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Abstract. At short wavelengths, especially C-, X-, and K-
band, weather radar signals are attenuated by the precipita-
tion along their paths. This constitutes a major source of
error for radar rainfall estimation, in particular for intense
precipitation. A recently developed stochastic simulator of
range profiles of raindrop size distributions (DSD) provides a
controlled experiment framework to investigate the accuracy
and robustness of attenuation correction algorithms. The
work presented here focuses on the quantification of the in-
fluence of uncertainties concerning radar calibration, the pa-
rameterization of power law relations between the integral
variables (radar reflectivityZ and specific attenuationk), and
total path integrated attenuation (PIA) estimates at X-band.
The analysis concerns single frequency, incoherent and non-
polarimetric radar systems. Two attenuation correction algo-
rithms, based on a forward and a backward implementation
respectively, are studied. From DSD range profiles, the cor-
responding profiles of integral radar variables are derived.
Using a Monte Carlo approach, the accuracy and robustness
of the two algorithms are quantified for the different sources
of error previously mentioned. This framework of realistic
DSD variability provides a robust way to confirm that, under
realistic assumptions concerning the PIA estimation uncer-
tainty, the forward algorithm outperforms the backward al-
gorithm for PIA values below 10 dB.

1 Introduction

The space-time variability of rainfall is an important issue
in a number of areas, e.g., hydrology, meteorology, and nat-
ural hazards. Weather radar is in principle able to provide
quantitative estimates of rainfall fields with a high spatial and
temporal resolution. Recently, there has been an increased
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interest in radars operating at short wavelengths, roughly
from 1 to 5 cm. Examples are X-band radar networks (e.g.,
CASA,http://www.casa.umass.edu) and K-band radars oper-
ating from spaceborne platforms (e.g., the TRMM and GPM
satellites). Even many operational radar networks across Eu-
rope operate at relatively short wavelengths (C-band). At
such wavelengths, the attenuation of the radar signal by the
precipitation along its path is a critical issue for quantitative
radar rainfall estimates that has been recognized for a long
time (e.g.,Atlas and Banks, 1951). A recently developed
stochastic simulator of range profiles of raindrop size distri-
butions (DSD) provides a controlled experiment framework
to investigate the accuracy and robustness of attenuation cor-
rection algorithms (Berne and Uijlenhoet, 2005).

This paper focuses on the quantification of the influence
of uncertainties concerning the radar calibration, the param-
eterization of a power-law relation between the radar reflec-
tivity Z and the specific attenuationk, and total path inte-
grated attenuation (PIA) estimates. The analysis concerns
single frequency, incoherent and non-polarimetric radar sys-
tems. Two attenuation correction algorithms are studied: a
forward algorithm based on the analytical solution proposed
by Hitschfeld and Bordan(1954) and a backward algorithm
based on the solution proposed byMarzoug and Amayenc
(1994). From DSD range profiles, the corresponding profiles
of bulk rainfall variables are derived. Using a Monte Carlo
approach, the accuracy of the two algorithms is quantified
for the different sources of error previously mentioned. The
results presented in this paper complement previous work on
the sources of uncertainty in attenuation correction (e.g.,Del-
rieu et al., 1999a), by emphasizing on the variability of the
DSD along a range profile in a stochastic framework.
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Table 1. Mean, standard deviation and characteristic spatial scale
of N ′

= ln Nt (with Nt in m−3) andλ′
= ln λ (with λ in mm−1) de-

duced from HIRE’98 data at a 2 s time step.

Mean Std θ (km)

N ′ 8.11 0.41 4.4
λ′ 0.93 0.31 4.4

2 DSD simulator

The DSD simulator used in the following has been proposed
by Berne and Uijlenhoet(2005). It enables to generate real-
istic DSD range profiles. It is based on the exponential DSD,
which two parametersNt andλ are considered to be random
variables

N(D|Nt , λ)=Nt λ e−λD , (1)

whereN(D|Nt , λ)dD denotes the drop concentration in the
diameter interval[D, D + dD] givenNt (total drop concen-
tration) andλ. The latter are assumed to be jointly lognor-
mally distributed. In order to be able to simulate spatial cor-
relation within the range profiles,N ′

= ln Nt andλ′
= ln λ are

assumed to follow a first order discrete vector auto-regressive
process:

X[j + 1]=C1C0
−1X[j ]+E[j + 1] , (2)

where

X[j ] =

[
N ′(j) − µN ′

λ′(j) − µλ′

]
,

C0 =

[
σ 2

N ′ σN ′σλ′ρN ′λ′

σN ′σλ′ρN ′λ′ σ 2
λ′

]
,

C1 =

[
σ 2

N ′ρN ′(1) σN ′σλ′ρN ′λ′(1)

σN ′σλ′ρλ′N ′(1) σ 2
λ′ρλ′(1)

]
,

E[j + 1] =

[
εN ′(j + 1)

ελ′(j + 1)

]
,

j is the distance index,ρN ′(1) represents the auto-
correlation at ag 1 (idem forλ′), ρN ′λ′(1) represents the
cross-correlation at lag 1, andεN ′ represents a Gaussian
white noise process (idem forλ′). ThereforeC0 andC1 are
the covariance matrices at lags 0 and 1. The variances of the
white noise processesεN ′ andελ′ are fixed such thatX is a
second order stationary process. For such a first order vector
auto-regressive process, the auto-correlation function takes
an exponential form according to:

ρ(r) = e−2r/θ , (3)

wherer represents the distance lag andθ the characteristic
spatial scale, also known as the scale of fluctuation (Vanmar-
cke, 1983):

θ = 2

∞∫
0

ρ(r) dr . (4)

Using this stochastic model, we are able to generate range
profiles of DSDs of equivolumetric spherical drops. DSD
time series measurements from an optical spectropluviome-
ter, collected during the HIRE’98 experiment (Uijlenhoet
et al., 1999) in Marseille, France, are used to parameterize
the model. We focus on a period of 45 min of intense rainfall
during the 7 September 1998 rain event in order to simulate
high rainfall intensities. To convert the measured DSD time
series to DSD range profiles, we assume Taylor’s hypoth-
esis with a constant velocity of 12.5 m s−1, consistent with
the wind speed estimate ofBerne et al.(2004). The zero-
lag cross-correlation between the fittedN ′ andλ′ values is
found to be negligible. The characteristic scaleθ is found to
be very similar forN ′ andλ′, and is therefore assumed to be
equal. Note that this is not a prerequisite of the model. As
a consequence, the number of model parameters reduces to
five: the mean and standard deviation ofN ′ andλ′, and the
characteristic scaleθ . Their values are given in Table 1.

The generated DSD profiles have a total length of 30 km,
with a spatial resolution of 25 m (corresponding to a 2 s time
step). From these DSD profiles, the corresponding profiles of
bulk rain variables (radar reflectivityZ and specific one-way
attenuationk) are easily derived, using the Mie theory (van
de Hulst, 1981) for the scattering cross-sections and Beard’s
velocity model for the drop terminal fall velocities (Beard,
1976). The radar reflectivityZ [mm6 m−3] is defined as

Z =
106l4

π5|K|2

∞∫
0

σB(D)N(D|Nt , λ) dD (5)

wherel [cm] denotes the wavelength of the radar signal,K [-
] is a constant related to the refractive index of the hydrome-
teors, andσB [cm2] is the backscattering cross-section. Simi-
larly, the specific one-way attenuationk [dB km−1] is defined
as

k =
1

ln 10

∞∫
0

σE(D)N(D|Nt , λ) dD (6)

whereσE [cm2] is the extinction cross-section. Figure1
presents an example of generatedNt andλ profiles, as well as
the corresponding attenuated and non-attenuatedZ profiles
at X-band. This controlled experiment framework allows to
apply a Monte Carlo technique to quantify the respective in-
fluence of the different sources of uncertainty in attenuation
correction.
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3 Attenuation correction algorithms

As mentioned in the introduction, we consider incoherent,
single frequency and non-polarimetric radar systems. Two
different types of algorithms will be studied in the following.
The measured attenuated reflectivityZa reads

Za(r)=δcA(r)Z(r) , (7)

whereδc is the calibration error factor andA(r) is the two-
way attenuation factor at the ranger (0 ≤ A ≤ 1). Assuming
theZ-k relation reads

Z = δαα kδββ , (8)

whereδα (δβ respectively) is the error factor inα (β). There-
fore,A can be written as

A(r) = exp

[
−0.2 ln(10)

∫ r

0

(
Z(s)

δαα

)1/(δββ)

ds

]
. (9)

Hitschfeld and Bordan(1954) (HB hereafter) proposed an
analytical solution to expressZ as a function ofZa :

Z(r)=Za(r)/[
δ

1/(δββ)
c −

0.2 ln(10)

δββ

∫ r

0

(
Za(s)

δαα

)1/(δββ)

ds

]δββ

. (10)

The HB algorithm is a forward algorithm because the integral
is between 0 andr. However, the difference in its denomina-
tor can be close to 0 and this makes the algorithm potentially
highly unstable (Hitschfeld and Bordan, 1954).

To avoid instability problems, another family of attenua-
tion correction algorithms has been developed. It is based on
the knowledge of an estimateA0 of the PIA at a given range
r0. For ground based radar, ground echoes may be used to
derive PIA estimates by comparing their reflectivity values
during dry and rainy periods, as proposed byDelrieu et al.
(1997). The estimateA0 can be uncertain, that is

A(r0) = δAA0 , (11)

where δA is the error factor inA0. The reformulation of
Eq.(10) starting fromr0 and going backward to the radar
guarantees the stability of the algorithm. As an example, we
use the solution proposed byMarzoug and Amayenc(1994)
(MA hereafter):

Z(r) =Za(r)/[
(δcδAA0)

1/(δββ)

+
0.2 ln(10)

δββ

∫ r0

r

(
Za(s)

δαα

)1/(δββ)

ds

]δββ

. (12)

The main drawback of such a backward algorithm is that it
requires a reliable estimation of the PIA at a given range.

Fig. 1. Top panel: example of generatedNt andλ profiles. Bottom
panel: corresponding non-attenuatedZ (solid) and attenuatedZa

(dashed) profiles at X-band frequency.

4 Monte Carlo approach

To study the accuracy of the algorithms, we use a Monte
Carlo technique. The analysis focuses on attenuation cor-
rection at X-band (3.2 cm wavelength) using Eqs. (10) and
(12). One thousand profiles ofNt andλ (hence ofZ, k and
Za) are generated. To be consistent with operational radar
sampling resolutions, the high spatial resolution (25 m) pro-
files are averaged at a lower spatial resolution of 250 m. On
each profile aZ-k power-law relation is fitted by means of a
non-linear regression technique. It must be noted that they
constitute the best possible power-law relations. Figure2
presents the distributions of prefactor and exponent values
for the 1000 profiles. The exact PIA value is calculated as
the difference between the non-attenuated and the attenuated
Z profiles. Then the two algorithms are applied using the
fitted relations on the 1000 profiles. Using these reference
values enables to independently analyze the influence of the
different sources of error on the two attenuation correction
algorithms.

The top pannel of Fig.3 shows the median, as well as
the 10% and 90% quantiles, of the distribution of the root
mean square error (RMSE) calculated between the exactZ

profiles and theZc profiles obtained by applying the two at-
tenuation correction algorithms without any uncertainty (i.e.
δc=δα=δβ=δA=1). To illustrate the effect of attenuation,
the RMSE between theZ and the uncorrectedZa profiles
has also been plotted, and appears to be much larger than the
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Fig. 2. Distribution of the values of the prefactor α (top panel) and
exponent β (bottom panel) of the Z-k relation for the 1000 profiles
at X-band frequency.

20% (40%) of divergence for a PIA of about 20 dB (30 dB).
The RMSE values in the top panel of Fig. 3 will constitute the
reference values for the quantification of the influence of the
different sources of uncertainty, as detailed in the following
sections.

5 Influence of the uncertainty in calibration

Radar systems can be affected by calibration errors. In this
section, the influence of the uncertainty in calibration on the
accuracy of the attenuation correction algorithms is quanti-
fied. For better visual inspection, the calibration error is ex-
pressed in dB as εc = 10 log(δc) and varies in the interval
[-5,+5]. The additional error due to uncertain calibration is
calculated as the ratio between the RMSE values for a given
calibration error and the reference RMSE values. Figure 4
presents the median, as well as the 10% and 90% quantiles,
of the distribution of the RMSE ratio as a function of the cal-
ibration error. The other error factors (δα, δβ and δA) are
fixed to 1.

As expected, the RMSE ratio rapidly increases when εc 6=
0, that is the calibration error significantly decreases the
accuracy of the two algorithms. For instance, the median
RMSE ratio value is about 2 when εc = ±1 for the MA al-
gorithm. It is about 3 when εc = +1 for the HB algorithm.
When εc > 0, the median values are similar for the two al-
gorithms but the dispersion is larger for the HB algorithm.
When εc < 0, the distribution remains similar for the MA al-
gorithm. For the HB algorithm, Eq. 10 shows that δc < 1

Fig. 3. Top panel: median (solid line) of the distribution of the
RMSE calculated between the exact Z profiles and the attenu-
ated reflectivity Z a (“No correction”), and the Zc profiles obtained
by applying the two attenuation correction algorithms (“HB” and
“MA”), for 1000 profiles at a 250 m resolution. The dotted and/or
dashed lines represent the 10% and 90% quantiles. “div” indicates
the percentage of diverging HB corrections. We arbitrarily limit the
maximum PIA at 60 dB for clarity, although 10% of the profiles
have a PIA above 60 dB. The percentage of divergent cases cor-
responds to all 1000 profiles. The convention is the same for the
subsequent figures. Bottom panel: percentage of profiles for which
the HB algorithm diverges as a function of the PIA value.

Fig. 4. Median, 10% and 90% quantiles of the distribution of the
RMSE ratio as a function of the calibration error εc expressed in
dB, for the two attenuation correction algorithms.

(or εc < 0) results in more diverging profiles because the
denominator can approach zero already for smaller Za val-
ues, as illustrated in Fig. 4 by the almost systematic diver-
gence and therefore near complete failure of the HB algo-
rithm when εc < 0 (absence of points and larger percentage

Fig. 2. Distribution of the values of the prefactorα (top panel) and
exponentβ (bottom panel) of theZ-k relation for the 1000 profiles
at X-band frequency.

RMSE for theZc profiles. The significant dispersion of the
distribution (top panel of Fig.3 is in log scale) is explained
by the fact that the use of a deterministic power law between
Z andk is not consistent with the stochastic nature of these
variables.

As a well-known result (e.g.,Marzoug and Amayenc,
1994), the MA algorithm (0.1<median<0.3 dBZ) is
more stable and accurate than the HB algorithm
(0.1<median<20 dBZ), which additionally diverges in
about 1 in 3 cases in total. The bottom panel of Fig.3 shows
the percentage of divergent cases as a function of the PIA
value. This confirms previous work on the instability of the
HB algorithm (e.g,Delrieu et al., 1999a), showing that the
HB algorithm becomes significantly unstable when the PIA
is above 15 dB: 20% (40%) of divergence for a PIA of about
20 dB (30 dB). The RMSE values in the top panel of Fig.3
will constitute the reference values for the quantification
of the influence of the different sources of uncertainty, as
detailed in the following sections.

5 Influence of the uncertainty in calibration

Radar systems can be affected by calibration errors. In this
section, the influence of the uncertainty in calibration on the
accuracy of the attenuation correction algorithms is quan-
tified. For better visual inspection, the calibration error is
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sections.

5 Influence of the uncertainty in calibration
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section, the influence of the uncertainty in calibration on the
accuracy of the attenuation correction algorithms is quanti-
fied. For better visual inspection, the calibration error is ex-
pressed in dB as εc = 10 log(δc) and varies in the interval
[-5,+5]. The additional error due to uncertain calibration is
calculated as the ratio between the RMSE values for a given
calibration error and the reference RMSE values. Figure 4
presents the median, as well as the 10% and 90% quantiles,
of the distribution of the RMSE ratio as a function of the cal-
ibration error. The other error factors (δα, δβ and δA) are
fixed to 1.

As expected, the RMSE ratio rapidly increases when εc 6=
0, that is the calibration error significantly decreases the
accuracy of the two algorithms. For instance, the median
RMSE ratio value is about 2 when εc = ±1 for the MA al-
gorithm. It is about 3 when εc = +1 for the HB algorithm.
When εc > 0, the median values are similar for the two al-
gorithms but the dispersion is larger for the HB algorithm.
When εc < 0, the distribution remains similar for the MA al-
gorithm. For the HB algorithm, Eq. 10 shows that δc < 1

Fig. 3. Top panel: median (solid line) of the distribution of the
RMSE calculated between the exact Z profiles and the attenu-
ated reflectivity Z a (“No correction”), and the Zc profiles obtained
by applying the two attenuation correction algorithms (“HB” and
“MA”), for 1000 profiles at a 250 m resolution. The dotted and/or
dashed lines represent the 10% and 90% quantiles. “div” indicates
the percentage of diverging HB corrections. We arbitrarily limit the
maximum PIA at 60 dB for clarity, although 10% of the profiles
have a PIA above 60 dB. The percentage of divergent cases cor-
responds to all 1000 profiles. The convention is the same for the
subsequent figures. Bottom panel: percentage of profiles for which
the HB algorithm diverges as a function of the PIA value.

Fig. 4. Median, 10% and 90% quantiles of the distribution of the
RMSE ratio as a function of the calibration error εc expressed in
dB, for the two attenuation correction algorithms.

(or εc < 0) results in more diverging profiles because the
denominator can approach zero already for smaller Za val-
ues, as illustrated in Fig. 4 by the almost systematic diver-
gence and therefore near complete failure of the HB algo-
rithm when εc < 0 (absence of points and larger percentage

Fig. 3. Top panel: median (solid line) of the distribution of the
RMSE calculated between the exactZ profiles and the attenu-
ated reflectivityZa (“No correction”), and theZc profiles obtained
by applying the two attenuation correction algorithms (“HB” and
“MA”), for 1000 profiles at a 250 m resolution. The dotted and/or
dashed lines represent the 10% and 90% quantiles. “div” indicates
the percentage of diverging HB corrections. We arbitrarily limit the
maximum PIA at 60 dB for clarity, although 10% of the profiles
have a PIA above 60 dB. The percentage of divergent cases cor-
responds to all 1000 profiles. The convention is the same for the
subsequent figures. Bottom panel: percentage of profiles for which
the HB algorithm diverges as a function of the PIA value.

expressed in dB asεc=10 log(δc) and varies in the interval
[−5,+5]. The additional error due to uncertain calibration is
calculated as the ratio between the RMSE values for a given
calibration error and the reference RMSE values. Figure4
presents the median, as well as the 10% and 90% quantiles,
of the distribution of the RMSE ratio as a function of the cali-
bration error. The other error factors (δα, δβ andδA) are fixed
to 1.

As expected, the RMSE ratio rapidly increases when
εc 6=0, that is the calibration error significantly decreases the
accuracy of the two algorithms. For instance, the median
RMSE ratio value is about 2 whenεc= ± 1 for the MA algo-
rithm. It is about 3 whenεc=+1 for the HB algorithm. When
εc>0, the median values are similar for the two algorithms
but the dispersion is larger for the HB algorithm. When
εc<0, the distribution remains similar for the MA algorithm.
For the HB algorithm, Eq. (10) shows thatδc<1 (orεc<0) re-
sults in more diverging profiles because the denominator can
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Fig. 4. Median, 10% and 90% quantiles of the distribution of the
RMSE ratio as a function of the calibration errorεc expressed in
dB, for the two attenuation correction algorithms.

approach zero already for smallerZa values, as illustrated in
Fig.4 by the almost systematic divergence and therefore near
complete failure of the HB algorithm whenεc<0 (absence of
points and larger percentage of divergences).

6 Influence of the uncertainty in the parameterization
of the Z-k relation

The two studied algorithms are based on the assumption of
a power-law relation betweenZ andk. To analyze the influ-
ence of the uncertainty in the parameters of theZ-k power
law on the accuracy of the two attenuation correction algo-
rithms, an error factor between 0.7 and 1.3 is applied to the
prefactor (the exponent respectively). The additional error
due to uncertain parameterization of theZ-k relation is cal-
culated as the ratio between the RMSE values for a given
prefactor (exponent) error and the reference RMSE values.
Figure5 presents the median, as well as the 10% and 90%
quantiles, of the distribution of the RMSE ratio as a function
of the relative deviation of the prefactor and exponent, with
respect to the referenceZ-k relation. The other error factors
(δc andδA) are fixed to 1.

For the prefactor (top panel of Fig.5), the distribution of
the RMSE ratio is roughly similar for the two algorithms.
The distribution of the RMSE ratio forδα<1 remains similar
for the MA algorithm, while the HB algorithm is more sen-
sitive to an underestimation of the prefactor (δα<1), with a
larger dispersion of the quantiles. When the underestima-
tion of δα becomes large, the HB algorithm diverges (see
Eq.10). The median RMSE ratio is about 3 when the error
is about±15% in the prefactor for the MA algorithm. It is
also about 3 when the error is about +15% for the HB algo-
rithm.

The influence of the exponent appears to be similar to that
of the prefactor for the HB algorithm, while it is stronger for
the MA algorithm. For instance, the median RMSE ratio is
about 10 when the error in the exponent is about±15% for

A. Berne and R. Uijlenhoet: Radar attenuation correction accuracy 5

Fig. 5. Median, 10% and 90% quantiles of the distribution of the
RMSE ratio as a function of the relative deviation of the prefactor
(top panel) and exponent (bottom panel) of the Z-k power law, for
the two attenuation correction algorithms.

of divergences).

6 Influence of the uncertainty in the parameterization
of the Z-k relation

The two studied algorithms are based on the assumption of
a power-law relation between Z and k. To analyze the influ-
ence of the uncertainty in the parameters of the Z-k power
law on the accuracy of the two attenuation correction algo-
rithms, an error factor between 0.7 and 1.3 is applied to the
prefactor (the exponent respectively). The additional error
due to uncertain parameterization of the Z-k relation is cal-
culated as the ratio between the RMSE values for a given
prefactor (exponent) error and the reference RMSE values.
Figure 5 presents the median, as well as the 10% and 90%
quantiles, of the distribution of the RMSE ratio as a function
of the relative deviation of the prefactor and exponent, with
respect to the reference Z-k relation. The other error factors
(δc and δA) are fixed to 1.

For the prefactor (top panel of Fig. 5), the distribution of
the RMSE ratio is roughly similar for the two algorithms.
The distribution of the RMSE ratio for δα < 1 remains sim-
ilar for the MA algorithm, while the HB algorithm is more
sensitive to an underestimation of the prefactor (δα < 1),
with a larger dispersion of the quantiles. When the under-
estimation of δα becomes large, the HB algorithm diverges
(see Eq.10). The median RMSE ratio is about 3 when the er-

Fig. 6. Top panel: median, 10% and 90% quantiles of the distribu-
tion of the RMSE ratio as a function of the PIA error εA expressed
in dB for the MA algorithm. Bottom panel: similar to top panel of
Fig. 3, to compare HB and MA with uncertain PIA estimates.

ror is about±15% in the prefactor for the MA algorithm. It is
about 2 when the error is about +15% for the HB algorithm.

The influence of the exponent appears to be similar to that
of the prefactor for the HB algorithm, while it is stronger for
the MA algorithm. For instance, the median RMSE ratio is
about 10 when the error in the exponent is about ±15% for
the MA algorithm. It is about 2 when the error is about +15%
for the HB algorithm.

7 Influence of the uncertainty in the PIA estimate

The MA algorithm is more accurate and more robust than the
HB algorithm, but it requires an additional parameter which
is the estimate of the PIA at a given range. This section is de-
voted to the quantification of the influence of the uncertainty
in this PIA estimate on the accuracy of the MA algorithm.
Similarly to εc, we define εA = 10 log(δA). The error in the
PIA estimate εA is generated as a Gaussian white noise with
a standard deviation of 2.5 dB (Delrieu et al., 1999b). The
additional error due to an uncertain PIA estimate εA is calcu-
lated as the ratio between the RMSE values for the uncertain
PIA estimate and the reference RMSE values. The top panel
of Fig. 6 presents the median, as well as the 10% and 90%
quantiles, of the distribution of the RSME ratio as a function
of εA for the MA algorithm. The other error factors (δc, δα

and δβ) are fixed to 1.
According to Eq. (12), the top panels of Fig. 6 and Fig. 4

should in theory be identical as far as the MA algorithm is

Fig. 5. Median, 10% and 90% quantiles of the distribution of the
RMSE ratio as a function of the relative deviation of the prefactor
(top panel) and exponent (bottom panel) of theZ-k power law, for
the two attenuation correction algorithms.

the MA algorithm. It is about 2 when the error is about 15%
for the HB algorithm.

7 Influence of the uncertainty in the PIA estimate

The MA algorithm is more accurate and more robust than the
HB algorithm, but it requires an additional parameter which
is the estimate of the PIA at a given range. This section is de-
voted to the quantification of the influence of the uncertainty
in this PIA estimate on the accuracy of the MA algorithm.
Similarly to εc, we defineεA=10 log(δA). The error in the
PIA estimateεA is generated as a Gaussian white noise with
a standard deviation of 2.5 dB (Delrieu et al., 1999b). The
additional error due to an uncertain PIA estimateεA is calcu-
lated as the ratio between the RMSE values for the uncertain
PIA estimate and the reference RMSE values. The top panel
of Fig. 6 presents the median, as well as the 10% and 90%
quantiles, of the distribution of the RSME ratio as a function
of εA for the MA algorithm. The other error factors (δc, δα

andδβ ) are fixed to 1.
According to Eq. (12), the top panels of Fig.6 and Fig.4

should in theory be identical as far as the MA algorithm
is concerned, becauseδA and δc can be interchanged. In
practice, for a given referenceZa profile, the error in the
calibration and in the PIA estimate are generally different
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Fig. 5. Median, 10% and 90% quantiles of the distribution of the
RMSE ratio as a function of the relative deviation of the prefactor
(top panel) and exponent (bottom panel) of the Z-k power law, for
the two attenuation correction algorithms.

of divergences).

6 Influence of the uncertainty in the parameterization
of the Z-k relation

The two studied algorithms are based on the assumption of
a power-law relation between Z and k. To analyze the influ-
ence of the uncertainty in the parameters of the Z-k power
law on the accuracy of the two attenuation correction algo-
rithms, an error factor between 0.7 and 1.3 is applied to the
prefactor (the exponent respectively). The additional error
due to uncertain parameterization of the Z-k relation is cal-
culated as the ratio between the RMSE values for a given
prefactor (exponent) error and the reference RMSE values.
Figure 5 presents the median, as well as the 10% and 90%
quantiles, of the distribution of the RMSE ratio as a function
of the relative deviation of the prefactor and exponent, with
respect to the reference Z-k relation. The other error factors
(δc and δA) are fixed to 1.

For the prefactor (top panel of Fig. 5), the distribution of
the RMSE ratio is roughly similar for the two algorithms.
The distribution of the RMSE ratio for δα < 1 remains sim-
ilar for the MA algorithm, while the HB algorithm is more
sensitive to an underestimation of the prefactor (δα < 1),
with a larger dispersion of the quantiles. When the under-
estimation of δα becomes large, the HB algorithm diverges
(see Eq.10). The median RMSE ratio is about 3 when the er-

Fig. 6. Top panel: median, 10% and 90% quantiles of the distribu-
tion of the RMSE ratio as a function of the PIA error εA expressed
in dB for the MA algorithm. Bottom panel: similar to top panel of
Fig. 3, to compare HB and MA with uncertain PIA estimates.

ror is about±15% in the prefactor for the MA algorithm. It is
about 2 when the error is about +15% for the HB algorithm.

The influence of the exponent appears to be similar to that
of the prefactor for the HB algorithm, while it is stronger for
the MA algorithm. For instance, the median RMSE ratio is
about 10 when the error in the exponent is about ±15% for
the MA algorithm. It is about 2 when the error is about +15%
for the HB algorithm.

7 Influence of the uncertainty in the PIA estimate

The MA algorithm is more accurate and more robust than the
HB algorithm, but it requires an additional parameter which
is the estimate of the PIA at a given range. This section is de-
voted to the quantification of the influence of the uncertainty
in this PIA estimate on the accuracy of the MA algorithm.
Similarly to εc, we define εA = 10 log(δA). The error in the
PIA estimate εA is generated as a Gaussian white noise with
a standard deviation of 2.5 dB (Delrieu et al., 1999b). The
additional error due to an uncertain PIA estimate εA is calcu-
lated as the ratio between the RMSE values for the uncertain
PIA estimate and the reference RMSE values. The top panel
of Fig. 6 presents the median, as well as the 10% and 90%
quantiles, of the distribution of the RSME ratio as a function
of εA for the MA algorithm. The other error factors (δc, δα

and δβ) are fixed to 1.
According to Eq. (12), the top panels of Fig. 6 and Fig. 4

should in theory be identical as far as the MA algorithm is

Fig. 6. Top panel: median, 10% and 90% quantiles of the distribu-
tion of the RMSE ratio as a function of the PIA errorεA expressed
in dB for the MA algorithm. Bottom panel: similar to top panel of
Fig. 3, to compare HB and MA with uncertain PIA estimates.

and therefore the deduced distribution of the RMSE ratio is
slightly different. Nevertheless, the influence ofδA is similar
to that ofδc.

Finally, it must be noted that an under- or over-estimation
of about 2 dB in the estimated PIA leads to a multiplication
of the error by a factor of about 4. In case of relatively small
PIA values (below 10 dB), the bottom panel of Fig.6 shows
that the MA algorithm is less accurate than the HB algorithm.
This behaviour is consistent with previous work (e.g.,Mar-
zoug and Amayenc, 1994; Delrieu et al., 1997). This also
suggests that at X-band, one should use the HB algorithm for
small PIA (below 10 dB) and the MA algorithm for larger
PIA (above 10 dB).

8 Conclusions

Attenuation correction is an important step for quantitative
rain estimation using C-, X-, or K-band weather radar. In this
paper, we focus on X-band incoherent, single frequency and
non-polarimetric radar systems. We investigate the influence
of uncertainties in the radar calibration, in the parameteriza-
tion of a power-law relation between the radar reflectivityZ

and the specific attenuationk, and in the total path integrated
attenuation (PIA) estimates on the accuracy of two attenua-
tion correction algorithms. The first (HB algorithm) is based
on a forward implementation and is known for its instability.

The second (MA algorithm) is based on a backward imple-
mentation and is stable, but requires an additional piece of in-
formation, which is the PIA at a given range from the radar.
A stochastic model of DSD range profiles provides a con-
trolled experiment framework, with fully consistentZ and
k profiles, to quantify the influence of the different sources
of uncertainty. An uncertainty of 1 dBZ in the measuredZ

(or of 1 dB in the PIA estimate) leads to a multiplication of
the RMSE by at least a factor 2 with respect to attenuation
correction errors resulting from the stochastic nature of the
DSD alone. An uncertainty of about 15% in the prefactor of
theZ-k relation leads to a multiplication of the RMSE by at
least a factor 3 for both algorithms. The MA algorithm is
more sensitive to uncertainties in the exponent (a multiplica-
tion by a factor of about 10 for 15% uncertainty), while the
HB algorithm diverges more often.

For practical applications, a combination of the two algo-
rithms appears as a good compromise: in case of small PIA
(below 10 dB), the HB algorithm should be used, while the
MA algorithm should be used when the PIA is larger than
10 dB. Such an hybrid algorithm has been implemented in
the context of intense Mediterranean precipitation and has
provided reliable results (Delrieu et al., 1997; Berne et al.,
2005).

Finally, the framework described in this paper offers a suit-
able test-bed for other hybrid (e.g.,Iguchi and Meneghini,
1994) or polarimetric (e.g.,Testud et al., 2000) attenuation
correction algorithms.
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