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ABSTRACT: 

After air strikes on July 14 and 15, 2006 the Jiyeh Power Station started leaking oil into the eastern Mediterranean Sea. The power 

station is located about 30km south of Beirut and the slick covered about 170 km of coastline threatening the neighboring countries 

Turkey and Cyprus. Due to the ongoing conflict between Israel and Lebanon, cleaning efforts could not start immediately resulting 

in 12,000 to 15,000 tons of fuel oil leaking into the sea. 

In this paper we compare results from automatic and semi-automatic slick detection algorithms. The automatic detection method 

combines the probabilities calculated for each pixel from each image to obtain a joint probability, minimizing the adverse effects of 

atmosphere on oil spill detection. The method can readily utilize X-, C- and L-band data where available. Furthermore wind and 

wave speed observations can be used for a more accurate analysis. For this study, we utilize Envisat ASAR ScanSAR data. A 

probability map is generated based on the radar backscatter, effect of wind and dampening value.  

The semi-automatic algorithm is based on supervised classification. As a classifier, Artificial Neural Network Multilayer Perceptron 

(ANN MLP) classifier is used since it is more flexible and efficient than conventional maximum likelihood classifier for multi-

source and multi-temporal data. The learning algorithm for ANN MLP is chosen as the Levenberg-Marquardt (LM). Training and 

test data for supervised classification are composed from the textural information created from SAR images. This approach is semi-

automatic because tuning the parameters of classifier and composing training data need a human interaction.  

We point out the similarities and differences between the two methods and their results as well as underlining their advantages and 

disadvantages. Due to the lack of ground truth data, we compare obtained results to each other, as well as other published oil slick 

area assessments. 

 

 

1. INTRODUCTION 

Oil spills pose a threat to any nation that borders a body of 

water. Economical and environmental losses due to an oil spill 

are proportional to the volume of spill, and cause devastating 

consequences for the environment regardless of size. Timely 

detection and monitoring of spills are necessary to minimize 

these adverse effects.  

Synthetic Aperture Radar (SAR) systems provide a viable 

option for oil slick monitoring. The intensity of SAR images 

depends on the surface roughness, which is altered in the event 

of an oil spill. Bragg scattering dominates the radar response 

over ocean surfaces (Bragg, 1913). Oil covering an ocean 

surface dampens surface waves, causing specular reflection of 

the radar wave. This ultimately results in reduced backscatter 

energy returning to the satellite. It is important, therefore, to 

have some wind to produce surface waves. Since SAR systems 

have a limited range of ideal wind speed and direction where 

they are most sensitive, they do not perform well for oil spill 

detection under very windy or very calm conditions. 

Other methods for ocean monitoring and oil detection have been 

proposed over the years, including infrared remote sensing and 

hyperspectral imaging sensors (Brekke and Solberg, 2005). 

Each method presents different levels of uncertainty, and it is 

therefore possible to combine information from different data 

sources to reduce uncertainties. Results from different remote 

sensing sensors, as well as field observations, can be combined 

to provide a statistically better outcome than any individual 

resource. 

In this paper we propose a fully automatic oil spill monitoring 

system that is capable of combining data from multiple SAR 

images. The focus of this paper is on radar imagery; the 

algorithm, however, can be expanded to optical imagery and 

ground measurements as discussed later. Moreover this 

technique is compared to a semi-automatic technique based on 

supervised classification of textural features. A brief 

background on the technical aspects is provided in Section 2. 

Results obtained from SAR data over the Jiyeh Power Station 

oil spill are discussed in Section 3. 

2. METHODS 

Synthetic Aperture Radar imagery is sensitive to surface 

roughness, which is altered in the event of an oil spill (Alpers 

and Huhnerfuss, 1988). Oil slicks change the smoothness of the 

ocean surface and appear darker compared to the surrounding 

oil-free ocean. The amount of dampening, however, is affected 

by wind and wave conditions. Furthermore, the speckle effect in 

SAR imagery limits the reliability of point measurements in the 

image, causing spurious results (Brekke and Solberg, 2005). In 

our approach we apply multi-step processing to limit the 

adverse effects of speckle, rather than filtering data with a 

speckle filter. 
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There are many methods developed to detect oil spills from 

SAR intensity images: (1) machine learning and neural-network 

recognition (Kubat et al., 1998, Ozkan and Sunar, 2007, Ozkan 

et al., 2013), (2) frequency spectrum attenuation (Lombardini et 

al., 1989, Gade et al., 1998, Kim et al., 2010), (3) segmentation 

techniques (Barni et al., 1995, Solberg et al., 2007), and (4) 

slick feature extraction (Fiscella et al., 2000, Del Frate et al., 

2000). Some algorithms also combine ocean drift models to 

assist data analysis (Espedal, 1999, Cheng et al., 2011). In 

addition to SAR intensity, co-polarization differences of 

multiple-polarization SAR data is also suggested for oil spill 

detection (Migliaccio et al., 2009). In this paper, we compare 

the results of an automatic and a semi-automatic oil detection 

method.  

2.1 Automatic Oil Detection 

The automatic method relies on combining the results of several 

different SAR analyses to generate a robust, automatic oil spill 

detector. It is also important to note that this approach can be 

seen as a framework for combining information from any 

geospatial observation (e.g. optical remote sensing, ground 

measurements). The proposed algorithm is composed of four 

calculation steps: (1) Dark object selection, (2) dampening 

factor calculation, (3) combination of probabilities, and (4) 

temporal analysis. Dark object selection is based on normalized 

radar cross section, where darker pixels get higher probabilities 

for oil contamination (Barni et al., 1995). Dampening factor is 

based on the current wind conditions and imaging parameters 

(Gade et al., 1998, Kim et al., 2010). Results from both analyses 

are then combined to provide a joint probability for the presence 

of an oil slick at each acquisition. The temporal probability is 

formed using multiple SAR acquisitions, resulting in a time-

varying probability of oil slick over target area. All analyses in 

this paper are performed over intensity-calibrated, geocoded 

SAR imagery. Images are calibrated to normalized radar cross 

section (NRCS). The imagery is resampled to a common 

geometry using a sinc interpolator, and land-masked using 

Global, Self-consistent, Hierarchical, High-Resolution 

Shoreline data (GSHHS) (Wessel and Smith, 1996). 

2.1.1 Dark Object Selection 

The first step of the algorithm is a simple dark object selection 

routine based on intensity thresholding. At this step, dark areas 

of the image are assigned a higher probability for an oil spill.  

In this step we apply an adaptive threshold to select about 10% 

of the imaged area. For the Envisat Scansar images, this 

corresponds to 2500 km2, which is much larger than any 

expected oil spill. A probability value for each pixel is assigned 

based on its intensity such that: 

P(W |s 0 ) = (s 0 -min(s 0 )) / (T -min(s 0 ))       (1) 

P(O |s 0 ) =1-P(W |s 0 )                                             (2) 

 

where P (W |σ0 ) is probability of oil-free water given the 

NRCS, T is the threshold, and P (O|σ0 ) is the probability of oil 

given the NRCS is the complement of P (W |σ0). The P (W |σ0) 

is modified by bringing all larger values to 1, constraining the 

probability values between 0 and 1. We then combine this map 

with the estimated wind speeds to remove dark areas due to low 

wind speeds. Because a low wind area cannot contain any 

useful information about oil slicks, the joint probability of these 

two different events are simply their multiplication: 

)|()|(),|( 0000 uOPOPuOP                (3) 

where u0 indicates the estimated wind speed.  

2.1.2 Dampening Factor 

It is possible to calculate dampening factors due to presence of 

oil (Gade et al., 1998, Kim et al., 2010). The estimated 

dampening factor varies with wind speed and direction as a 

function of the Bragg wave numbers as shown in Figure 1. The 

Bragg wave number is defined as (Gade et al., 1998): 

kB = 2k0 sinq                                                                     (4) 

 

Where kB is the Bragg wave number, k0 is the radar wave 

number and θ is the incidence angle. Figure 1 shows the 

maximum expected dampening amount which would be 

observed when the angle between the wind, and radar wave is 

zero.  

 

Figure 1. Estimated dampening factor as a function of Bragg 

wave number for common SAR sensors. The theoretical range 

of SAR systems used in the system are marked with horizontal 

lines. Each curve represents a different wind velocity. 

Wind speed and the angle between the radar look direction and 

wind play an important role in the dampening factor. Figure 2 

shows a plot of expected dampening factors at speeds between 

2.5 m/s and 12.5 m/s. The relative wind direction is plotted at 

counter-clockwise increasing angles, starting from zero at the 

horizontal axis. In this study we use the wind speed and 

direction data from QuickScat satellite. 
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Figure 2. Estimated dampening factor plotted against the 

relative angle between radar and wind direction. Radial distance 

from the center indicates the wind speed. 

2.1.3 Joint Probability 

The oil spill probability based on the dark object P(O|n) and 

dampening factor P(O|d) can be combined following the 

Bayesian theory: 

JP(O) =
P(O | n)P(O | d)

P(O | n)P(O | d)+P(W | n)P(W | d)
    (5) 

where J P (O) is the joint probability for oil, P (O|n), is the 

probability of oil given the NRCS, P(O|d) is the probability of 

oil given the dampening factor analysis, P (W |n) is the 

probability of clear water given the NRCS, and P(W|d) is the 

probability of clear water given the dampening factor analysis.  

2.1.4 Temporal Probability 

It is possible to remove false positives by constraining the 

results from individual images with a temporal relationship. The 

slick is expected to move around with the influence of surface 

waves. It is also expected to evaporate and sink as it weathers. 

For this analysis we define a simple a priori relation, and expect 

the slick to stay in a 7.5 km neighborhood with a continuously 

reducing probability for a week. After one week, the temporal 

probability defaults to equal probabilities for oil slick and clean 

surface. Temporal probability is applied forward and backward 

in time. 

2.2 Semi-Automatic Oil Detection 

The semi-automatic scheme is based on the supervised 

classification, for which the selection of dark features is so 

important that the success of the approach mainly depends on it. 

Because of the speckle noise of SAR imaging, pixel based 

classification is not appropriate. Therefore, textural information, 

variation of the pixel intensities in a specific image area, may be 

used to take into account the spatial relationship. As the most 

well known texture measures, Haralick features are computed 

by gray level co-occurence matrix (GLCM) based on image 

intensities (Haralick et al., 1973). A co-occurrence matrix is like 

a one way contingency matrix which defines a two dimensional 

histogram of intensity values for a pair of image pixels which 

are separated by a fixed spatial relationship. Of the many 

texture measures, mean, variance, homogeneity and angular 

second moment are chosen to become features in classification 

(Assilzadeh and Mansor, 2001). GLCM is obtained from 5x5 

image windows of SAR image filtered with median and low-

pass filters. These grey level co-occurrence matrixes (GLCM) 

based textural features are computed from the oil and look-alike 

regions using 5x5 kernels. Consequently, the input data 

dimension is set as four. 

 

 

 

 

 

where, Pij; is the normalized GLCM value. So, input feature 

space is homogeneity, angular second moment, mean and 

variance, the output classes is oil and look-alike. Further details 

on this method are presented in an earlier study, utilizing the 

same data set (Ozkan et al., 2013). 

 

3. RESULTS AND DISCUSSION 

In order to test this hypothesis we analysed data from nine 

different Envisat ASAR images acquired between August 3rd 

and September 4th 2006, using a fully automatic algorithm. The 

algorithm relies on selecting dark objects in two different steps: 

(1) pixel-wise, and (2) spatially for each image. Furthermore, a 

temporal probability was calculated to combine results from 

different images.  

 

 
Figure 3. Envisat ASAR Wide Swath images acquired over the 

study area during the oil spill. Land areas are masked with light 

green color. The red star denotes the approximate location of 

the Jiyeh Power Plant. 

The images in Figure 3 are calibrated to obtain normalized radar 

cross section using the ESA Basic Envisat SAR Toolbox. It is 

clear that even though the images are calibrated the same way, 

images have varying levels of contrast. The changes in contrast 

are likely related to the surface roughness conditions, which 

may be partly related to varying wind speeds. 

 

Quickscat satellite provides wind direction and speed 

measurements over the oceans using a scatterometer. Quickscat 

covers about 90% of the globe every day, and visits the same 
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area twice. Figure 4 represents the Quickscat measurements 

over the study area. In general wind speeds are about 10 knots 

and follow a SSW (South – South West) direction near the 

Lebanese coast. 

 

 
Figure 4. Quickscat wind measurements. The direction of the 

barbs indicate the wind direction while their color provide the 

windspeed information. The black barbs mark unreliable data 

due to rain. Quickscat visits the same area twice a day, at dusk 

and dawn. 

Using the method described in Section 2, and the data presented 

in Figures 3 and 4, results were obtained for the Jiyeh oil spill. 

The results are presented in Figures 5 and 6. 

 
Figure 5. Results obtained from the automatic oil spill detection 

algorithm. 

 
Figure 6. a) August 3 amplitude image. b) ESA Envisat ASAR 

and Modis August 3-4 spill map. c) Result with proposed 

algorithm. d) Zoom-in of the oil slick. Circles indicate 

differences. 

 

As seen from Figures 5 and 6, the algorithm captures possible 

oil slicks rather well. In Figure 5, the results for each individual 

day are shown. In Figure 6, the amplitude for the August 3 

image is shown with independent analysis of the same data, as 

well as the results obtained by the current algorithm (ZKI-DLR, 

2006). There are possible artefacts in the northern part of the 

imaged area (highlighted with circles), which would likely been 

resolved if the stack had an earlier image. Nonetheless the areas 

with high oil slick probability in b and c match quite well, as 

shown in d.  

 

These results are compared to results of a machine learning 

technique based on a supervised classifier (Ozkan et al., 2013). 

The approach consists of the supervised artificial neural 

network binary classification of the textural features from the 

same SAR data of the same area with this study. However, an 

extrinsic comparison may be done because of the different 

algorithmic structures of these two approaches. 

 

The advantages of the fully automatic algorithm are that there is 

no need for training areas and to adjust classifier parameters and 

it has ability of using different SAR data easily. Its main 

disadvantage is the more SAR data requirement to exclude the 

adverse atmospheric effects. Thus, more imagery data more 

accurate joint probabilities. The semi automatic approach is 

more user dependent and more data dependent. Preparation of 

training areas and classifier is more time consuming and more 

burdening. Although the performance of the semi automatic 

approach is slightly better for northern regions (Figure 7), the 

fully automatic approach may influence more strongly the 

scientific literature. 
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Figure 7. Result with semi-automatic approach (Red: oil, Blue: 

look-alike) (left) 2006/08/03, (right) 2006/08/05. 

 

4. CONCLUSION 

In this study, a fully automatic oil spill detection method is 

developed. It is based on changes in the radar cross section of 

surfaces under different conditions. The method further utilizes 

the temporal behavior of an oil spill to reduce the false positives 

due to natural variations in the radar backscatter, such as low 

wind speeds and naturally occurring slicks. 

It is clear that the combination of multiple data sources can help 

minimize uncertainties. The proposed method not only presents 

a working example, but also an algorithm that can be easily 

expanded to introduce probabilities obtained from any data 

source available. This is a key property that increases the 

operational value of our automated oil spill detection algorithm.  
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