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Abstract

Weexplorevoluntaryparticipation inpensionarrangements. Individuals onlyparticipatewhen
participation is more attractive than autarky. The beneϐit of participation is that risks can be
sharedwith future generations. We apply our analysis to a pay-as-you-go system, a funded sys-
tem without buffers and a funded system with buffers. Buffers play a particularly interesting
role, because they raise the sensitivity of the contributions to the asset returns. In particular,
compared to a system without buffer requirements, they require higher contributions when
asset returns are low. Moreover, individual contributions may be increasing or decreasing in
the size of the young cohort, depending onwhether the fund hasmore or less reserves than re-
quired. We conϐine ourselves to recursive settings and study equilibria characterised by thresh-
olds on the contribution that young generations are prepared tomake assuming that the future
young apply the same threshold. For standard parameter settings two such equilibria exist, of
which only the onewith the higher threshold is consistentwith the initial young being prepared
to start the system. Finally, we explore the social welfaremaximising policy parameter settings
for various levels of uncertainty and risk aversion.
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1 Introduction

Around the world population ageing is putting collective pension arrangements under ϐinancial
pressure. While participation is often mandatory, working-age participants are becoming increas-
ingly reluctant to contribute to such arrangements out of fear that, once they have retired them-
selves, insufϐicient resources may have been left for their own pension, while future workers will
refuse tomake up for the shortages. These fears are particularly strong among the youngest work-
ers. Of course, once large groups of participants prefer to leave the system they participate in,
its demise becomes imminent. Hence, if this danger looms, it is important to start rethinking the
system’s design, such that those participants are prepared to stay on board.

This paper explores the sustainability of pension arrangements when participation is volun-
tary; for those arrangements that are sustainable it characterises the equilibria that arise. The
beneϐit of participation is that risks can be shared among the different generations in the sys-
tem. Real-world experience suggests that the beneϐits from intergenerational risk sharing are non-
trivial. For example, assuming that the contributions are invested in the ϐinancialmarkets, Burtless
(2000) shows that the annuity beneϐit of a male worker who entered an individual retirement ac-
count plan in 1975 at the age of twenty-two and retires at the age of 62 can expect to receive only
two-ϐifths ofwhat he could have expected to receivewhen entering in 1969 and retiring at the same
age.

We set up anoverlapping-generationsmodel inwhich individuals live for twoperiods. Weallow
for two sources of uncertainty, namely demographic risk, as captured by the birth rate of young in-
dividuals, and ϐinancial market risks, captured by the return on savings. In the ϐirst period of their
life individuals decide whether to participate in the pension arrangement. They do so when the
expected utility under participation exceeds that under autarky, i.e. when they do not participate.
By participating risks during retirement can be sharedwith the future young. Limiting ourselves to
recursive settings in which each generation faces the same decision problem, this decision trans-
lates into a threshold on the contribution that the young need to make, given their belief about the
threshold of the future young. We conϐine ourselves to the study of equilibria in which, given the
equilibrium belief about the future threshold, the system persists if the contribution is lower than
the threshold, while it collapses when the contribution exceeds the threshold. In addition, we are
only interested in equilibria that are stable.

Our set-up can can be applied to a wide range of pension arrangements. We consider three
speciϐic, but important, arrangements. The ϐirst is a deϐined-beneϐit pay-as-you-go (PAYG) scheme.
The scheme has no assets, because each period aggregate beneϐits equal aggregate contributions.
We show that for plausible parameter settings, there is awide range of contribution payments con-
sistent with the continuation of the system. Hence, a near-future collapse is unlikely. The second
application considers a pension fund without any buffers, while the third application generalises
this arrangement to onewith buffers. Imposing a buffer requirement has interesting consequences
for the sustainability of a funded pension arrangement. If the asset returns are high, the buffer cre-
ates some ‘free’ money that can be used to lower the contributions by the young. However, if the
asset returns are low, the incoming cohort not only has to guarantee the pension beneϐits of the
retired, but it also has to replenish the buffer, implying a contribution that is actually higher than in
the case without buffers. Overall, the sensitivity of the contributions to the asset returns increases
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when buffer requirements are higher. Moreover, individual contributions may be increasing or de-
creasing in the size of the young cohort, depending on whether the fund has more or less reserves
than required. When the fund has more reserves than required, the excess reserves per young
individual are higher when the young generation is smaller and, hence, the contribution can be re-
duced. However, when reserves are too low, a smaller young generation requires a larger increase
in the individual contribution to replenish the reserves.

For standard parameter values we ϐind that each of the three pension arrangements features
two equilibria, one with a lower and one with a higher threshold. We also explore the policy pa-
rameter settings that maximise social welfare. Here, we conϐine ourselves to equilibria that are
consistent with the initial young beneϐiting from starting the system. This implies that for each
arrangement we can limit ourselves to the one with the higher threshold. An increase in demo-
graphic uncertainty has only minor effects on the system’s design parameters, because demogra-
phy does not directly affect individual utility. Both an increase in ϐinancial market uncertainty and
an increase in risk aversion raise the beneϐit from risk sharing, hence the optimal pension beneϐit
and, along with it, the maximum willingness of the young to contribute rise. For funded systems,
higher risk aversion lowers the optimal minimum return on the pension contributions. The cost of
a fund collapse becomes higher, hence the chance that the young are not willing to guarantee this
minimum return should be reduced. Owing to the rather large difference between the expected
ϐinancial return and the expected population growth rate, the welfare gains from participating in
the optimal funded scheme are substantially larger than from participating in the optimal PAYG
scheme. Imposing a buffer requirement on the funded scheme raises social welfare further, though
only by a relatively small amount, because the participation beneϐit of the ϐirst young generation
falls.

The literature exploring voluntary participation in pension arrangements is still very limited.
Closest to this paper is Beetsma et al. (2012), who study voluntary participation in a funded pen-
sion arrangement without pension buffers and with only uncertainty in the asset returns. They
show that the scope for voluntary participation is rather limited, because it can only occur when
ϐinancial market uncertainty is sufϐiciently strong and the risk aversion of the participants is suf-
ϐiciently high. However, whenever an equilibrium with voluntary participation does exist, it never
breaks down. The set up studied in this paper is much more general and the analysis is richer. We
explore voluntary participation in a wider range of pension systems and pay particular attention
to the role of buffers in funded arrangements. We also allow for demographic uncertainty. More-
over, the equilibria are characterised in a different way, while we study equilibria in which the
probability of a collapse of the pension system is non-zero each period.

Only a fewother papers investigate discontinuity risk in fundedpension systems. Demange and
Laroque (2001) analyse risk sharing in a PAYG systemwith voluntary contributions. Bovenberg et
al. (2007) explore the problem of negative buffers that may deter new cohorts from entering the
pension arrangement, while Demange (2009) investigates political sustainability risk in a PAYG
system. Westerhout (2009) quantiϐies the feasible amount of risk-sharing when the old are bound
by their pension contract, while the young are free to choose whether they will participate. The
latter refuse to join the pension fund when it is under ϐinancial distress. Unlike in this paper, West-
erhout (2009) assumes that the return on the funds’ assets exceeds that on private savings, which
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makes it relatively attractive to join the fund. Finally, Molenaar et al. (2011) explore the threshold
ratio of assets over liabilities for which it is optimal for a participant to quit a pension fund. Their
model differs substantially from ours and is designed to capture the main features of a Dutch DB
pension fund. Moreover, in contrast to this paper, there is no fully-ϐledged analysis of the existence
and characterisation of equilibria with voluntary participation.

There exists a rather large literature exploring risk sharingwithinmandatory pension arrange-
ments. Hence, this literature does not address the decision to participate in these schemes. Inter-
generational risk sharing in pay-as-you-go (PAYG) pension schemes is analysed by Enders and La-
pan (1982), Thogersen (1998), Bohn (1999, 2003),Wagener (2004), Sanchez-Marcos andSanchez-
Martin (2006), Gottardi and Kubler (2006), Krueger and Kubler (2006), Ball and Mankiw (2007)
andOlovsson (2010). Gollier (2008), Cui et al. (2011),Mehlkopf (2012) andBonenkampandWest-
erhout (2013) explore intergenerational risk sharing in fundedpension arrangements. Hassler and
Lindbeck (1997), De Menil and Sheshinsky (2003) and Matsen and Thogersen (2004) analyse the
trade off between PAYG and pension funding, while Beetsma and Bovenberg (2009) and Beetsma
et al. (2013) investigate intergenerational risk sharing when a PAYG and a funded pension are
combined.

The remainder of this paper is structured as follows. Section 2 presents the model. Section
3 characterises the participation decision. In Section 4 we explore three common applications: a
PAYGarrangement, a pension fundwithout buffers and a pension fundwith buffers. Finally, Section
6 concludes the main body of the paper. The Appendix contains some proofs.

2 The Model

Wepresent a simple overlapping generationsmodel inwhich individuals live for two periods. They
receive an exogenous endowment income in the ϐirst period of their life and decide whether or not
to participate in a pension arrangement. In addition, they decide about their level of ”personal
savings”, i.e. the amount of savings outside the pension arrangement in which they potentially
participate. In the second period of their life they consume the proceeds of their savings and their
pension beneϐit in case they decided to participate.

2.1 Individuals

Throughout this paper cohort-speciϐic variables have two subscripts. The ϐirst subscript indicates
the year of birth, while the second subscript denotes the current period. We refer to the cohort
born in period v as ”cohort v”. At birth, individuals optimise expected lifetime utility:

Uv = u(cv,v) + βEv[u(cv,v+1)], (1)

where β denotes the discount factor. The utility function fulϐils the usual properties u′(·) > 0,
u′′(·) < 0 and limc↓0 u

′(c) = ∞. At birth the individual receives an exogenous endowment y, which
for simplicity we assume to be the same irrespective of the period of birth.

In the ϐirst periodof life an individual decideswhether or not to participate in apension scheme.
He can make this decision only once. That is, if he opts in, he cannot opt out later, while if he opts
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out, he has to stay out for his entire life and spend his life in autarky. In particular, by choosing to
participate the individualwill be obliged to participate not only in the ϐirst period of his life, but also
in the second period of his life. We can think of participation as signing a legally-binding contract
that prohibits leaving the systemwhen retired. Speciϐically, this implies that it is not possible for the
elderly participants to dismantle the system and distribute its assets, if any, among themselves. In
the ϐirst period of his life, an individual also decides about his current level of consumption, hence
about his personal savings. In the following wewill denote variables under autarky by superscript
a, while variables under participation carry no superscript.

2.1.1 Autarky

Consider an individual born in period t. If he decides not to participate in the pension arrange-
ment he divides his initial endowment y between consumption and savings. The latter generate a
stochastic rate of return rt+1, so consumption when old in autarky is

cat,t+1 = (1 + rt+1)s
a
t , (2)

where sat = y − cat,t is savings under autarky .
Optimisation given the budget constraint (2) yields the usual Euler equation

u′
(
cat,t
)
= βEt[(1 + rt+1)u

′ (cat,t+1

)
], (3)

which, together with the budget constraint, determines the consumption proϐile. We denote ex-
pected utility for an individual born in period t in autarky by Ua

t .

2.1.2 Participation

If the individual born in period tdecides to participate in the already existing pension arrangement,
he has to pay a contribution τt to the pension arrangement. This contribution is determined by the
state of the economy and the arrangement according to a system-speciϐic rule. In Section 4 wewill
provide three examples of such rules. The individual’s savings are given by

st = y − ct,t − τt. (4)

The beneϐit of participation is that the pension system may provide some insurance against
particular bad shocks during the retirement period. However, the payout of the pension system
depends on whether the next generation is also willing to participate. The simplest example is
a PAYG system. If the next generation opts out, the pension beneϐit for the current generation is
zero. If the next generation decides to participate, the current young receive a pension beneϐit θt+1

when they are old. This beneϐit depends on the particular type of pension arrangement and it may
depend on the future state of the economy. Hence, assuming that the next generation participates,
consumption of cohort twhen it is old is

ct,t+1 = (1 + rt+1)st + θt+1. (5)
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The pension beneϐit θt+1 is ϐinanced out of the next cohort’s contribution τt+1 and the possible
excess reserves in the pension system.

If the next cohort born in period t+ 1 decides not to participate, then, if there are any pension
reserves, these are evenly distributed over the existing participants. Because in our simple set-up
there is only one remaining cohort of participants, namely those born in t, there is no conϐlict over
the assignment of property rights to the pension reserves. In this case, cohort t’s consumption in
period t+ 1 is

cct,t+1 = (1 + rt+1)st + θct+1, (6)

where a superscript c indicates a collapse of the system. Hence, cct,t+1 is consumption of an old
individual born in period t after the system collapses. After a collapse, the pension system is liqui-
dated and the revenues are used to cover θc. For many systems, such as funded pension systems,
θct+1 is strictly positive and it may even exceed θt+1. This implies that under special circumstances
the old generation may even prefer a collapse of the system. However, the obligation not leave the
system prevents the old generation from liquidating it when the young decide to participate.

The value of participation, Up, depends on the current state of the economy, which determines
the current contribution, and the expected pension beneϐit when old. This last beneϐit depends
on the willingness of future generations to participate. We assume that there exists a threshold
contribution level abovewhich thenext generationdecidesnot toparticipate. Wedenote thebeliefs
of cohort t about the threshold of cohort t+ 1 by τ∗t . Cohort t’s expected utility of participation is

Up
t = u(ct,t) + β

∫
Dc(τ∗t )

u(cct,t+1)p(ϕ) + β

∫
D(τ∗t )

u(ct,t+1)p(ϕ), (7)

withD(τ∗) = {ϕ|τ(ϕ) ≤ τ∗} all states inwhich the system continues andDc(τ∗) = {ϕ|τ(ϕ) > τ∗}
its complement, i.e. all states in which the system collapses. Since the pension system does not
distort the inter-temporal consumption-savings trade-off, the ϐirst-order condition determining
consumption in the ϐirst period of life is

u′(ct,t) = β

∫
Dc(τ∗t )

(1 + rt+1)u
′(cct,t+1)p(ϕ) + β

∫
D(τ∗t )

(1 + rt+1)u
′(ct,t+1)p(ϕ). (8)

This is the standard Euler equation, taking the possibility of a collapse into account.

2.2 The demography

We denote the size of the current old generation byNt−1. This generation gives birth to a new gen-
eration of sizeNt at the start of the current period. The gross birth rate bt ≡ Nt/Nt−1 is stochas-
tic. It is also the inverse of the old-age dependency ratio γt ≡ Nt−1/Nt. Population growth is
nt = Nt/Nt−1 − 1. Hence, 1 + nt = bt.

2.3 The pension system

The pension system collects contributions from the current young and pays pension beneϐits to
the current old. Depending on the system, it may or may not manage assets and run a surplus or a
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deϐicit. If the new generation participates, total assets (A) of the pension fund evolve as

At+1 = (1 + rt+1)[At +Ntτt −Nt−1θt]. (9)

It is often easier to focus on assets per current young person who participates. Dividing both sides
byNt and using the deϐinition of the old-age dependency ratio gives

at+1 = γt+1(1 + rt+1) (at + τt − γtθt) , (10)

where at ≡ At/Nt and τt and θt depend on the speciϐic pension arrangement and the state of the
economy.

If the system collapses, all the assets still in the fund are liquidated and divided over the current
old generation. Hence,

θct = at/γt. (11)

2.4 The economy

The relevant variables for the participation decision of the newborns are the asset return, the birth
rate and the asset positionof thepensionarrangement. At the timeof theparticipationdecision, the
young generation knows the current old-age dependency ratio and the current assets of the system.
Equation (10) shows that in general the asset position of the system features an auto-regressive
component. Below we will see that we can only solve our model if the pension arrangement is
such that this auto-regressive component disappears. The examples that we study later fulϐil this
requirement.

3 The Participation Decision

A newborn in period t decides to participate if Up
t > Ua

t given the current state of the economy (in-
cluding the pension system) ϕt and his belief about the threshold for participation τ∗t of the next
young generation. This dependence on what the current generation believes about the next gen-
eration’s threshold makes it impossible to solve this model in its most general set up. Therefore,
we focus on situations in which the problem of solving the model is recursive. In other words, we
limit ourselves to cases in which each generation faces the same decision problem. To this end,
we assume that the next period’s asset return and birth rate do not depend on the current state
of the economy.1 In this setting, expected utility under autarky is constant, because the probabil-
ity density function of the return on savings is time invariant. Furthermore, we focus on pension
arrangements for which the asset position always returns to the same speciϐic value. That is, we
restrict the pension system to one in which at+ τt−γtθt is constant. Hence, once in a given period
the cash-ϐlows associated with the system have taken place, the system’s assets must be constant.

For the sake of readability we can now drop time subscripts and use an apostrophe (e.g. ϕ′)
to denote the next period’s values. We write consumption when young as c1 and consumption
when old as c2. The next period’s state ϕ′ is independent of the current state ϕ. Hence, all relevant

1Because a period in our model corresponds to the length of a generation, this assumption does not seem to be too
unrealistic.
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information for the individual about the current state is capturedby the required contribution τ(ϕ).
In turn, this implies that the expected utility of participation Up is fully determined by τ and the
belief τ∗. To make this dependence explicit we write

Up(τ, τ∗) =max
c1,s

u(c1) + β

∫
D(τ∗)

u[(1 + r(ϕ′))s+ θ(ϕ′)]p(ϕ′)

+ β

∫
Dc(τ∗)

u[
(
1 + r

(
ϕ′)) s+ θc

(
ϕ′)]p(ϕ′),

s.t. s = y − c1 − τ,

(12)

where we have substituted c2 out using the second period’s budget constraints (5) and (6).
This function has the following properties (see the Appendix for the derivation)

∂Up

∂τ
= −u′(c1) < 0, (13)

∂Up

∂τ∗
= β

∫
∂D(τ∗)

[u(cc2)− u(c2)]p(ϕ
′) · z ≶ 0, (14)

where ∂D(τ∗) denotes the boundary ofD(τ∗) and z the velocity vector at the boundary.
A higher contribution τ lowers lifetime income and, hence, as equation (13) shows, always

lowers lifetime utility. The effect of a higher threshold is ambiguous in general. A higher τ∗ always
increases the region over which the system survives, but at the boundary consumption after a col-
lapse of the system may or may not exceed consumption under participation. In section 4.3 we
present a pension system in which the pension fund has a buffer. As long as the fund has a positive
buffer, the old actually prefer the young not to participate, so that fund can be closed and they can
claim these reserves for themselves. Hence, in general, the utility effect of a higher contribution
threshold is ambiguous.

The key to determining the current generation’s optimal choice – to participate or not – is their
belief about the contribution threshold of the next generation, τ∗. Given our recursive set-up, each
generation faces the same decision. Therefore, we assume that a speciϔic belief τ̂ about the future
threshold is a valid threshold if it is also a valid threshold for the current generation. We deϐine an
equilibrium as:

Deϐinition. An equilibrium is a savings rule for consumers under participation s(τ), a savings
rule in autarky sa, and a threshold τ̂ , such that for these savings rules and threshold (1) the Euler
equations in autarky and under participation hold, (2) the budget constraints in autarky and under
participation hold, and for this threshold the following conditions hold:

1. for all τ > τ̂ , Up(τ, τ̂) < Ua,

2. for all τ < τ̂ , Up(τ, τ̂) > Ua,

3. it must be ‘stable’, i.e. |Up
2 | < |Up

1 |, in τ = τ∗ = τ̂ ,

whereUp
1 andUp

2 are the ϐirst derivatives ofUp(τ, τ∗)with respect to its ϐirst and second argument,
respectively.
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For interior values of τ , the ϐirst two requirements simply boil down to Up(τ̂ , τ̂) = Ua. To ac-
commodate corner solutions, we have to split this condition into two parts. Condition 1 states that
it is optimal for the youngwhobelieve that τ̂ is a threshold for thenext generation, tonot participate
in the system (since Up < Ua) whenever the required contribution exceeds this threshold. Below
we will consider pension arrangements that require a minimum contribution level and where this
minimum turns out to be an equilibrium threshold. A minimum value τmin of τ fulϐils Condition
1 if Up(τmin, τmin) ≤ Ua, since Up is continuous and decreasing in the ϐirst argument. Thus, this
condition could be relevant if there is a non-zero probability that the contribution is exactly equal
to this minimum value. The fact that we observe a pension system then merely indicates that the
contribution has never been higher than this minimum level. Condition 2 says that it is optimal for
the young who believe that τ̂ is a threshold for the next generation to participate (since Up > Ua)
whenever the required contribution falls below this threshold.

Condition 3 requires more explanation. The purpose of this condition is to exclude ‘silly’ or
‘unstable’ equilibria as identiϐied by Beetsma et al. (2012). Stability means that a young who hap-
pens to have a belief about the next generation’s threshold τ0 close to τ̂ and tries to determine
the threshold contribution that makes him indifferent between participation and autarky given
his belief τ0, eventually ends up in the equilibrium τ̂ by using this threshold as a belief. Formally,
the threshold τ̃ of a young who has a belief τ∗ is deϐined by the implicit equation Up(τ̃ , τ∗) = Ua.
Hence, we can write τ̃ = τ̃(τ∗). Starting at τ∗ = τ0 in the neighbourhood of τ̂ yields the sequence
τ1 = τ̃(τ0), τ2 = τ̃(τ1), etc. This series converges to τ̂ if |∂τ̃/∂τ∗| < 1 in τ̃ = τ̂ . Implicit differen-
tiation yields ∂τ̃/∂τ∗ = −Up

2/U
p
1 . Hence, a ϐixed point τ̂ is stable if |Up

2 | < |Up
1 | in this point, which

is the third condition.
To calculate equilibrium thresholds we deϐine

∆p(τ) ≡ Up(τ, τ)− Ua. (15)

Finding a threshold τ̂ boils down to a simple one-dimensional root ϐinding problem, as well as
checking the values of∆p at potential corner solutions. The derivative of∆p is

d∆p

dτ
= Up

1 (τ, τ) + Up
2 (τ, τ). (16)

Given thatUp
1 < 0 (see (13)), Condition 3 implies that any root τ̂ of∆p on an upward sloping part of

the function cannot be a stable equilibrium and can be discarded. Thus, a negative ϐirst derivative
of∆p(·) provides only a necessary, but not a sufϐicient, condition for the stability of the root.

Our equilibrium concept quite closely resembles that of the ”organizational equilibrium” pro-
posed by Prescott and Rios-Rull (2005). In the context of our model, their so-called ”no-restarting
condition” says that the current threshold can only be an equilibrium threshold if, for a state of the
economy identical to the current one, the next young generation cannot attain a higher utility than
the current young generation by abolishing the system and restarting it with a different threshold.
Our concept differs from theirs in that, once the threshold has been exceeded, the arrangement
disappears forever.
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4 Three applications

In this section we will use the above model to analyse three speciϐic pension arrangements, fo-
cussing on the possibility that a new young generation decides not to participate. The above anal-
ysis can be applied, because in all three applications the assets managed within the system return
to the same constant value.

In all our applications we will assume the same structure of the underlying economy with the
same underlying uncertainties. Given our two-cohort model, one period consists of 30 years. The
initial endowment y is normalised to 1. Following Beetsma et al. (2012)wemodel the gross return
(1 + r) as a log-normal process LogN(µr, σ

2
r ). We make use of Campbell et al. (2003) for the cali-

bration of the portfolio return. The risk free interest rate is set to 2.1% and the risk premium on
equity is 6.8%, with a standard deviation of 18.2%. Given the long investment horizon of individ-
uals we set the share invested in equity at 75%. Inϐlation is set at 2.0%. Hence, the mean annual
real return on the whole portfolio is 5.2%. For a 30 year period and a log-normal distribution for
the gross real return, this translates into (1+ r) ∼ LogN(1.27, 0.71).

The birth rate also follows a log-normal distribution, calibrated to the average annual popu-
lation growth and standard deviation in the Netherlands from 1900 to 2012. The average annual
population growth was 1.06%, with a standard deviation of 0.47%. For a 30-year period, we have
b ∼ LogN(0.32, 0.026). For simplicity, we assume that both processes are independent of each
other, so the joint probability density function p(r, b) can be written as p(r, b) = pr(r)pb(b).2 Fur-
ther, for utility we assume a standard CRRA felicity function

u(c) =
c1−ρ

1− ρ
, (17)

wherewe set ρ = 5 in our baseline simulations. Finally, we set the discount factor over our 30-year
period at 0.5, which translates into an annual discount factor of roughly 0.977.

4.1 Deϐined beneϐit pay-as-you-go

In a PAYG system, the pension beneϐits of the old generation are fully covered by the contributions
of the young. Hence, at = 0. For simplicity, we assume that the system is of a deϐined-beneϐit type
with a ϐixed pension beneϐit θ. The contribution paid by new entrants varies to absorb all shocks:

τt = γtθ = θ/bt. (18)
2Systematic empirical evidenceon the relationshipbetweenpopulation growthand the equitypremiumseems rather

hard to obtain. Yu (2002) ϐinds evidence of a positive relationship between population growth and bond and stock re-
turns for both small and large companies in the U.S., but unfortunately does not present direct evidence of the relation-
ship between the equity premium and population growth. More work has been done on the study of the relationship
between the age composition of the population and the equity premium. Geanakoplos et al. (2004) report a higher
equity premium for the U.S. when the ratio of the middle-aged to the young is relatively low, while evidence for other
large developed countries suggests that an increasing ratio of middle-aged to young is accompanied by high stock mar-
ket returns over the period of the nineteen eighties and nineties. Kuhle et al. (2007) present a quantitative theoretical
analysis for the U.S. that suggests an increase in the equity premium when a relatively small young cohort enters the
labour market. In view of the lack of a consensus ϐigure for the correlation between population growth and the equity
premium, we stick to our assumption that the two are uncorrelated.
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Since b ∼ LogN(µb, σ
2
b ), the contribution τ follows LogN(−µb + log(θ), σ2

b ) and is in principle only
bounded frombelow. The lifetime budget constraint imposes an upper limit on the contribution. If
the youngdecidenot to participate, the old get nothing, because there arenopension assets. Hence,
any contribution higher than y violates the lifetime budget constraintwhen the system collapses in
the next period, so may be excluded from the analysis. Savings must be positive to ensure positive
consumption when old if the system collapses. Moreover, they cannot exceed y − τt to prevent
negative consumption when young.

Given this speciϐication, we can write Up(·, ·) as

Up(τ, τ∗) = max
s

u(y − s− τ) + β

∫
D(τ∗)

u[(1 + r′)s+ θ]p(ϕ′)

+ β

∫
Dc(τ∗)

u[(1 + r′)s]p(ϕ′). (19)

The contribution depends only on the birth rate, so given a threshold τ∗, there is a threshold for
the birth rate b∗ = θ/τ∗ below which the system collapses, that is, D = {r′, b′|b′ > θ/τ∗} and
Dc = {r′, b′|b′ ≤ θ/τ∗}.

For this pension system,∆p can be written as

∆p(τ) = max
s

u(y − s− τ) + β

∫ ∞

−1

∫ ∞

θ/τ
u[(1 + r′)s+ θ]pr(r

′)pb(b
′)db′dr′

+ β

∫ ∞

−1

∫ θ/τ

0
u[(1 + r′)s]pr(r

′)pb(b
′)db′dr′ − Ua. (20)

Changing the order of integration gives

∆p(τ) = max
s

u(y − s− τ) + β (Ω0(s)− Pb(θ/τ)Ω1(s))− Ua, (21)

wherePb(·) is the cumulative density function of b,Ω0(s) ≡ Er
(
u[(1+r′)s+θ]

)
,Ω1(s) ≡ Er

(
u[(1+

r′)s+ θ]− u[(1 + r′)s]
)
> 0 , and Er(·) is the expected value with respect to r′.

In this PAYG system we have ∆p(0) = 0, limτ→y ∆
p(τ) < 0, d∆p(τ)

dτ = −∞ as τ → y and
∆p is strictly downward sloping at τ = 0 (see the Appendix for details). Continuity implies that
∆p(τ) = 0 has, besides the solution τ = 0, zero roots or an even number of roots, which always
come in pairs of an unstable and a stable solution. Numerical results show that for any reasonable
parameter constellation ∆p(·) has at most one such pair. At low values of τ , the wealth effect of
an increase in τ dominates its insurance effect and utility is decreasing in τ . Raising τ leads to a
decreasing probability of a collapse and this effect may at some point start to dominate the wealth
effect, leading to positive values of ∆p(·). However, for large enough τ , the wealth effect always
dominates and∆p(·) is negative. This effect is enforced by Ω1(s), since this term grows in size as
savings become smaller due to a larger contribution.

Figure 1 shows∆p for values of τ ranging from0 to 0.3, i.e. 30%of the ϐirst period’s endowment
y, and a pension beneϐit θ of 0.1, i.e. 10% of the initial endowment. For this parameter constella-
tion, the function ∆p(τ) has three roots: the trivial one at τ = 0, an unstable root at 0.07 and a
stable root at 0.17. Given our parameter values, there is a nearly-zero probability that the required
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Figure 1: ∆(τ) and savings for the PAYG system

contribution is higher than the threshold of 0.17. Hence, there are two possibilities: either the sys-
tem collapses immediately or a collapse of this PAYG system within a reasonable time horizon is
highly unlikely.

4.2 Minimum return on pension contribution

Beetsma et al. (2012) study a system in which a pension fund guarantees a minimum return r∗ on
a basic pension contribution ζ . The pension beneϐit of the old generationwhen the system persists
is

θt =

(1 + rt)ζ if rt > r∗

(1 + r∗)ζ if rt ≤ r∗
. (22)

The pension fund keeps no buffers. Hence, if the return on its investments exceeds r∗, the fund has
just enough to pay the pension beneϐits. If the return on investment is lower than the minimum
return r∗, the young must make an additional contribution that depends on the deϐicit of the fund.
Therefore, the total contribution by the young is

τt =

ζ if rt > r∗

ζ + γt(r
∗ − rt)ζ if rt ≤ r∗

. (23)

Hence, the total contribution is at least the basic contribution ζ . Like the PAYG system above, this
system is also fully recursive. If the young participate, they replenish the assets managed by the
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Figure 2: ∆(τ) and savings for the funded system without buffers

pension fund to ζ since at + τt − γtθt = ζ .3 The pension beneϐit of an old individual if the new
young decide not to participate is

θct = (1 + rt)ζ. (24)

Given that the contribution is at least equal to ζ according to (23), we can ignore cases in which
τ∗ < ζ . This allows us to write

Up(τ, τ∗) = max
s

u(y − s− τ) + β

∫
D1(τ∗)

u[(1 + r′)s+ (1 + r∗) ζ]p(ϕ′)

+ β

∫
D2(τ∗)∪Dc(τ∗)

u[(1 + r′)(s+ ζ)]p(ϕ′), (25)

whereD1(τ
∗) = {r′, b′|r′ < r∗, (r∗−r′)/b′ ≤ τ∗/ζ−1} are the states in which the new generation

has to cover a deϐicit, but participates nonetheless. Further,D2(τ
∗) consists of the states in which

r′ ≥ r∗, so the new generation only has to pay the regular contribution ζ . By deϐinition we have
D1(τ

∗) ∪ D2(τ
∗) = D(τ∗), the set of next-period states in which the system continues to exist.

Finally,Dc(τ∗) = {r′, b′| (r∗ − r′) /b′ > τ∗/ζ − 1}, i.e. all the states in which the system collapses.
As Beetsma et al. (2012) show, the belief τ∗ = ζ is a stable equilibrium. As in the PAYG ex-

ample, the ∆p-function is zero and downward sloping at the minimum contribution, now τ = ζ ,
and negative at the maximum contribution y. This again implies that besides the trivial minimum
contribution, the∆p-function has an even number of roots in (unstable, stable)-combinations.

Figure 2 shows ∆p for values of τ ranging from 0.1 to 0.4, assuming a basic contribution of
3Notice that, initially, a0 + τ0 − θ0/b0 = ζ , since a0 = θ0 = 0 and τ0 = ζ . Hence, if r1 ≤ r∗, a1 + τ1 − θ1/b1 =

(1 + r1) ζ/b1+ζ+(r∗−r1)ζ/b1−(1+r∗)ζ/b1 = ζ , while if r1 > r∗, a1+τ1−θ1/b1= (1 + r1) ζ/b1+ζ−(1+r1)ζ/b1 = ζ .
This extends to all future t.
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ζ = 0.1 and a minimum return r∗ = 0.25 guaranteed by the pension system, as long as it does not
collapse. For this parameter constellation, the function ∆p(τ) has three roots: the trivial one at
τ = ζ = 0.1, an unstable root at 0.18 and a stable root at 0.20. Givenour parameters, the probability
that the total contribution exceeds 0.1 is only 6.9% and the probability that the total contribution
exceeds 0.2 is negligible. The reason is that the system only promises a return of 25% over 30
years, whereas the mean return over this period is 357%. Depending on the selected threshold
the system collapses immediately if the contribution is higher than ζ (with probability of 6.9%),
i.e. the equilibrium threshold is at the lower stable root, or a collapse is highly unlikely, i.e. the
equilibrium threshold is at the higher stable root. These thresholds and probabilities are mostly
determined by the level of risk aversion, the rate of time preference and the ϐinancial uncertainty.
The demographic uncertainty only has a second-order effect. Doubling the variance of the birth
rate without changing the mean birth rate has no measurable effect on the thresholds.

These ϐindings are in line with those of Beetsma et al. (2012). However, their only source of
uncertaintywas the returnon savings, so theirmaximumcontributionwas ζ(1+r∗), well belowour
higher equilibrium threshold. They concluded that themaximum contribution was an equilibrium
threshold. Hence, given that the contribution could not exceed this threshold, in their analysis the
system would never collapse.

4.3 Minimum return with buffer

As a third example we discuss the case in which the pension fund again guarantees a minimum
return on the basic contribution ζ , but also maintains a minimum amount of reserves equal to a
fraction α ≥ 0 of the basic contribution. That is, after the cash in- and outϐlows have taken place in
a given period, the fund’s assets per youngmust be equal to (1+α)ζ . The pension beneϐits are the
same as in the previous example, i.e. they are given by (22). Hence, as long as the system persists,
the participants again receive a minimum return r∗ on their contribution. To ensure the fund’s
asset level of (1 + α)ζ , the total contribution must be equal to

τt =

ζ + αζ[1− (1 + rt)/bt] if rt > r∗

ζ + (r∗ − rt)ζ/bt + αζ[1− (1 + rt)/bt] if rt ≤ r∗
, (26)

Hence, they differ from the contributions (23) in the previous example by the term αζ[1 − (1 +

rt)/bt], which depends on the reserve requirement α. If the new cohort decides to participate,
then the payout of the systemwith and without a buffer is the same, but their contribution differs.
However, if the system collapses because the young generation decides not to participate, every
member of the old generation receives

θct = (1 + rt)(1 + α)ζ. (27)

Hence, the old are better off than under a collapse of the previous system, since now they also
receive the buffer.

The introduction of a buffer affects the contribution in various ways. First, the effect of a buffer
on the required contribution (standardised by ζ) depends on the ratio of the gross return on in-
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vestments and the birth rate:

∂(τt/ζ)

∂α
= 1− 1 + rt

bt
.

For realisations of 1+rt above the birth rate bt the presence of buffers actually lowers the required
contribution paid by the young. The difference between the required contribution per young in
a system with a buffer (α > 0) and a system without a buffer consists of two parts, namely in
the case of a buffer the young have to inject an additional αζ into the system, but they inherit
(1 + rt)αζ/bt. The inheritance is the gross return on the buffer in the previous period divided
by the gross population growth. If the size of the young generation is larger relative to the old
generation, then the inheritance per young person falls. Whenever the inherited buffer exceeds
the required buffer αζ , the net effect αζ[1 − (1 + rt)/bt] is negative and the contribution of the
young is lower than in a system without a buffer.

A second effect of a buffer is that it increases the sensitivity of the contribution to the return on
investments. The slope of the standardised total contribution depends on the region:

∂(τt/ζ)

∂rt
=

−α/bt < 0 for rt > r∗

− (1 + α) /bt < 0 for rt ≤ r∗
.

In the case of a buffer, a higher return always lowers the total contribution, even if rt > r∗. This is
due to the fact that any additional return on the buffer is not needed to ϐinance the pension payouts,
but can be used to lower the total contribution of the young. Higher buffer requirements reinforce
this effect,

∂2(τt/ζ)

∂rt∂α
= − 1

bt
< 0,

and increase the sensitivity of the total contribution to ϐinancial shocks.
Differentiating the contribution with respect to the gross rate of population growth yields:

∂(τt/ζ)

∂bt
=


α(1+rt)

b2t
> 0 for rt > r∗

(1+α)(1+rt)−(1+r∗)
b2t

≷ 0 for rt ≤ r∗
.

Let rt > r∗. The smaller is the young generation, i.e. the lower is bt, the more buffer there is per
young person, hence the lower the total contribution can be. If rt ≤ r∗, there are two cases. One
is when (1 + rt)(1 + α)ζ > (1 + r∗)ζ , hence there are buffers left in the fund after the old have
received their beneϐit and, hence, a smaller new generation is better off since they can divide these
buffers over a smaller group. The other case is when (1+ rt)(1 +α)ζ < (1 + r∗)ζ . In this case, the
new generation prefers a big cohort (high birth rate), so that the burden of replenishing the fund
can be distributed over more individuals.

In this example,

Up(τ, τ∗) = max
s

u(y − s− τ) + β

∫
D1(τ∗)

u[(1 + r′)s+ (1 + r∗) ζ]p(ϕ′)

+ β

∫
D2(τ∗)

u[(1 + r′)(s+ ζ)]p(ϕ′) + β

∫
Dc(τ∗)

u[(1 + r′)(s+ (1 + α)ζ)]p(ϕ′), (28)
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Figure 3: ∆(τ) and savings for the funded system with a buffer

whereD1(τ
∗) consists of all combinationsof r′ and b′ such that r′ ≤ r∗ and (r∗−r′)/b′+α [1− (1 + r′)/b′] ≤

τ∗/ζ−1 andD2(τ
∗) consists of all combinationsof r′ and b′ such that r′ > r∗ andα [1− (1 + r′)/b′] ≤

τ∗/ζ − 1. Hence, D1(τ
∗) ∪ D2(τ

∗) is the set of all combinations of r′ and b′ such that the contri-
bution threshold is not exceeded and the system persists. As before,Dc(τ∗) is the complement of
D1(τ

∗) ∪ D2(τ
∗). Note that for τ∗ < ζ(1 + α) the system may collapse even if r′ > r∗. This hap-

pens if the new cohort is relatively large, hence the existing buffers are relatively low in per-capita
terms, so that the new cohort has to contributemore than ζ to ensure sufϐicient reserves. This new
generation may not be willing to do so since there are outcomes, namely when r′ ≤ r∗ and the
system does not collapse, in which they only get (1 + r′)ζ .

Figure 3 shows ∆p for values of τ ranging from 0.1 to 0.4, assuming a buffer α = 0.1 and,
as before, a basic contribution ζ of 10% of the initial endowment and a minimum return r∗ of
25%. The basic contribution ζ = 0.10 does not correspond to an equilibrium threshold since∆p

is positive. If the system continues, the return on this contribution is at least the return on private
savings. If the next generation does not participate, the return on this contribution is higher than
the return on private savings since the current generation can then also claim the buffers. For this
parameter constellation, the function∆p(τ) has three roots: one at τ = 0.109, hence slightly less
then (1+α)ζ , an unstable root at 0.19 and a stable root at 0.204. There is a 5.5% chance of a higher
total contribution than 0.109, while the chance that the required contribution is higher than the
high threshold of 0.204 is again negligible. The lower stable root corresponds to the left-corner
solution in the previous example without a buffer. Compared to that situation , the probability of a
collapse is lower in this case.

Table 1 shows the numerically computed stable thresholds and probabilities of a collapse of the
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1st stable threshold∗ Prob. of collapse 2nd stable threshold∗ Prob. of collapse
α
0% 10.0% 6.9% 20.3% 0.0%
10% 10.8% 5.5% 20.3% 0.0%
20% 11.7% 4.5% - -
30% 12.5% 3.7% - -
r∗

0% 10.8% 2.9% - -
20% 10.8% 4.9% 19.9% 0.0%
40% 10.9% 7.4% 21.7% 0.0%
70% 10.9% 12.0% 24.3% 0.0%
100% 10.9% 17.2% 26.7% 0.0%

ρ
1.0 10.0% 7.4% - -
3.0 10.4% 6.3% - -
5.0 10.8% 5.5% 20.3% 0.0%
7.0 10.9% 5.3% 34.2% 0.0%

∗as percentage of initial endowment y

Table 1: Thresholds and probabilities of a collapse of the system for various parameter settings.

above system for various parameter settings. We vary respectively the buffer size α, the minimum
return r∗ and the risk aversion ρ, each time keeping all the other parameters at their baseline levels
given by α = 0.1, ζ = 0.1, ρ = 5 and r∗ = 0.25. There are never more than two stable thresholds,
while in some cases there is only one. The ϐirst block shows that increasing the buffer leads to a
lower probability of a collapse, as expected. For relatively low values of α, there is a second stable
threshold and if the current generation actually has this ‘optimistic’ belief, the systemwill (almost)
certainly survive. The second block shows the effect of a higher minimum return r∗. The ϐirst
(low) threshold is essentially unaffected by higher promised returns. The probability of a collapse
increases, because for higher promised returns the next generation is more likely to be confronted
with low or even empty buffers that must be replenished.

The last block shows the effect of an increase in the relative risk aversion parameter. As ex-
pected, this increases the willingness to participate as indicated by higher thresholds. For al-
ready moderately high levels of risk aversion of 3.0 to 5.0, levels generally accepted in the macro-
economic literature, a possibility of ‘optimistic’ beliefs exists, as there is a high threshold besides
the ‘pessimistic’ low one.

5 Welfare analysis

This section analyses for the above three sample arrangements the optimal setting of the policy pa-
rameters. For our baseline parameter constellation, all arrangements have two stable equilibrium
values for the threshold τ∗, a relatively low one and a relatively high one. The question is which of
the two equilibrium thresholds is the relevant one. We select the relevant equilibrium threshold by
imposing that it be consistent with the participation constraint of the ϐirst young generation. This
generation is only willing to participate if Up(τ0, τ

∗) > Ua. This rules out the low threshold. For
the PAYG arrangement the low threshold is zero, implying that the ϐirst young generation would
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never be willing to pay the old, so that it would never be possible to start a systemwithmandatory
participation. Under the funded scheme without a buffer, the ϐirst young would be just willing to
pay the contribution rate, but not more than that. Hence, for the low equilibrium threshold, the
pension system provides no insurance at all. For the funded scheme with a buffer α > 0, for any
reasonable value of risk aversion, the low equilibrium threshold is slightly below (1+α)θ, the con-
tribution to be made by the ϐirst generation. Summarising, if the low equilibrium threshold is the
relevant one, it would be impossible to start a pension system that actually provides risk sharing.

Based on these ϐindings, we rule out the low equilibrium threshold and focus on the high equi-
librium threshold.4 For our PAYG scheme, the high threshold is around 16.6% of the initial endow-
ment, while the payout is 10%. For our funded systems, the accrual rate is 10%, while the high
threshold is roughly 20%. Relative to the expected future beneϐit these thresholds seem rather
high. Moreover, for the high equilibrium threshold the participation constraint is almost never
binding and the system would almost never collapse. Obviously, given the stylised nature of the
model, we should be careful not to put too much emphasis on the precise values of the thresholds.
Introduction of more reϐinement into the model may well result in more realistic values for the
high equilibrium threshold. In particular, the length of retirement is assumed to be the same as
the length of the working life. In reality, the former is roughly half of the latter, implying that the
same total beneϐit would correspond to a substantially larger replacement rate of the wage during
the active life.

The systemdesigner sets the pension parameters, and these parameters result into a threshold
τ∗ and a probability of a collapse P in each period. The payout to the current old (θ0) and the
contribution of the current young (τ0) are known at themoment the system is started. If the system
collapses, it will remain in autarky forever. We assume that social welfare is the discounted (to
period 0, themoment the system is started) sumof the expected utilities of all generations alive and
born inperiod0 and later. Of the old generation in period0 it includes only the utility obtained from
their second-period consumption . Given the assumptions just made and using the re-cursiveness
of the model, Appendix shows that we can write social welfareW as:

W = u((1 + r0)s−1 + θ0) + Up(τ0, τ
∗) + β(PV a + (1− P )V p),

where

V a =
baUa

1− βbe
,

V p =
1

1− βbp(1− P )
(Γp + βbpPV a),

4In principle one might try to motivate the low equilibrium threshold by events outside the model. For example, the
experience of a severe crisis seems to be a good predictor of the emergence of beneϐit systems. In particular, in the U.S.
President Franklin D. Roosevelt presented the Social Security Act of 1935 as a response to the consequences of the Great
Depression for vulnerable groups like senior citizens. This response may well have been made acceptable by solidarity
feelings towards these groups, even though the initial contributors did not expect to obtain any net beneϐit from the
arrangement. However, we will not follow this route, but require that the participation constraint be fulϐilled for all
generations, including the ϐirst young generation.
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ρ 5 7
µr 1.27 1.22 1.27 1.22
σr 0.71 0.78 0.71 0.78
µb 0.317 0.312 0.317 0.312 0.317 0.312 0.317 0.312
σb 0.026 0.103 0.026 0.103 0.026 0.103 0.026 0.103
θ 0.251 0.248 0.303 0.300 0.338 0.333 0.378 0.372
τ∗ 0.298 0.296 0.413 0.411 0.514 0.512 0.641 0.640

Compensation 13.2% 13.1% 24.5% 24.4% 39.2% 38.9% 68.8% 68.5%

Table 2: Welfare maximising pension parameters for the PAYG system

where be is the mean gross population growth rate and ba (bp) is the gross population growth rate
conditional on a (no) collapse in that period. Further, the constant Γp (deϐined in the Appendix)
measures the expected value of the young generation’s utility given that the system does not col-
lapse corrected for the gross population growth rate. Hence, we evaluate social welfare for given
values of θ0 and τ0. The factor used to discount the utility of future generations is assumed to be
the same as the individual discount factor β.

Now we will turn to the search for the optimal pension arrangements under our three sample
systems. We start from our benchmark parameter setting and focus on two values for the relative
risk aversion parameter ρ, namely 5 and 7. This yields two thresholds for each of the systems we
consider. Relative to the baseline parameter setting we also consider variations on this baseline
in which we raise the uncertainty parameter σr of the ϐinancial process by 10% and/or the uncer-
tainty parameter σb of the birth process by 300%. To compensate for the effect on the expected
return, the parameters µr and µb are correspondingly reduced.

For the PAYG scheme (see Table 2), we see that an increase in ϐinancial market uncertainty
raises the optimal pension beneϐit. This outcome is not surprising, because an increase in ϐinancial
market uncertainty lowers the level of personal retirement assets when ϐinancial markets perform
poorly. An increase in the pension beneϐit protects against low resources in retirement. Alongwith
the increase in the optimal pension beneϐit, we observe an increase in the equilibrium threshold
for the contribution rate. The effects of an increase in the uncertainty of the birth rate on the opti-
mal beneϐit level and the contribution threshold are only marginal, the reason being that the birth
rate does not have any direct effect on utility. It only has an effect through the probability of a col-
lapse. An increase in the degree of risk aversion raises the penalty associated with ϐluctuations in
resources during retirement and, hence, a larger stable source of income becomes desirable. As a
result, the optimal pension beneϐit rises and, along with it, the maximumwillingness of the young
to contribute. The ϐinal row reports by howmuch each generation’s endowmentmust rise in order
to raise the welfare level under autarky to that of the pension system under the old endowment
of y = 1. We see that for relatively low risk aversion and low ϐinancial risk, the compensation is
only 13%. The welfare gains of the pension system in that speciϐic situation are relatively limited.
When risk aversion or ϐinancial uncertainty increase, these welfare gains also increase. In order to
have the same level of welfare as under the optimal PAYG system, private endowments in autarky
must go up by 68%.

Tables 3 and 4 report the optimal arrangements for our funded pension systems. In the system
withminimum returns but without buffers (Table 3), we see that the optimal promised return r∗ is
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ρ 5 7
µr 1.27 1.22 1.27 1.22
σr 0.71 0.78 0.71 0.78
µb 0.317 0.312 0.317 0.312 0.317 0.312 0.317 0.312
σb 0.026 0.103 0.026 0.103 0.026 0.103 0.026 0.103
θ 0.075 0.049 0.115 0.071 0.125 0.088 0.150 0.131
r∗ 4.149 4.799 3.253 4.209 2.972 3.563 2.517 2.678
τ∗ 0.373 0.315 0.502 0.447 0.582 0.541 0.728 0.705

Compensation 26.5% 23.6% 40.7% 38.8% 58.0% 56.4% 92.0% 91.3%

Table 3: Welfare maximising pension parameters for the funded minimum return system

in the same ballpark as the expected return of 3.57 over a 30 year horizon. One striking feature of
all optimal arrangements is the high threshold for the contribution, especially when compared to
the contribution itself. The reason is that the penalty for a failed system is severe. Once the system
collapses, the economy will stay in autarky forever. To avoid this, the optimal system is such that
the probability of a collapse is negligible. Higher risk aversion lowers the optimal minimum return
r∗. The consequences of a collapse of the fund become more severe if risk aversion higher. Hence,
to reduce the chance that the young would need to make such a large contribution to the scheme
that they decide to not participate, the minimum return r∗ has to be reduced. Welfare under the
funded system is potentially much higher than under the PAYG system. Themain reason is that the
PAYG system is relatively expensive due to the low expected population growth rate (1.06% per
annum) compared to the expected ϐinancial return (5.2%).

Table 4 shows that the welfare maximising buffers are signiϐicant, except in the case with both
high risk aversion and high uncertainty. The buffer has two roles. It acts as a carrot and as a stick.
It acts as a stick in that, if the young generation is not willing to participate, the buffer goes to the
current old and the young can not beneϐit from the returns generated by this buffer. Second, it acts
as a carrot as it is a source of free money. The ϐirst generation foregoes some of the beneϐit of the
system by having them establish the buffer. Ceteris paribus, this lowers their utility, but increases
the welfare of future generations and is, therefore, welfare enhancing. These high buffers also
allow for high minimum returns. Participation is attractive due to the existence of the buffers, so
the promises by the pension system can be larger with bigger buffers.

The last row shows that the mere welfare gains from introducing these buffers are relatively
small. The compensation is only 2 to 4 percentage points larger than in the comparable situation
for a pension systemwithout buffers. The ϐirst generation isworse off since they have to pay for the
initial buffers, while future generations are better off since the pension system effectively shifts re-
sources from this ϐirst generation to future generations. These two effects on social welfare largely
cancel out.

6 Conclusion

This paper has studied voluntary participation in pension arrangements. That is, individuals only
participate in the arrangement when their participation constraint is fulϐilled, i.e. when participa-
tion is more attractive than the alternative of autarky. The policy relevance of the participation
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ρ 5 7
µr 1.27 1.22 1.27 1.22
σr 0.71 0.78 0.71 0.78
µb 0.317 0.312 0.317 0.312 0.317 0.312 0.317 0.312
σb 0.026 0.103 0.026 0.103 0.026 0.103 0.026 0.103
θ 0.031 0.009 0.033 0.018 0.054 0.035 0.145 0.127
r∗ 9.53 26.76 11.81 17.81 7.671 10.064 2.531 2.592
α 2.116 7.128 3.324 5.005 2.060 2.638 0.380 0.373
τ∗ 0.342 0.294 0.470 0.430 0.564 0.534 0.721 0.698

Compensation 29.2% 25.8% 44.5% 41.9% 61.5% 59.7% 94.2% 93.3%

Table 4: Welfare maximising pension parameters buffer system (search algorithm)

issue is rapidly increasing, because in many countries young generations are becoming more and
more sceptical about whether they will see any return to the contributions they currently make
to their pension plans. Once large groups of participants loose their conϐidence in a system with
mandatory participation, it is bound to collapse, as the political pressure to relax the participation
requirement becomes too large. When that happens also the beneϐits of intergenerational risk-
sharing through the systemwill be lost. Hence, policy-makers face the task of redesigning pension
arrangements in such a way that these beneϐits will be preserved, while the different groups of
participants are happy to stay in the system.

We applied our analysis to a number of important examples, namely a PAYG scheme, a pension
fund without buffers and a fund with buffers. Our ϐindings have interesting implications for the
buffer policies of pension funds. On the one hand, if the asset returns are positive, the buffer creates
some ‘free’ money that can be used to lower the contributions. However, if the asset returns are
negative, the incoming cohort not only has to guarantee the pension beneϐits of the retired, but
it also has to replenish the buffer, implying a contribution that is actually higher than in the case
without buffers. Overall, the sensitivity of the contributions to the asset returns increases when
the buffer requirements are raised.

Weconϐinedourselves to recursive settings andexploredequilibria characterisedby thresholds
on the contribution that young generations are prepared tomake. For standard parameter settings
each system featured two such equilibria, of which only the one with the higher threshold was
consistent with the initial young beneϐiting from setting up the system. Finally, we also explored
the optimal policy parameter settings that maximised social welfare.

The analysis in this paper may be extended into a number of directions. One would be to al-
low for a realistic number of overlapping generations. For the sustainability of a funded pension
scheme it may matter whether we give each cohort of workers the option to quit (and on what
terms) or whether we only allow new cohorts to take a once and for all participation decision. We
can also study a richer set pension fund policies and how they affect the risk of a collapse of the
fund. In particular, the question is how recovery rules for funds in ϐinancial distress could be de-
signed, i.e. which cohort (including the retired) bears which part of the recovery burden, to keep
all the cohorts on board and to still make it attractive for newcomers to enter. Moreover, allowing
for more overlapping generations would enable us to obtain a more realistic quantiϐication of the
beneϐits from participation.
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A Proof of Equation (14)

Themain difϐiculty to determine the derivative ofUp(τ, τ∗)with respect to τ∗ lies in the fact that τ∗
appears in the area of integration. For the one-dimensional case the solution is trivial. One can use
Leibniz’s rule for differentiation under the integral sign. In the current higher-dimensional case
the solution closely follows Flanders (1973).

Deϐine the function

Up(τ, τ∗) = w(τ) +

∫
{ϕ′|τ(ϕ′)≤τ∗}

uc(ϕ′)p(ϕ′) +

∫
{ϕ′|τ(ϕ′)>τ∗}

up(ϕ′)p(ϕ′), (29)

where w is the indirect felicity function in the ϐirst period of life and uc and up are the indirect
felicity functions under a collapse, respectively no collapse, in the second period of life. The two
areas of integration span the entire space {ϕ′}, so we can rewrite Up(τ, τ∗) as

Up(τ, τ∗) = w(τ) +

∫
{ϕ′}

uc(ϕ′)p(ϕ′) +

∫
{ϕ′|τ(ϕ′)>τ∗}

[
up(ϕ′)− uc(ϕ′)

]
p(ϕ′).

The ϐirst two terms do not involve τ∗. Only the area of integration in the third term depends on τ∗.
For the sake of readability deϐine f(ϕ′) ≡ [up(ϕ′)− uc(ϕ′)] p(ϕ′), the area of integration C(τ∗) ≡
{ϕ′|τ(ϕ′) > τ∗} and q(τ∗) ≡

∫
C(τ∗) f(ϕ

′). That way we have

∂Up

∂τ∗
= q′(τ∗) =

d

dτ∗

∫
C(τ∗)

f(ϕ′).

Now deϐine a time-varying5 mapping from a ϐixed domainD to C(τ∗) such that each element ϕ′ ∈
C(τ∗) is given by ϕ(x, τ∗) , with x ∈ D. Now, we can deϐine the Jacobian matrix of this function

∂ϕ

∂x
=

[
∂ϕi

∂xj

]
.

The inverse is [∂xj/∂ϕi] and the determinant |∂ϕ/∂x|, which is usually know as the Jacobian. With
this we can deϐine velocity z ≡ ∂ϕ/∂τ∗. Later we will need the derivative of the Jacobian with
respect to τ∗

d

dτ∗

∣∣∣∣∂ϕ∂x
∣∣∣∣ = ∣∣∣∣∂ϕ∂x

∣∣∣∣ trace
([

∂ϕ

∂x

]−1 d

dτ∗

[
∂ϕ

∂x

])

=

∣∣∣∣∂ϕ∂x
∣∣∣∣ trace([∂xj∂ϕk

] [
∂zi

∂xj

])
=

∣∣∣∣∂ϕ∂x
∣∣∣∣∑

i,j

∂xj

∂ϕi

∂zi

∂xj
=

∣∣∣∣∂ϕ∂x
∣∣∣∣∑

i

∂zi

∂ϕi

=

∣∣∣∣∂ϕ∂x
∣∣∣∣div(z), (30)

where we have used Jacobi’s formula in the ϐirst step.
5The usual interpretation of the variable that shifts the area of integration is time, hence the standard term ‘time-

varying’ mapping.
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By the change-of-variables rule we have∫
C(τ∗)

f(ϕ′) =

∫
D
f(ϕ(x, τ∗))

∣∣∣∣∂ϕ∂x
∣∣∣∣ ,

which is a normal ϐixed domain integral. Normal differentiation and (30) give

d

dτ∗

∫
C(τ∗)

f(ϕ′) =

∫
D

{∑ ∂f

∂ϕi
zi
∣∣∣∣∂ϕ∂x

∣∣∣∣+ f(ϕ′)div(z)
∣∣∣∣∂ϕ∂x

∣∣∣∣}

. . . =

∫
C(τ∗)

{∑ ∂f

∂ϕi
zi + f(ϕ′)div(z)

}
=

∫
C(τ∗)

{
[gradf(ϕ′)] · z + f(ϕ′)div(z)

}
=

∫
C(τ∗)

div(f(ϕ′)z),

with ‘·’ the usual dot-product and where going from the ϐirst to the second line we have changed
back to the time-varying domain. Now, use the divergence theorem towrite the last expression as6∫

∂C(τ∗)
f(ϕ′)z · dσ,

with dσ the vectorial area element on the surface and ∂C(τ∗) the boundary of C(τ∗).
Finally, divide the boundary ∂C(τ∗) in two parts: {ϕ′|τ(ϕ′) < τ∗} and {ϕ′|τ(ϕ′) = τ∗}. In the

ϐirst part, the integral is zero since C(τ∗1 ) ⊆ C(τ∗2 ) for τ∗1 ≤ τ∗2 , hence any element in this part of
the boundary did not move (or moved orthogonal to the surface) so z ·dσ = 0. This leaves only the
second part of the boundary {ϕ′|τ(ϕ′) = τ∗} and we have

d

dτ∗

∫
C(τ∗)

f(ϕ′) =

∫
{ϕ′|τ(ϕ′)=τ∗}

f(ϕ′)z · dσ.

Switching back to the original notation we have

∂Up

∂τ∗
=

∫
{ϕ′|τ(ϕ′)=τ∗}

[uc(ϕ′)− up(ϕ′)]p(ϕ′) · z, (31)

which is the expression in the text.

B Proof of Slope PAYG

Start with the deϐinition of∆p (see (21))

∆p(τ) = max
s

U(y−s−τ)+β[1−Pb(θ/τ)]Er
(
U [(1+r′)s+θ]

)
+βPb(θ/τ)Er

(
U [(1+r′)s]

)
. (32)

6If C(τ∗) is unbounded, we need a generalised version of the divergence theorem. We ignore this complication.
Sufϐicient is that f(ϕ′) vanishes fast enough so that the integral and derivative exist.
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The envelop theorem gives

∂∆p

∂τ
= −U ′(y − s− τ) + β

θ

τ2
pb(θ/τ)

[
Er
(
U [(1 + r′)s+ θ]

)
− Er

(
U [(1 + r′)s]

)]
. (33)

The slope at the right endpoint is simple. To prevent negative consumption in the second period
in the case that the system collapses, savings s must be positive, so any τ > y is excluded. This
implies that the maximum τ is y and savings are zero. If τ → y, the fraction θpb(θ/τ)/τ converges
to a ϐinite number, while the marginal utility when young goes to inϐinity, so the slope at the right
endpoint goes to minus inϐinity.

The slope at τ = 0dependson the fraction θpb(θ/τ)/τ2 as τ ↓ 0. For the log-normal distribution
we have

θ

τ2
pb(θ/τ) =

θ

τ2
τ

θ
√
2πσ2

exp
[
− 1

2σ2
(log θ − log τ − µb)

2

]
=

eµb

θ
√
2πσ2

θ

τ
e−µb exp

[
− 1

2σ2
(log θ − log τ − µb)

2

]
=

eµb

θ
√
2πσ2

exp [log θ − log τ − µb] exp
[
− 1

2σ2
(log θ − log τ − µb)

2

]
=

eµb

θ
√
2πσ2

exp
[
(log θ − log τ − µb)−

1

2σ2
(log θ − log τ − µb)

2

]
=

eµb

θ
√
2πσ2

exp
[
(log θ − log τ − µb)

(
1− 1

2σ2
(log θ − log τ − µb)

)]
For the limit τ ↓ 0we have

lim
τ↓0

θ

τ2
pb(θ/τ) =

eµb

θ
√
2πσ2

lim
τ↓0

exp
[
(log θ − log τ − µb)

(
1− 1

2σ2
(log θ − log τ − µb)

)]
= 0.

This implies that the second term in (33) vanishes and we have

∂∆p

∂τ

∣∣∣∣
τ=0

= −U ′(y − s) < 0. (34)

C Probability of a collapse and calculation of Up and∆p

The main complication in calculating Up(τ, τ∗) and∆p(τ) for speciϐic values of τ is the evaluation
of the integrals. In the PAYGmodel with log-normal random variables (see (21)), this is easy, as we
only need to calculate the expected value of second-period utility with respect to the distribution
of the interest rate (see Figure 4). This can be done with a Gauss-Hermite integrand.

The other two integrals in the other examples are more difϐicult since the integrand features a
jump. The ϐirst step is it to rewrite (12) as

Up(τ, τ∗) = max
s

u(y − s− τ) + βEu[(1 + r(ϕ′))s+ θ(ϕ′)]

− β

∫
Dc(τ∗)

{
u[(1 + r(ϕ′))s+ θ(ϕ′)]− u[(1 + r(ϕ′))s+ θc(ϕ′)]

}
p(ϕ′), (35)

where we substituted c1 out of the equation and used the fact that D and Dc are complements.
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The second term on the right-hand side is simply the expected value of utility when old given that
the system always survives, while the third term is, for values of ϕ′ for which the threshold τ∗ is
exceeded, the difference between the utilitywith a pay out as if the system continues and the utility
with a pay out under a collapse. This equation is usefulwheneverDc iswell-behaved. Alternatively,
ifD is easier, we can use

Up(τ, τ∗) = max
s

u(y − s− τ) + βEu[(1 + r(ϕ′))s+ θc(ϕ′)]

+ β

∫
D(τ∗)

{
u[(1 + r(ϕ′))s+ θ(ϕ′)]− u[(1 + r(ϕ′))s+ θc(ϕ′)]

}
p(ϕ′). (36)

In the example of the fund without a buffer, the minimum return, θ(·) features a kink between
D1 andD2 making low-order Gaussian integrals inaccurate. Rewriting (25) prevents this problem.
Using the above rewriting trick gives

Up(τ, τ∗) = max
s

u(y − s− τ) + βEu[(1 + r′)(s+ ζ)]

+ β

∫
D1(τ∗)

{
u[(1 + r′)s+ (1 + r∗)ζ]− u[(1 + r′)(s+ ζ)]

}
p(ϕ′). (37)

The expected value term is particularly easy to calculate since it does not depend on b. The integral
itself is more difϐicult because of the non-square area of integration.

As illustrated in Figure 5, theD1 area features a kinkwhere the downward sloping line touches
the horizontal axis. To prevent numerical problems we should put b in the inner integral and r in
the outer integral. This gives

Up(τ, τ∗) = max
s

u(y − s− τ) + βEu[(1 + r′)(s+ ζ)]

+ β

∫ r∗

−1

∫ ∞

b(r′,τ∗)

{
u[(1 + r′)s+ (1 + r∗)ζ]− u[(1 + r′)(s+ ζ)]

}
p(b′)p(r′)db′dr′, (38)

with b(r′, τ∗) = (r∗ − r′)/( τ
∗

ζ − 1). Now use the fact that the term between curly brackets only

Ͳ ͳ + � 

� 

Ͳ 

Crash (Dc) 

Young participate (D) ��∗ 

Figure 4: Area of integration for the PAYG example
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Figure 5: Area of integration for minimum return example

depends on r′, so we can rewrite this equation as

Up(τ, τ∗) = max
s

u(y − s− τ) + βEu[(1 + r′)(s+ ζ)]

+ β

∫ r∗

−1
[1− Pb(b(r

′, τ∗))]
{
u[(1 + r′)s+ (1 + r∗)ζ]− u[(1 + r′)(s+ ζ)]

}
p(r′)dr′, (39)

where we recall that Pb (b(r
′, τ∗)) is the probability that b′ ≤ b(r′, τ∗). The integral can be calcu-

lated using any quadrature.
Figure 5 also helps us to determine the sign of the derivativewith respect to τ∗. The integrand is

strictly positive, since in regionD1 the realised return is smaller than the promised return, r′ < r∗.
Furthermore, if τ∗ increases, the downward sloping line rotates counter-clockwise around point
at which it hits the horizontal axis, soD1 increases with τ∗. Hence, the ϐirst derivative of Up with
respect to τ∗ is positive.

Also for the buffer system, the total area of integration consists of three regions (see Figure 6):
the system collapses inDc, theminimum return is binding inD1 and themarket return exceeds the
minimum return inD2. AreasDc andD1 are separated by the line (r∗− r)/b+α [1− (1 + r)/b] =

τ∗/ζ − 1. Simplifying and implicit differentiation gives

(1 + r∗)− (1 + α)(1 + r) = (τ∗/ζ − (1 + α))b ⇒
d(1 + r)

db
= −τ∗/ζ − (1 + α)

1 + α
.

So the slope is determined by the sign of τ∗/ζ−(1+α). If τ∗ > (1+α)ζ, then this line is downward
sloping. For low thresholds, i.e. τ∗ < (1 + α)ζ , the line is upward sloping. In the knife-edge case,
i.e. τ∗ = (1 + α)ζ , the line is vertical. It intersects the b = 0 boundary in 1 + r = (1 + r∗)/(1 + α).

If τ∗ < (1 + α)ζ , the two areas Dc and D2 touch at the line α [1− (1 + r)/b] = τ∗/ζ − 1.
Rewriting and implicit differentiation gives the slope
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Figure 6: Area of integration for the buffer systemwith τ∗ > (1+α)ζ (left panel) and τ∗ < (1+α)ζ
(right panel)

−α(1 + r) = (τ∗/ζ − (1 + α))b ⇒
d(1 + r)

db
= −τ∗/ζ − (1 + α)

α
.

so this line is upward sloping whenever the boundary betweenDc andD1 is upward sloping.

D Social welfare

The system designer sets the pension parameters and these parameters result in a threshold τ∗

and a probability of a collapse P . The payout to the initial old (θ0) and the contribution of the
initial young (τ0) are known at the time of implementation. If the system collapses, it will stay in
autarky forever. These assumptions give for social welfareW

W = u((1 + r0)s−1 + θ0) + Up(τ0, τ
∗)

+ β {PE0(b1|CR1)Ua + (1− P )E0(b1Up(τ1, τ
∗)|NCR1)}

+ β2
{
PE0(b2b1|CR1)Ua + P (1− P )E0(b2b1|NCR1, CR2)Ua

+ (1− P )2E0(b2b1Up(τ2, τ
∗)|NCR1, NCR2)

}
+ . . .

whereCRt denotes the event of a collapse in period t, whileNCRt denotes the event of no collapse
in period t. For the examples in the text with a funded system (Sections 4.2 and 4.3), θ0 = 0, hence
the current old are unaffected by the introduction of a pension system and the ϐirst term may be
ignored.
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Now, deϐine for all t ≥ 1:

ba = E0(bt|CRt), (40)
bp = E0(bt|NCRt), (41)
be = E0(bt), (42)
Γp = E0[btUp(τt, τ

∗)|NCRt], (43)

where we have dropped the subscripts on the left-hand sides, because of the serial independence
of the population growth and because the set up is recursive, hence

E0[Up(τt, τ
∗)|NCRt]

does not depend on t ≥ 1. Because bi and bj are independent for different i and j we can use these
deϐinitions to write

W =u((1 + r0)s−1 + θ0) + Up(τ0, τ
∗)

+ β {PbaUa + (1− P )Γp}

+ β2
{
PbabeUa + (1− P )PbpbaUa + (1− P )2bpΓp

}
+ β3

{
PbabebeUa + (1− P )PbpbabeUa + P (1− P )2bpbpbaUa + (1− P )3bpbpΓp

}
+ . . .

Now, deϐine

V a = baUa[1 + βbe + β2 (be)2 + β3 (be)3 + β4 (be)4 + β5 (be)5 + . . . ]

= baUa + βbeV a

=
baUa

1− βbe
, (44)

V p = Γp + βbp[PV a + (1− P )V p]

=
1

1− βbp(1− P )
[Γp + βbpPV a] , (45)

and we can write

W = u((1 + r0)s−1 + θ0) + Up(τ0, τ
∗) + β[PV a + (1− P )V p], (46)

which is the equation in the text.
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