisely on
the prior scale parameter ¢ of the centered Normal chosen as a prior distribution in the
Bayesian analysis. The choice of ¢ determines a prior interval for the quantity of interest
(here the OR, for which we have suggested the prior 95% interval [1/7,7]). Note that the
context can be useful for tuning ¢ more precisely to the kind of study at hand. For example,
if we regularly observed OR’s as high as 14 (instead of 7) for variables in case-control studies
similar to the one being analyzed, we might double the value of ¢, yielding a 95% prior
interval for the OR of [1/14, 14]. In the cervical cancer application, we tested the influence
of the choice of prior variances by changing these to the ones described above (i.e. OR in
the interval [1/14, 14]). The posterior probabilities and estimates of the coefficients were
essentially unchanged from these of Table 8 (results not shown).

As a final comment on the influence of the prior variance for 3;, we note that the shrinkage
effect on (3; induced by the prior distribution of this coefficient is more marked when the
maximum likelihood estimate of (3; is less precise. For example, in our application, this
happens for dichotomous variables with low frequency of exposure, such as “Genital warts”,
“Gonorrhea or syphilis” or “Other cervicitis”.

One objection that might be raised against BMA is the following. The view might be
taken that the interpretation of an OR depends on the confounders for which it has been
adjusted, and hence that BMA, by combining results from models with different sets of
confounders, is really mixing apples and oranges. We believe that this objection does not
apply when the quantity of interest () in equation (3) has the same interpretation for each
model considered. This will be the case if, for example, () can be interpreted as an observable

quantity to be predicted. An adjusted log-odds ratio such as (J; can often be cast in this
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framework, since it can be thought of as the approximate log-odds ratio in a stratum from a
hypothetical future large sample exchangeable with the current one. The relevant stratum
would be one defined by stratifying by all the potential confounders X5, ..., X,.

Another way of looking at this issue is as follows. BMA can be thought of as averaging
over a collection of models. However, it can also be thought of as carrying out inference based
on just one model, the full model with all variables Xi,...,X,, but with a rather special
prior. This prior assigns non-zero probability to the events {3, = 0} for each ¢, i.e. it allows
for the possibility that the coefficients might be zero. Thus, since BMA can be thought of as
a way of making Bayesian inference about a single model, the resulting inference about one
of its coefficients can be validly interpreted in the usual way. One possible objection to such
a prior is that we would never believe that a coefficient could be exactly zero, although we
might well expect it to be small. This concern is alleviated by the fact that the results from
this prior are very similar to those from a different prior in which the probability is spread
over a moderately small interval about zero instead of being concentrated precisely at zero;
this interval can be as wide as half a standard error [33].

One strong result to emerge from our simulation study is the difficulty of interpretation of
the p-value in classical stepwise and two-step procedures. A smaller than expected proportion
of the variables declared to be associated with the disease outcome, actually are. On the other
hand, Bayesian model averaging provides a transparent statement of the probability that a
variable is associated with a health outcome, through the posterior probability Pr(3; # 0|D).
Such an approach could be helpful with the difficult task of choosing confounders, and was

shown to have good performance in a realistic simulation study.

Acknowledgments: The authors are grateful to R. Peters for providing us with the data
from the cervical cancer case-control study reanalyzed here. They would like to thank D.
Hemon, Sir David Cox, R. Peters and D. Thomas for helpful comments on simulation work
and epidemiological application. The views expressed here are, however, solely those of the
authors. The research of Viallefont and Raftery was supported by Office of Naval Research
Grant N00014-96-1-0192.

20



Appendix

Reducing the set of models {M;,k=1,..., K} With ¢ explanatory variables, and no
interaction, the initial number of possible models will be equal to 29. This set will be very
large in most epidemiological studies where ¢ is frequently 20 or more, and it needs to be
reduced. We will use the following principle (also referred to as Occam’s window by Madigan
and Raftery [11]), which consists of:
- calculating the posterior probabilities of all models, using a workable fast approximation,
- identifying the “best” model (i.e. the one with the highest posterior probability) : Mp,
- eliminating the models which are more than § times less probable than the best one.
More precisely, we keep the models M}, satisfying :
P(My|D
7]35 MZ|| D; <6 (9)

We actually run this algorithm twice:

e the first time to eliminate models whose posterior probabilities are much smaller than
that of the best model, using the BIC approximation to the Bayes factor and a threshold
window with 6 = 100 ;

e then, on the models selected, we use the GLIB approximation to the Bayes factor to
re-evaluate more precisely the posterior probabilities of the models kept, and to select

a thinner window with ¢ = 20.

This defines our Bayesian model selection procedure. The models in the last set are the
ones on which our BMA method is based and with which inference about the regression

coeflicients is carried out.
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