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ABSTRACT

Accurate prediction of available water supply from snowmelt is needed if the myriad of human, environmental,
agricultural, and industrial demands for water are to be satisfied, especially given legislatively imposed conditions
on its allocation. Robust retrievals of hydrologic basin model variables (e.g., insolation or areal extent of snow
cover) provide several advantages over the current operational use of either point measurements or parameter-
izations to help to meet this requirement. Insolation can be provided at hourly time scales (or better if needed
during rapid melt events associated with flooding) and at 1-km spatial resolution. These satellite-based retrievals
incorporate the effects of highly variable (both in space and time) and unpredictable cloud cover on estimates
of insolation. The insolation estimates are further adjusted for the effects of basin topography using a high-
resolution digital elevation model prior to model input. Simulations of two Sierra Nevada rivers in the snowmelt
seasons of 1998 and 1999 indicate that even the simplest improvements in modeled insolation can improve
snowmelt simulations, with 10%–20% reductions in root-mean-square errors. Direct retrieval of the areal extent
of snow cover may mitigate the need to rely entirely on internal calculations of this variable, a reliance that
can yield large errors that are difficult to correct until long after the season is complete and that often leads to
persistent underestimates or overestimates of the volumes of the water to operational reservoirs. Agencies
responsible for accurately predicting available water resources from the melt of snowpack [e.g., both federal
(the National Weather Service River Forecast Centers) and state (the California Department of Water Resources)]
can benefit by incorporating concepts developed herein into their operational forecasting procedures.

1. Introduction

a. Importance of snowpack/snowmelt

More than one-half of the world’s human population
relies on freshwater runoff from mountains (Liniger et
al. 1998), making variations and trends in the outflow
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from mountainous regions a primary social concern. In
many regions, this outflow is dominated, at least part
of each year, by highly variable melting snow. In the
western United States, for example, mountain-basin
peak snow accumulation exhibits significant variability,
from ;20% to .200%, expressed as a percent of the
average peak snow accumulation. Thus, there is a need
to forecast accurately the available water supply from
highly variable snowmelt if the myriad needs (human,
environmental, agricultural, industrial) are to be satis-
fied, especially given legislatively imposed conditions
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on water resource allocation. In some cases, this need
implies near-real-time prediction requirements (e.g.,
floods).

Water supply forecasts are used in general terms for
three broad areas of water management: hydroelectric
power generation, storage and flood control reservoir
operations, and environmental management (Table 1).
Decisions made both in hydroelectric power and res-
ervoir operation consider a range of forecast possibil-
ities and different sensitivities to forecast inaccuracy.
The effect of forecast uncertainty may be masked by
other factors, and operations can be modified as this
uncertainty manifests itself during the season.

The Sacramento–San Joaquin delta, for example, is
an environmentally sensitive area that also serves as part
of the conveyance for much of the water distributed by
both the California Department of Water Resources
State Water Project and the U.S. Bureau of Reclamation
Central Valley project. Average water-year outflow for
the system is 22.40 3 109 m3 [18.15 million acre feet
(MAF)] for the four northern drainages and 7.33 3 109

m3 (5.94 MAF) for the four southern drainages. This
flow amount is approximately one-third of the estimated
total statewide surface runoff.

In an attempt to protect water quality and quantity in
the delta, the State Water Resources Control Board has
adopted an evolving set of managerial strategies. An
important facet to these strategies has been the devel-
opment of various year types relating to forecast water-
year flows. The water-year type for determination of
environmental standards is set for the months of Feb-
ruary–April based on the forecast for conditions as of
the first of the month. The forecast for conditions as of
1 May determines the water-year type for May through
the following January.

Of the year types (critical, dry, below normal, above
normal, and wet), the critical and dry years have sen-
sitive outflow requirements. The dilemma for forecast-
ing is that this type of change is based on a threshold
value. A forecast of 6.72 3 109 m3 (5.45 MAF) for the
Sacramento Valley water-year-type index would put the
year into the dry category, and a value of 6.66 3 109

m3 (5.4 MAF) would result in assignment to the critical
category. If the forecast inaccuracy were to result in a
year-type determination of dry when in fact the year
was critical, then the value of the additional 344 3 106

m3 (0.279 MAF) that erroneously would have to be
released to meet regulatory requirements would be close
to $150 million. Other changes in environmental re-
quirements triggered by the water-year type can exac-
erbate the economic impact.

Numerous similar situations exist in upstream water-
sheds. Watersheds, for example, that have environmen-
tal issues (e.g., fisheries, forestry) can be affected by
similar thresholds. If water is diverted, released, or
stored unnecessarily (e.g., because of forecast error),
then the downstream needs might not be met (no re-
placement water is available) or the replacement water

may be costly. Over 60 regulations and projects are
directly affected by California Department of Water Re-
sources streamflow forecasts each spring, with concerns
ranging from floods and safety, environmental manage-
ment, economic impacts and losses, to hydropower gen-
eration (Table 1). The same forecasts are the basis for
an increasing number of less direct or regulatory uses.
Moreover, a growing number of other agencies are mak-
ing their own forecasts for internal use.

Improved inputs to hydrologic basin models, coupled
with a new generation of high-spatial-resolution models,
should provide a basis for significantly reducing the
error between observed and model streamflow. Im-
proved water supply forecasts will alleviate some of the
uncertainty (and related environmental and economic
harm) discussed above.

b. Scale issues in snowpack/snowmelt hydrology

Understanding of variations of mountain snowpacks,
and of the timing and amounts of snowmelt that feeds
mountain rivers, has grown in recent decades but still
is impeded by difficult issues of scale. There are mis-
matches between the temporal and spatial scales of ob-
servation and the scales over which snowpacks and run-
off vary, as well as mismatches between the scales at
which we can describe climatic influences on snowpack
formation and decline and the scales over which snow-
melt contributions accumulate to form the overall dis-
charge from river basins.

The physical processes that determine the timing and
volumes of snowpack accumulation and ablation, in-
cluding snowmelt, vary on a wide range of spatial and
temporal scales (see Fig. 1 in Walker et al. 2001). The
precipitation fields that deposit snow are essentially
fractal in their distributions, varying at all spatial scales
from 10s and 100s of kilometers to meters and less. The
land surfaces that accumulate the snowpacks likewise
vary at spatial scales from millimeters to 100s of ki-
lometers. The metamorphosis of the snowpacks, from
pure snow into mostly ice, and then eventually into
liquid snowmelt, is forced by temperature, solar radi-
ation, winds, and humidities. These climatic conditions
also fluctuate on a wide range of spatial and temporal
scales. Thus, the streamflow generated by snowmelt is
the product of physical (and biological) processes that
work over a broad range of spatial and temporal scales.

Winter precipitation varies in space because of dif-
fering orographic and dynamical uplifts as storms cross
the mountains of the West (Alpert 1986; Hay and
McCabe 1998; Pandey et al. 2000), from the scales of
mountain ranges to less than a kilometer (e.g., Daly et
al. 1994; Colle and Mass 1996). The spatial distribution
of precipitation varies from storm to storm, as well as
during storms, depending on the history, wind (propa-
gation speeds and directions), and atmospheric (moist
thermodynamic) conditions within the storms (Pandey
et al. 1999). On longer time scales, the ‘‘typical’’ storm
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histories, directions, and conditions also vary with the
states of the regional and global climate systems [e.g.,
from El Niños to La Niñas and on the longer interde-
cadal scales of the North Pacific climate system (Cayan
and Webb 1992; Mantua et al. 1997)]. Winds, temper-
atures, and other climatic conditions, during and be-
tween storms, also vary erratically in high-mountain
environments (Greenland and Losleben 2001).

Spatial accumulations of snow depend on the original
precipitation distribution and on the distributions of
shelter from winds and thermal conditions across the
landscape. As a result, snow cover and thickness vary
from windswept clearings (fell fields) to snow beds of
considerable depth over distances ranging from meters
to kilometers (Betterton 2001; Walker et al. 2001). Av-
alanches, both large and small, modify the spatial dis-
tributions of snow quickly (Mock and Birkeland 2000),
and variations in the densities and kinds of vegetation
can interact with the snowpack persistently to modify
or to determine where snow accumulates (e.g., Arms-
trong 1988; Nakai et al. 1999). Upon accumulation,
snowpack heat and moisture balances and, eventually,
snowmelt vary widely from place to place and (of
course) from range to range (e.g., Kattelman and Elder
1993; Tarboton et al. 1995), in response to permanent
and transient climatic (and microclimatic) differences,
often associated with complex terrain, shading by terrain
and vegetation, and other local factors. In addition to
these ‘‘fixed’’ conditions, each day (and season) brings
variations in temperature, cloud cover, and wind that
influence (from above) both the location and the evo-
lution of the snowpack and snowmelt on mountainous
terrains. Thus, the distributions of snowpack and snow
cover are highly variable over an enormous range of
time and space scales (e.g., Robinson and Dewey 1990;
Hardy et al. 1998; Elder et al. 1998; Betterton 2001).

The hydrologic results of these spatially and tem-
porally varying land surface and climate conditions are
complex differences and changes in snowmelt, soil
moisture, and streamflow across the snow-covered
mountain watersheds of the West (Elder et al. 1998;
Harrington and Bales 1998; Peterson et al. 2000; Lund-
quist and Cayan 2002). As a consequence, understand-
ing, observing, and predicting such variations are central
goals for hydrologists and resource managers alike in
snow-dominated and snowfed regions of the world (e.g.,
Bales and Harrington 1995; Hardy et al. 1998).

The subsets of scales represented by observations and
models are, each, inevitably small parts of the full range
of variations. Thus, the most pressing need is to devise
strategies for making measurements and simulations that
represent the real-world results of snowpack variations
at practical scales. Blöschl (1999, p. 2150) argued that
the primary problem associated with scale in snowpack
hydrology (indeed, the overarching problem in snow
hydrology) is that ‘‘the scale at which data are collected
is different from the scale at which predictions are need-
ed.’’

c. Models of snowpack/snowmelt hydrological
behavior

In the past, simulations and predictions of snowpacks
and snowmelt runoff have confronted the issue of scale
in snow hydrology with differing strategies. In broad
terms, many models have resorted to coarse spatial
lumping of processes and observations, others have
treated snow variations as stochastic processes, and still
others have simulated variations at or below the smallest
scales of observation. In most cases, elevation is the
primary basin characteristic accommodated by the mod-
els because of the strong control that it exerts on tem-
peratures and, often, winter precipitation. In 1986, for
example, an international survey of 11 snowmelt-runoff
models (World Meteorological Organization 1986)
showed that 9 of the 11 models subdivided basins into
broad elevation zones. Of note, most of the models com-
pared at that time still are in wide use in both operational
and research settings. Only two models [Precipitation-
Runoff Modeling System (PRMS) and Institute of Hy-
drology Distributed Model; see Leavesley et al. (1983)
and Beven et al. (1987), respectively] allowed other
details of the topography, soils, and land surfaces to
determine snowpack/snowmelt characteristics and pro-
cesses. Several of the elevationally lumped models rep-
resented large river basins by only two zones: a high-
elevation snowpack-dominated zone and a low-eleva-
tion rainfall-dominated zone (e.g., the National Weather
Service Sacramento River Modeling System). Even in
the fully distributed models, the spatial distribution of
meteorological conditions within the model is often
specified in terms of elevational differences (e.g., Leav-
esley et al. 1983).

The meteorological inputs that the models are de-
signed to accept are primarily those that have histori-
cally been available in practice for high-mountain wa-
tersheds: most common, temperature and precipitation.
Thus, in the 1986 survey, the meteorological inputs for
the models include temperature and precipitation in all
cases and then, less common, evaporation potential (in
four models), snowpack water content (in two models),
and snow cover (in one model). Because insolation ob-
servations are not common within mountain basins, ex-
cept in a relatively few research parks, the models have
not usually required, or accepted, them as input. Among
the models surveyed in 1986, only the PRMS (Leav-
esley et al. 1983) was designed to allow incorporation
of observed or estimated insolation rates, even though
snowmelt is largely fueled by insolation (Aguado 1985).
In a similar way, in response to the historical lack of
data from within most modeled basins, the models typ-
ically simulated (and were calibrated in terms of )
streamflow at the outlet of a river basin, with no clear
avenues for incorporating observations of snow or hy-
drologic variations elsewhere within the basins.

Recent models (e.g., Kirnbauer et al. 1994; Tarboton
et al. 1995; Lohmann et al. 1998; Marks et al. 1999)
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FIG. 1. Overview of the study area. The dashed box defines the geographic region of satellite-
based datasets used herein.

have been designed to represent very-finescale varia-
tions (order of 30–100 m) of the land surface and the
meteorological inputs and have been designed to in-
corporate more meteorological inputs (e.g., winds and
humidities). With the advent of detailed digital elevation
models (DEMs) for most terrestrial surfaces, and with
the growing number of vegetation and soil representa-
tions at similar DEM scales, the primary limiting factors
in the application of snowpack and snowmelt models
continue to be the lack of spatially resolved meteoro-
logical inputs on the same grids as are used to represent
the land surface properties and the continuing lack of
reliable areal observations of hydrologic and snowpack
conditions at comparable scales within the basins.

Current snowpack/snowmelt models are still designed
either within the constraints of historical in situ data
availability (i.e., often very coarse) or, more recent, for
the additional incorporation of meteorological fields that
come from (local) weather simulations. The combina-
tion of in situ observations and fields that can be esti-
mated (daily or more often) from remote sensing data
streams provides opportunities for greater detail and
more ground truthing in future simulations than either
of these forms of data input.

d. Objectives of this paper

No single observable and parameterizable scale is
available at which the complete range of snowpack pro-
cesses can—in practical terms—be represented quan-
titatively and, thus, trade-offs will be necessary. Our

objectives in this paper are 1) to assess and demonstrate
additional spatially and temporally resolved data fields
that can be derived from remotely sensed data and 2)
to demonstrate the potential value of incorporating these
additional data into snowpack/snowmelt models in the
Sierra Nevada of California (Fig. 1). We will make the
case that, despite the vast range of spatial and temporal
scales at work in snowpacks and snowmelt, the appro-
priate spatial scales lie in some combination of scales
that reflects the scale at which snow and insolation can
be observed remotely (e.g., Winther and Hall 1999;
Simpson and McIntire 2001), the scale to which other
meteorological inputs can be interpolated, and (not
strictly) the scale at which DEMs describe the terrain.
Furthermore, advances in the remote sensing of snow
cover and consequent sensing of cloud cover on hourly
time scales, summarized herein and described in detail
in Simpson and McIntire (2001), now can provide in-
solation estimates with spatial and, especially, temporal
resolutions never before possible. The resulting inso-
lation estimates make possible models with radiative-
heating inputs at spatial and temporal resolutions never
before feasible over entire basins and ranges. Those
models do not yet exist, however, and so our approach
will be to demonstrate the sensitivities and improve-
ments possible with examples that use existing, cali-
brated watershed models of high-altitude parts of the
Merced and Carson River basins in the Sierra Nevada
of California (Fig. 1). Our findings, with these older
models, indicate that a whole new generation of snow-
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pack models has become possible and needs to be de-
veloped.

2. Data and preprocessing

The newer Geostationary Operational Environmental
Satellite (GOES-8–10) has four relevant spectral bands:
a visible channel (0.55–0.75 mm), a mid-IR channel
(3.80–4.00 mm), and two thermal IR channels (10.2–
11.2, and 11.5–12.5 mm). At nadir, GOES visible data
have 1-km spatial resolution and all IR data have 4-km
resolution (Komajda and McKenzie 1994). Full-reso-
lution data were ingested and calibrated to geophysical
units using procedures developed by National Oceanic
and Atmospheric Administration National Environmen-
tal Satellite, Data, and Information Service (Komajda
and McKenzie 1994; Planet 1988). The GOES IR data
are remapped to the 1-km GOES visible grid using op-
timal interpolation.

The data are preprocessed to ensure their quality. Val-
id albedo data lie within the range 0%–100% (Planet
1988). Calibration uncertainties and noise produce a few
values (,0.001%) that either exceed 100% or are neg-
ative. Simpson and McIntire (2001) describe a remap-
ping procedure that optimizes the dynamic range of the
albedo input for snow classification, precluding any pos-
sible calibration errors affecting it and preserving the
maximum number of pixels for classification.

Histogram filtering is used to remove any outliers in
the data (e.g., speckled noise) that can distort the useful
dynamic range of the data in any classification (Simpson
and McIntire 2001). This filter does not remove gross
noise features (e.g., dropouts) in the data; these should
be identified and removed separately prior to analysis.
Ocean pixels are excluded using a geographic land mask
(Simpson 1992).

3. New remotely sensed snowpack/snowmelt-
related products

a. Hourly areal extent of snow cover—Brief overview

The high temporal sampling (hourly or faster) of
GOES provides about 12 daylight scenes per day at a
given midlatitude location. When such data are avail-
able, a recurrent neural network designed for clear land,
cloud, and snow separation (RNNCCS) improves snow
cover/cloud cover/clear land classification skill (Simp-
son and McIntire 2001). The RNNCCS uses spectral
and texture information from the current image in the
time series as input, along with textures from the pre-
vious texture image input and the classification from the
previous network output (Fig. 2). This approach allows
the network to have an operational ‘‘short-term mem-
ory’’ of both texture and classification data from the
previous image. By putting previous texture and pre-
vious classification information into the current classi-
fication, the RNNCCS functions more like a human be-

ing would in solving the classification problem. The
RNNCCS combines a short-term memory (data and in-
formation from the previous RNNCCS analysis) with a
‘‘long-term memory’’ (the RNNCCS’s weights and bi-
ases) to determine the current classification.

Specifically, the RNNCCS (Fig. 2b) shows that, for
image i in the sequence, output data (X, Y, Z) from
image i 2 1 are input to the classification of image i.
The homogeneity texture Hi21 input for image i 2 1 is
subtracted from the homogeneity texture Hi for image
i and is also used as an input for image i. This network
in general is more accurate than a single feed-forward
neural network because of the information contributed
by the short-term memory. If, for example, the previous
RNNCCS classification assigned pixel P as snow, and
the texture data for pixel P remain close to their previous
values, then the RNNCCS knows that pixel P probably
still is snow. If, however, a cloud had entered the field
of view of pixel P or the snow in pixel P had melted,
then the texture for pixel P would also have changed.
The feedback loop would alert the RNNCCS that pixel
P probably is no longer snow covered. Details of the
training set and the method for training a recurrent neu-
ral network are given in Simpson and McIntire (2001).

Clouds cast shadows that are especially large under
wintertime conditions when the sun is relatively low in
the sky (Simpson and Stitt 1998). In addition, mixed
pixels often occur at cloud edge boundaries. Some of
the properties (spectral and textural) of cloud shadow/
cloud edge pixels are similar to those of either snow or
some land surfaces, which can lead to classification er-
rors regardless of the classification method used. Post-
processing determines whether a pixel classified as snow
was, in fact, a cloud edge/cloud shadow pixel (see Simp-
son and McIntire 2001), based on generalized cloud
shadow detection procedures developed by Simpson and
Stitt (1998) and Simpson et al. (2000).

The snow/cloud/land percentage compositions of pix-
els are determined using a linear mixing model similar
to that of Adams et al. (1986). The RNNCCS was trained
to identify pure classes (clear land, cloud, or snow) by
setting the appropriate output to a value of 1 and all
other outputs to 0. If a snow pixel is not pure (i.e., it
contains more than one class), then the activation of the
snow output node will be less than 1, and the clear land
and/or cloud output node will be greater than 0. The
linear mixing model is created based on this principle.
Using algebra, it can be represented as

L 1 L 1 L 5 1,x y z (1)

where Lx, Ly, and Lz are the percentages of clear land,
cloud, and snow for a given pixel. Equation (1) is solved
for Lx, Ly, and Lz using the continuous outputs (Ox, Oy,
Oz) of the neural network. Details are given in Simpson
and McIntire (2001).

Random RNNCCS-based GOES classifications, from
throughout the 1999 snow season, were validated with
snow sensor data provided by the California Coopera-
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FIG. 2. (a) Overview of the snow/cloud/clear land classifier and (b) the RNNCCS used by the classifier. Inputs are from hourly GOES
satellite data: ai is visible albedo, Ti is 11-mm brightness temperature, Ri is radiance of the 3.9-mm data, Hi is visible-band homogeneity
texture measure, Ei is entropy-band texture measure, and Hi 2 Hi21 is the difference between current time step i and previous time step i
2 1 texture measure; (Xi, Yi, Zi) and (Xi21, Yi21, Zi21) are the current and previous time step neural network output classes (clear land, cloud,
snow, respectively). Adapted from Simpson and McIntire (2001).

tive Snow Surveys Program. Total snow/land classifi-
cation accuracy, based on 1769 GOES–snow sensor
pairs, was 97%. Details of the validation procedure,
including limitations, are discussed in Simpson and Mc-
Intire (2001). A representative example (Fig. 3a) shows
the broadband GOES visible albedo data for 19 April
1999 at 1530 local time. The region imaged corresponds
to the dashed box in Fig. 1. It contains clear land, ocean,
clouds, and snow in the Sierra Nevada (dendric pattern
running NW to SE in the center of the image). Both the
RNNCCS–linear mixing model classification (Fig. 3b)
and the discrete RNNCCS classification (Fig. 3c) iden-
tify the basic patterns of clear land, cloud, and snow
seen in the visible data (Fig. 3a). Ocean data are ex-
cluded from consideration (see Simpson 1992). The lo-
cations of snow sensor validation stations are given by
either the yellow boxes (RNNCCS classification and
snow sensor agree) or the light blue boxes (classifica-
tions disagree). Agreement is at the 93% level for this
scene.

b. Hourly RNNCCS insolation

Hourly insolation Q reaching the ground was esti-
mated for each pixel (1-km spatial resolution) in a given
GOES scene using Lumb’s (1964) empirical formula but
modified to include a factor /d, which accounts for thed
instantaneous separation d between the earth and the
sun:

2Q 5 135(d /d) fs, (2)

where f 5 a 1 bs, a and b are constants dependent
on the percent cloud cover in octas, and s is the mean
of the solar zenith angles at the beginning and end of
a given hour. The accuracy of Lumb’s parameterization
has been verified by many independent sets of obser-
vations (e.g., Simpson and Paulson 1979). The number
of octas for a given pixel was determined from the
cloud-cover percents in a 5 3 5 pixel area centered on
that pixel using the RNNCCS–linear mixing model
classification. The modifying term ( /d) 2 is recom-d
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FIG. 3. (a) GOES broadband visible data for 19 Apr 1999. The area imaged corresponds to
the dashed box in Fig. 1. (b) The RNNCCS–linear mixing model classification. (c) The RNNCCS
discrete classification with snowpack telemetry-instrumented validation (SNOTEL) sites shown.
(d) Insolation reaching the ground based on satellite-detected cloud cover. See text for details.
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TABLE 2. Number of GOES-10 scenes (500 3 600 pixels) at 1-km
spatial resolution that were used in mean monthly statistics for the
1999 period that was studied.

Month No. Month No.

Mar
Apr
May
Jun

57
289
207
241

Jul
Aug
Sep
Oct

302
216
260

6

mended by Sellers (1965), where is the mean earth–d
sun distance (taken as 1) and d is the instantaneous
distance based on yearday j. Daily values of insolation
were computed by summing hourly estimates [Eq. (2)]
from sunrise to sunset. Results also were compared
with Kimball’s (1928) empirical estimate of insolation:

Q 5 Q (1 2 0.071C),day 0 (3)

where Q0 is a mean daily value taken from Kimball
(1928) and C is cloud cover in tenths. Note that C is
computed as described above but in tenths, not in octas.
For random dates during the 1999 snow season, Eqs.
(2) and (3) estimate insolation to within about 65% of
each other. Figure 3d shows the insolation arriving at
the ground for 19 April 1999 based on cloud cover
determined from the 1530 LT GOES data. Spatial var-
iation in cloud cover is the primary factor that influences
spatial variation in insolation on the hydrologic basin
scale. Topographic relief adds a supplemental compo-
nent of variation to the insolation as compared with that
received on a flat plane. Vegetation also affects the in-
solation reaching the snow (also see section 5).

4. Remote sensing results

a. Daily variability

Cloud cover can significantly reduce the amount of
insolation reaching the ground (and hence the energy
available for snowmelt) over a broad spectrum of space
and time scales. Cloud cover also precludes the detec-
tion of snow beneath it if visible–infrared wavelengths
are used. Although microwave remote sensing can im-
age through the clouds, its coarse space scale (.25 km,
depending on wavelength), coupled with other technical
problems (e.g., thin layers of water from snowmelt on
the surface interfere with microwave detection tech-
niques; limited temporal sampling at most locations),
precludes resolving the underlying snow field on the
space and time scales required for accurate basin-scale
modeling of snow accumulation and snowmelt. Below,
we use daily time series of GOES data for the 1999
snow season (Table 2) to assess the effects of highly
variable cloud cover on snow basin hydrological be-
havior.

b. Basin-scale statistics

The Merced River basin above Yosemite Valley, the
Carson River basin above Markleeville, and the Amer-
ican River basin above North Fork Dam (Fig. 4), all in
California–Nevada, were selected for detailed analysis.
These basins are representative of different types of hy-
drologic river basins (e.g., high versus low elevation,
leeward versus rain shadowed) in the Sierra Nevada
drainage. The Merced and Carson River basins are high-
er-altitude basins (roughly 1500–4000 m) than the
American River basin (roughly 200–3000 m). The
Carson River drains the eastern rain-shadowed slopes
of the Sierra Nevada; the Merced and American Rivers
drain the western windward slopes.

Mean monthly cloud cover and its coefficient of var-
iation (mean/standard deviation) for the Merced River
basin for April–June of 1999 are shown in Figs. 5a–f.
Corresponding data for the Carson River basin are
shown in Figs. 5g–l. Table 2 lists the number of GOES
scenes in a given month used to compute these cloud-
cover statistics. Each of these GOES cloud-cover maps
has a spatial resolution of about 1 km2.

The mean monthly maps show 1) considerable mean
monthly variation in cloud cover from month to month,
2) considerable between-basin variation in cloud cover,
3) considerable small-scale (within basin) variation in
cloud cover, and 4) large coefficients of variation of
cloud cover across a basin and over time.

Analogous data for the entire 1999 snow season (Figs.
6a,c,e) are even more revealing. They show that 1) in
general, the lower-altitude parts of a given basin (west-
ern edges in the cases of the Merced and American, and
eastern edges for the Carson) experience less cloud cov-
er than do the higher-altitude edges, 2) considerable
spatial variation in cloud cover exists between these
extremes within a given basin, and 3) the cloud patterns
are basin specific. Moreover, the corresponding coeffi-
cients of cloud-cover variation (Figs. 6b,d,f) show that
cloud-cover variations are typically over one-half of the
mean everywhere within a given basin. This result re-
flects the satellite-derived day-to-day and even image-
to-image variability in cloud cover seen in 1999 snow-
season GOES images. Thus, a seasonal mean (or cli-
matological mean) is not representative of the space and
time variability in cloud cover and insolation. These
variations in insolation surely must influence the ac-
cumulation and melt of snow within a given hydrologic
basin during a given snow season.

c. Daily composites

The hourly sampling rate of GOES data, coupled with
the accurate and efficient RNNCCS-based classification,
allows all data during daylight hours to be processed in
near–real time. A 500 3 600 pixel scene (e.g., Fig. 3)
takes less than 2 min to process (including extraction,
navigation, calibration, classification, and postprocess-
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FIG. 4. (a) The East Fork Carson River (above Markleeville, CA) and (b) the Merced River (above Happy Isles
Bridge) hydrologic basins.
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FIG. 5. Mean monthly cloud cover and coefficient of variation (mean/standard deviation) for the months and basins indicated. See Table 2
and the text for details on data used.

ing). Thus, daily two-dimensional frequency diagrams
(Fig. 7), which represent the number of times each pixel
was a member of a given class (cloud, snow, or clear
land) during a given day, can be computed easily. These
frequency diagrams provide useful information that is
not contained in the classification of individual scenes,
including the following: 1) information on the persis-
tence of snow cover can be obtained from these dia-
grams, 2) spatial and temporal variability in the cloud
field is contained in the composite, and 3) the composite
can help to identify significant errors in classification
should such errors occur.

5. Cloud-cover issues

a. Clouds and hydrologic basins—Scales of
variability

Clouds have a wide variety of shapes and sizes and
occur at different levels in the atmosphere [e.g., low
(stratus, stratocumulus), middle (altocumulus), and high
(cirrus, cirrocumulus, cirrostratus)]. A description of
these and other cloud genera/species, as well as their

physical and optical properties, is given by the World
Meteorological Organization (1956). Clouds also vary
over a broad range of spatial scales, from about 100 m
to the planetary scale (20 000 km), with the magnitude
of cloud variation increasing with spatial scale (Welch
et al. 1988; Séze and Rossow 1991). Most cloud vari-
ation, however, occurs on spatial scales greater than 30–
50 km (Hughes and Henderson-Sellers 1983). Temporal
variation in clouds occurs on diurnal, synoptic, seasonal,
and interannual scales (Rossow 1993). Observations of
clouds also pose complications and limitations. The
view of clouds as seen by a ground-based observer (or
instrument), for example, is different from that seen
from above by a satellite or aircraft. Moreover, subpixel-
scale clouds can elude detection in satellite data.

The hydrologic basin scale is the fundamental struc-
tural unit for modeling streamflow derived from snow-
pack. In the Sierra Nevada watersheds, this basin scale
typically is 25–100 km. Different subregions, however,
occur within the larger basin scale because of variations
in relief across the basin and/or phenological variations
in vegetation cover. Thus, there is a significant overlap
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FIG. 6. Analogous to Fig. 5 but for the entire 1999 snowmelt season.
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FIG. 7. Two-dimensional frequency diagrams that show the number of times in a day (19 Apr 1999) that a given
pixel was a member of a specific class (cloud, snow, or clear land).

between the spatial and temporal scales of variability
associated with clouds and those associated with basin
hydrological behavior. Accurate modeling of snowpack-
derived streamflow requires accurate representation of

spatially and temporally varying insolation as a model
input.

Insolation provides the ‘‘fuel’’ for melting snow in
mountainous regions like the Sierra Nevada (Aguado
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FIG. 8. Ratios of daily insolation rates from various sources around the Sierra Nevada to estimates of the corresponding top-of-atmosphere
insolation rates. Windward observations are from the Central Sierra Snow Laboratory, leeward observations are from the Sierra Nevada
Aquatic Research Laboratory, regional simulated values are from the Regional Spectral Model (Juang et al. 1997; Dettinger et al. 1999)
nested in the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis fields
(Kalnay et al. 1996), watershed model values are from a PRMS model of the American River basin (Jeton et al. 1996), and global values
are from the NCEP–NCAR reanalysis.

1985). Most basin-scale streamflow models (e.g.,
PRMS) use either in situ observations of insolation or,
more common, infer deviations of insolation from clear-
sky values using contrasts between wet and dry days
and daily air temperature ranges.

Clear-sky insolation can be calculated precisely based
on date, time of day, value of the solar constant, and
well-known laws of physics (e.g., Sellers 1965; Sayliegh
1977; Simpson and Paulson 1979). Cloud cover, which
varies rapidly in both space and time, complicates both
the modeling/parameterization of insolation and the
space/time extrapolation of point observations of in-
solation to the hydrologic basin scale. For example,
comparisons of daily deviations of insolation from clear-
sky estimates for the Sierra Nevada (Fig. 8) show that
1) point-to-point observations of insolation often have
poor correlation from basin to basin, 2) regionally mod-
eled insolation often is poorly correlated with obser-
vations, 3) watershed model–inferred insolation (gen-
erally based on air temperature) often is poorly corre-
lated with observations of insolation, and 4) global mod-

eled and gridded insolation often is poorly correlated
with point observations. In fact, detailed analysis of
cloud-cover variability derived from satellite data (Table
2), using the retrieval scheme of Simpson and McIntire
(2001) outlined above, shows significant temporal var-
iability in cloud cover (and thus insolation) on an hourly
time scale for the Merced, Carson, and American River
basins (Fig. 9) during the 1999 study period. Moreover,
there is considerable spatial variation in cloud cover and
insolation for these three Sierra Nevada river basins
during the same period. Indeed, all three basins are par-
tially cloud covered about 45% of the time (Fig. 10).

Highly variable and unpredictable cloud cover con-
founds model-based parameterization of insolation and
its extrapolation from point observations of cloud cover
to the hydrologic basin scale. We assert that significant
parts of the rms error that occurs between modeled and
observed estimates of streamflow is associated with er-
rors in the insolation estimates used as inputs to the
hydrologic models. Hourly estimates of insolation,
based on GOES satellite data at 1-km spatial resolution
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FIG. 9. Hourly retrievals of percent cloud cover derived from GOES
data using the GOES-based retrieval scheme of Simpson and McIntire
(2001) for three Sierra Nevada basins.

FIG. 10. Analogous to Fig. 9 but for percentage of a given Sierra
Nevada river basin area covered by cloud (spring/summer 1999).

(Fig. 3), provide a means to improve significantly the
insolation inputs to, and thereby streamflow outputs
from, these models.

Average (clear sky) insolation can be computed on a
pixel basis using a radiative transfer model (RTM). Such
an approach has a physical, as opposed to a statistical
[Eqs. (2) or (3)], basis. A time-varying RTM that ac-
counts for clouds and snow is impractical for the in-
tended application, however, for the following reasons:
1) the various input data required to initialize an RTM
generally are not available for an arbitrary location and
are not available in real time; 2) departures between a
best-guess estimate of required atmospheric properties
(e.g., aerosol distribution or vertical profiles of tem-
perature and humidity) that might be used to initialize
an RTM and those of the actual atmosphere above a
given location at a given time often are large, intro-
ducing a significant error in to the RTM calculation; 3)
surface reflectance properties, also required by the
RTM, are largely unknown and vary spatially and tem-
porally (e.g., phenology, wet versus dry surface); and
4) the required execution time for a pixel-based RTM
computation over a relatively large area is inconsistent
with the real-time/high-spatial-resolution requirements
of the intended application.

b. Accommodating cloud-cover variations in two
existing models of snowmelt runoff

An example of a hydrologic model with spatially dis-
tributed parameterizations of daily snowpack heat and
water budgets is PRMS (Leavesley et al. 1983). The
spatial variability of land characteristics that affect
snowpack and runoff generation is represented in PRMS
by hydrologic response units (HRUs), within which run-
off responses to precipitation or snowmelt inputs are
assumed to be homogeneous. HRUs are characterized
and delineated in terms of physiographic properties that
determine hydrologic responses: elevation, slope, as-
pect, vegetation, soils, geology, and climate. In the mod-
els used here, HRUs were designed to incorporate all
cells, on 100-m grids, that share nearly identical com-
binations of these physiographic properties, regardless
of whether the cells in an HRU form a contiguous poly-
gon [as indicated by the map in Fig. 11a; see also Jeton
and Smith (1993)]. The resulting ‘‘pixelated’’ model
delineations represent the Carson and Merced River ba-
sins in the Sierra Nevada (Figs. 1 and 4) in terms of 50
and 64 HRUs, respectively.

Within each HRU, the heat and water budget responses
to daily inputs of precipitation and daily fluctuations of
air temperature are simulated. The general structure of
PRMS, and its spatial layout for the Merced River model,
are shown in Fig. 11. Precipitation is generally (but not
necessarily) distributed to model HRUs based on the el-
evation of the HRU, the observed precipitation at a spec-
ified weather station, and historical average relations be-
tween precipitation amounts and elevation in the model
vicinity. The daily mixes of rain and snow are estimated
from each day’s temperatures by interpolations between
the temperatures at which precipitation historically has
been either all rain or all snow (Willen et al. 1971).
Interception losses, sublimation, and evapotranspiration
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FIG. 11. The U.S. Geological Survey’s PRMS, with details for the Merced River model.

are also parameterized and simulated in terms of precip-
itation and daily maximum and minimum temperatures.
Snowpack accumulation, evolution, melt, and, ultimately,
the heat and water balances of the snowmelt periods are
simulated from the daily inputs of precipitation and daily
air temperatures [using the parameterizations of Obled

and Rosse (1977)]. Runoff is partitioned between surface
runoff, shallow subsurface runoff, deep subsurface run-
off, and deep groundwater recharge on the basis of the
simulated accumulations of soil moisture at each HRU
and of water in deeper subsurface reservoirs that underlie
multiple HRUs.
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In the absence of observations of daily insolation (as
in the calibrated versions of the Merced and Carson
River models), either it is estimated from the latitude,
day of year, and the presence of clouds as inferred from
daily temperatures and precipitation, or it can be input
directly if daily observations are available. On days with
precipitation, insolation is reduced uniformly over the
entire basin, according to a user-specified fraction of
clear-sky radiation for that day of year, with separate
fractions specified for winter and summer precipitation.
Otherwise, small corrections to the daily uniform in-
solation are made that depend on the maximum daily
temperatures, assuming that cloud-shaded days will gen-
erally be cooler. If basin-average daily insolation esti-
mates are available, they can be input directly to the
model.

The runoff models used here simulate daily stream-
flow from about 700 km2 of the Carson River basin and
500 km2 of the Merced. Both rivers are mostly free from
human influences such as dams, diversions, and major
land use changes (Dettinger et al. 2004). The Carson
River drains the rain-shadowed eastern slope of the Si-
erra Nevada, whereas the Merced River drains the wet-
ter, western slopes (Fig. 1). The average elevation of
the modeled Carson River basin is 2400 m (with outlet
at 1650 m and ridgeline at 3400 m), and that of the
Merced River is 2800 m (with outlet at 1200 m and
ridgeline near 3900 m). The Carson and Merced Rivers
are dominated by springtime snowmelt runoff. Both ba-
sins are geologically dominated by the granodiorites of
the central Sierra Nevada, with varying additions from
volcanic and metamorphic rocks.

The Carson River model is described in detail by
Jeton et al. (1996) and has been used to simulate his-
torical streamflows from 1969 to 2001. The Merced Riv-
er model was designed to simulate daily flows for the
period from 1916 to the present (e.g., Dettinger et al.
1998). Indications of the goodness of fit of these models
are presented by Jeton et al. (1996) and, more recently,
by Wilby and Dettinger (2000) and Dettinger et al.
(2004). For both models, overall fits are satisfactory.
Goodness-of-fit statistics improve as longer time scales
(e.g., monthly and annual totals) are considered, but, in
the present context, dailies are most pertinent. From
1950 to 2000, the Merced River model captures 77%
of the observed daily flow variability, and the Carson
River model captured 82%; rms error statistics for the
spring of 1999 are discussed below.

The RNNCCS cloud-cover estimates from the spring
of 1999 describe spatial variations in cloud cover (e.g.,
Fig. 5) and thus insolation over the Merced and Carson
River basins. The 1999 seasonal average cloud cover
over the Merced River basin (Fig. 6a) is a minimum
over the western edge of the basin, near the outlet to
Yosemite Valley at about 1500 m above sea level and
the westernmost ridgeline of the basin at about 2000 m.
The maximum cloud cover was observed at about 4000
m along the ridgeline of the Sierra Nevada on its north-

east edge. The basin is partially divided into western
and eastern halves by the Clark Range, which extends
northward from the center of the southern edge to a
point near the center of the basin, and another cloud-
cover maximum appears to hug this range’s northwest-
ern edge. These season-long mean values, however,
arise in the midst of considerable day-to-day and, in-
deed, image-to-image variability (Figs. 6b and 9). A
mirror-image mean structure and similar amounts of
spatial and temporal variability are found for the Carson
River basin (Figs. 6c, 6d, and 9).

These GOES-based RNNCCS insolation estimates
(and other resources like them), thus, permit modifi-
cations to the solar radiation inputs to PRMS. At present,
however, the RNNCCS insolation estimates provide
much more temporally and spatially detailed informa-
tion than the PRMS models were designed to accom-
modate. In PRMS, a daily basin-average insolation rate
(whether model estimated or input from observations)
is assumed to fall uniformly over the basin, above the
land surface and plant canopies. The insolation rate
reaching the land (or snow) surface of each HRU is then
adjusted locally for the influences of the slope and aspect
of land surfaces and the density of vegetation canopies
that shade the surfaces. Slopes, aspects, and canopy cov-
er are specified for each HRU in a given basin’s model.
Thus, although PRMS is designed to accommodate sim-
ple topographic and (some) surficial influences on HRU-
scale insolation, it does not accept spatial variations of
the insolation inputs like those induced by cloud-cover
variations shorter than a day or smaller than the basin.
The influence of spatially varying cloud cover, in par-
ticular, cannot be directly accommodated by the current
model.

Streamflow simulations of the 1999 snowmelt season
using the PRMS insolation estimates (the ‘‘simulations
with PRMS insolation’’) are compared here with sim-
ulations that use RNNCCS daily estimates of basin-
averaged insolation (‘‘simulations with basin-averaged
RNNCCS insolation’’) as inputs in the next section.
These latter simulations test the effects of using better,
basin-averaged daily insolation rates in the models.

Because the RNNCCS radiation products display
clear and important spatial insolation variations within
Sierra Nevada basins, the sensitivity of the models to
the observed (mean) spatial variations of insolation were
tested. Because PRMS is not structured to accept spa-
tially varying insolation inputs, however, the standard
estimation of HRU-scale insolation rates used in PRMS
had to be circumvented for the test. Because of the large
amount of temporal and spatial cloud-cover variation
measured by the RNNCCS satellite products and the
resulting large variations of insolation within the basins,
the models ideally would have been modified to ingest
daily, HRU-scale insolation variations, reflecting each
day’s particular cloud-cover pattern. That level of mod-
ification of the well-recognized PRMS code, however,
would raise questions of method and is beyond the needs
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FIG. 12. Relations of shortwave radiative (through plant canopy to
snowpack) transfer coefficients to elevation, in the Merced River
model (above Happy Isles Bridge), before and after adjustments for
seasonal-mean cloud cover, spring 1999.

of the current demonstration. Instead, a model param-
eter—not intended for this use—was adjusted to ap-
proximate the effect of observed spatial variations of
insolation in the snowmelt procedures of the model.

The application of these spatially varying insolation
inputs in PRMS was not particularly successful, for rea-
sons to be speculated over later, and thus a brief de-
scription of the modifications should suffice: in its rep-
resentation of HRU-scale variations in insolation at the
snow surface, PRMS corrects the daily basin-average
insolation rate for the vegetation canopy cover over each
HRU. In a fortuitous way, a canopy cover parameter,
the transmission coefficient for shortwave radiation
through the winter vegetation canopy, radptrcf, is spec-
ified for shading of snowpack, separately from all other
canopy shading and interception effects. The radptrcf
parameter describes the fraction of downward insolation
that reaches the snowpack at each HRU and is only used
in the calculations of snowpack heat balances and melt-
ing. Thus, adjustments were made to each HRU’s
radptrcf parameter to reduce effectively the insolation
on snowpacks in some HRUs where cloud cover is more
common and to enhance (relatively) the insolation
where cloud cover is less common.

This adjustment corresponds to the cloud modifica-
tions to insolation at HRU scale without having to mod-
ify PRMS to read in separate insolation rates for each
HRU. In a complete representation, adjustments would
vary through time according to each day’s RNNCCS
estimates of cloud-cover changes; for this demonstra-
tion, however, we adjust only for the 1999 seasonal-
and monthly-mean cloud covers (Figs. 6 and 5, respec-
tively). These simulations will be called ‘‘simulations
with seasonal-average RNNCCS insolation pattern’’ and
‘‘simulations with monthly-average RNNCCS insola-
tion pattern,’’ respectively; these simulations test the
value of including spatially varying cloud-cover effects
in the current models. When these relatively long-term
average cloud-cover patterns are used, the modifications
of radptrcf are small (as illustrated in Fig. 12), and thus
the modifications to the insolation reaching the snow-
pack are small also. The adjustments to Merced River
radptrcf were largest in the high-altitude zones (where
vegetation canopy is sparse so that the unadjusted
radptrcf values were large). Cloud-cover values in these
zones were largest during the spring of 1999, and in-
solation was lowest, so that radptrcf values were adjusted
downward to reduce the insolation on the snow. At low-
er elevations, cloud cover was less common (relative to
the basin average), and radptrcf values were adjusted
upward to allow more (than basin average) insolation
to reach the snow.

c. Resulting simulations of the spring of 1999

The streamflow simulations with PRMS insolation
compare favorably overall to the observed spring 1999
streamflow variations in the Merced and Carson Rivers,

but with some unrealistic snowmelt and streamflow
surges and some missing surges in the simulations. In
the Merced River, these false snowmelt events result
from poorly inferred insolation variations, as will be
shown immediately. The PRMS daily estimates of in-
solation for the Merced River basin are shown as a red
curve in Fig. 13a. Aside from some brief reduction in
insolation associated with late-season storms, in the first
week of April and near the beginning of May and June,
PRMS insolation varies only in a gradual seasonal in-
crease through most of the April–July period. Insolation
variations inferred from temperature fluctuations are
clearly small in this model. Similar small nonseasonal
insolation variations were inferred by PRMS in the
Carson River model from the precipitation and temper-
atures observed at the weather stations used to force
that model (Fig. 14a).

Observed and simulated (with PRMS insolation)
streamflows are shown as circles and a red curve in Fig.
13b, respectively. After initial low wintertime flows, the
simulation with PRMS insolation yields a set of minor
snowmelt pulses (and streamflow surges) in late April,
earliest May, and mid-May, followed eventually by a
major snowmelt in the second half of May. Snowmelt
and streamflow decline through June. Observed flows,
in contrast, did not surge as much as simulated in late
April and earliest May. The observed late May stream-
flow maximum was smaller than in the simulation and
is partially compensated by another later sustained
streamflow peak in mid-June. The incorrectly simulated
early snowmelt peak in this simulation occurs during
the late April period when temperatures had risen
enough to poise the snowpack near the melting point
and when the PRMS insolation rates are dramatically
higher than those calculated from the RNNCCS radia-
tion products (shown by the green curve in Fig. 13a).
The PRMS overestimates of insolation in late April fu-
eled the unrealistic early snowmelt pulse. Furthermore,
when the model simulates snowmelt events too early in
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FIG. 13. Comparisons of (a) daily PRMS-estimated and RNNCCS insolation estimates and
(b) observed and simulated streamflows, along with (c) rms errors, for Merced River basin at
Happy Isles Bridge for the spring snowmelt season 1999. (d) Cumulative volume flow for the
different insolution estimates as indicated.

a given year (as in this example), the water that is pre-
maturely released by the model is not available for re-
lease and runoff later in the simulation. Thus, to a large
exent, the prematurely simulated late April snowmelt
pulse also resulted in the missing mid-June snowmelt
pulse (and streamflow peak). The corresponding ob-
served and simulated flows in the Carson River are
shown in Fig. 14b, which yields much the same story,
except that the Carson River model underestimates, rath-

er than overestimates, the peak flows observed during
late May and mid-June.

The rms errors, in centered 30-day windows, com-
puted from a comparison of the observed and simulated
(obtained using PRMS insolation) streamflows in the
two rivers are shown by the red curves in Figs. 13c and
14c. In the Merced River, early in the spring, the pre-
mature snowmelt pulse of late April results in relatively
large rms errors; by mid-May, the rms errors have de-
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FIG. 14. Same as in Fig. 13 but for the East Fork of the Carson River basin.

clined. In the Carson River, errors are largest both early
in the simulations and again at the season’s end.

The daily basin-averaged RNNCCS insolation rates
for the spring of 1999 are considerably more variable,
with many more low-insolation days, than are the in-
solation rates inferred by PRMS from the daily precip-
itation and temperature inputs (green curves in Figs.
13a and 14a). RNNCCS insolation rates in April and
early May of 1999 and again around the beginning of
June are notably lower than are the PRMS values, re-
flecting many cloud-covered, but not precipitating, days.

On a relatively few days, mostly later in the spring,
RNNCCS insolation rates are estimated to be slightly
higher than the PRMS-inferred rates, but these devia-
tions are small and probably do not play a major role
in the simulated daily snowmelt and runoff rates. Of
note, the reductions of insolation to the rain-shadowed
Carson River basin by cloud cover, indicated by the
RNNCCS estimates, resulted in even greater overesti-
mates of insolation by PRMS during cloudy but non-
precipitating days (Fig. 14a) than in the windward Mer-
ced River basin.
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TABLE 3. Root-mean-square errors (m3 s21) from four simulations
of discharge of the Merced and Carson Rivers during Apr–Jun 1999
and from three simulations during Jun 1998. Simulations are de-
scribed in the text.

Simulations
Merced
River

Carson
River

Spring 1999
Simulation with PRMS radiation
Simulations with basin-averaged

RNNCCS insolation
Simulation with seasonal-averaged

RNNCCS insolation
Simulation with monthly-averaged

RNNCCS insolation

15.8

13.1

13.0

13.1

10.8

9.6

10.1

10.3

Spring 1998
Simulation with PRMS radiation
Simulation with basin-averaged

RNNCCS insolation
Simulation with basin-averaged

RNNCCS insolation and RNNCCS
snow cover corrections to initial conditions

23.9

21.5

22.3

8.9

11.3

5.5

Using the RNNCCS insolation rates, the simulation
with basin-averaged RNNCCS insolation inputs (green
curve in Figure 13b) does not yield the erroneous late
April snowmelt pulse that was present in the Merced
River simulation with PRMS insolation (red curve in
Fig. 13b). Note that the blue curve generally overlies
the green curve in Fig. 13b so that the green curve is
difficult to see. As a result, also, the simulation with
basin-averaged insolation more correctly captures the
snowmelt peak in mid-June that the simulation with
PRMS insolation missed. Simulated flows during mid-
to late May are still oversimulated, however, but not
quite as much as in the simulation with PRMS insola-
tion. Overall, in the first half of the spring of 1999, the
simulation errors are notably smaller in the simulation
with basin-averaged RNNCCS insolation (green curve,
Fig. 13c) than in the simulation with PRMS insolation
(red curve). In the second half of the season, the sim-
ulation with basin-averaged insolation inputs yields rms
errors that are not much different from those from the
simulation with PRMS insolation. The inclusion of
RNNCCS insolation changes in the Carson River sim-
ulations yields reductions, relative to the simulation with
PRMS insolation, throughout the simulation period (Fig.
14c). In all Carson River simulations, rms errors were
highest during the early falsely simulated snowmelt
peak and during the late snowmelt peak that was missed
in the simulations.

Reservoir managers will often be more attuned to
differences in the accumulating total outflows from river
basins than to their day-to-day fluctuations. The accu-
mulations of streamflow from the two rivers, in obser-
vations and in simulations, are shown in Figs. 13d and
14d. Early in the season, the observations and simula-
tions compare well. By mid-May, the simulation with
PRMS insolation overestimates the accumulated flows
in both rivers. The simulation with basin-averaged
RNNCCS insolation lags behind the observations in the
Merced River but, by June, is in excellent agreement
with observations, whereas the simulation with PRMS
insolation never recovers. By mid-May, the simulation
with RNNCCS basin-averaged insolation is in excellent
agreement with observations on the Carson, and, by end
of season, both simulations have slightly underestimated
the observed accumulation.

Using the same daily basin-averaged RNNCCS in-
solation rates (green curve in Figs. 13a and 14a) but
with the seasonal-average RNNCCS cloud-cover pattern
accommodated by adjustments to radptrcf, the simula-
tions with the seasonal-mean RNNCCS insolation pat-
tern yield the streamflow variations shown by the blue
curves in Figs. 13b and 14b. These simulations track
the simulation with uniform basin-averaged insolation
inputs closely throughout the 1999 season. In a similar
way, when monthly adjustments are made (dashed black
curves), the results are very similar to the simulations
with uniform basin-averaged insolation inputs. The ef-
fects of adjusting the spatial patterns of insolation are

somewhat larger in the Carson River simulations (Figs.
14b,c). It is evident that the relatively rapid cloud-cover
changes and attendant insolation variations within the
basins (Fig. 9) are not well represented by seasonal or
monthly spatial averages, and the current models were
not improved by these additional inputs.

The overall April–June 1999 average rms errors for
the four Merced and Carson River simulations are
shown in Table 3. By this measure, the simulations with
basin-averaged insolation inputs in the Merced and
Carson River models perform about 21% and 12% better
than the simulation with PRMS insolation, respectively.
No additional improvements were realized by the sim-
ulations with temporally and spatially varying insolation
with these models. Thus, as noted previously, the rapid
variations of cloud cover and insolation, indicated by
Fig. 9, were not represented well by either seasonal or
monthly averages. Real improvements may require
models that are capable of incorporating insolation pat-
terns that vary according to observations on daily time
scales and spatially within a basin.

RNNCCS cloud- and snow cover classifications were
also generated during a brief period in June of 1998 and
provide another example of the usefulness of RNNCCS
insolation (and snow cover) estimates in the Merced and
Carson River models. Insolation rates from the PRMS
parameterization and from the basin-averaged RNNCCS
estimates are compared in Figs. 15a and 15c and show
the same unresponsive PRMS insolation variations as
were found in the spring 1999 examples. The June 1998
period was one of general and largely featureless snow-
melt and streamflow declines and, thus, is not as good
of a test of the RNNCCS inputs as was the longer, more
varied 1999 interval. Simulated spring 1998 stream-
flows in the Merced River (Fig. 15b) using the two
insolation inputs are generally similar, although with



APRIL 2004 273S I M P S O N E T A L .

FIG. 15. Similar to Figs. 13a and 13b but for simulations of streamflow in the Merced and
Carson Rivers during a part of Jun 1998. See the text for details.

significant improvements in the simulation with basin-
averaged RNNCCS insolation inputs (relative to the
simulation with PRMS insolation) from days 169
through 177, in response to greater, unrealistically con-
stant insolation rates in the PRMS parameterization dur-
ing this period. The overall rms error of the Merced
River simulations (Table 3) indicates an 11% reduction
in error with the RNNCCS insolation inputs. In the
Carson River, both simulations yielded unrealistically
large flows throughout the second half of the simulation
period. (Fig. 15d). This overestimation was resistant to

various attempts at revisions to the input series and,
eventually, was ascribed to an overestimation of the
overall amount of snow in the initial conditions for these
simulations; this hypothesis is explored in the next sec-
tion.

The current PRMS, like other watershed models, has
not been designed or calibrated to accommodate spa-
tially and daily varying cloud cover and insolation with-
in the basins. The current experiment indicates that, with
the advent of RNNCCS radiation products, modifica-
tions of the model to accommodate such inputs are in
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order. They likely will yield their most significant im-
provements in models reformulated to accommodate di-
rectly the significant spatiotemporal variability illus-
trated by the RNNCCS products.

6. Additional opportunities: Areal extent of snow
cover

Accumulation of snowpack in the Sierra Nevada dur-
ing the winter provides the storage mechanism for water
that later is released in the spring/early summer melt
phase. At present, snow cover products provide a basis
for recalibration and validation of models (e.g., Koczot
and Dettinger 1999). Commonly used basin-scale
streamflow models [e.g., the PRMS model for the Mer-
ced River basin (Fig. 11)], however, do not use the areal
extent of snow cover as a direct input to the model.
Rather, areal extent of snow cover is computed as an
internal model variable based on a number of assump-
tions associated with accumulated model water and tem-
perature balance over time. Snow water content is the
primary snow characteristic simulated by models but is
less amenable to high-frequency remote sensing at basin
scales than is snow cover. Thus models that make more
complete use of snow cover information will be a useful
advance in the near future.

Hourly estimates of areal extent of snow cover, de-
rived using the GOES-based retrieval method of Simp-
son and McIntire (2001), now make it possible to pro-
vide accurate estimates of areal extent of snow cover at
1-km spatial resolution and hourly temporal resolution
on the same spatial grid as the GOES-based insolation
estimates. This approach has several distinct advantages
in comparison with current operational usage: 1) fixed
relations among precipitation, air temperature, and areal
extent of snow cover can be avoided; 2) the number of
adjustable parameters/internal variables used in the
models can be reduced; and 3) the tendency for oper-
ational models either to under- or overaccumulate water
in model reservoirs can be reduced. In addition, the
hourly resolution of GOES-based snow cover products
allows for improvements in snow cover detection over-
all by making multiple classifications per day—each
building from the one before—to be collated into daily
consenses. Such consensus classifications provide new
avenues for overcoming snow cover problems associ-
ated with the complex terrain and forest cover of the
western United States.

In light of the improvements in snow cover classi-
fications that have become possible, it is important to
develop models that can employ such information to
improve snowmelt simulations and streamflow fore-
casts. Such models are not yet available. In current wa-
tershed models, arbitrary adjustments of snow cover or
snow water content to reflect remotely sensed snow pat-
terns have long-term, far-reaching, and often unpre-
dictable influences on the model performance and, un-
less done in ways that are very faithful to the real (but

unknown) distributions of water and snow in the basins,
can greatly disrupt that performance. Indeed, the hardest
part of incorporating such observations into ongoing
simulations will be preservation of the constantly chang-
ing water balances in the basins while accommodating
snow patterns from outside the models. When such bal-
ances are modified in even subtly incorrect ways, snow
melts in the wrong places, at the wrong times, and in
the wrong amounts, and the consequences for the mod-
eler are both immediate and long lasting. However,
when a model’s snow cover is sufficiently far from the
observed pattern, simple modifications to bring the
model snowpack into agreement with the observations
can help.

The dashed curves in Figs. 15b and 15d illustrate the
results of simulations in which the initial snowpacks
were modified to reflect RNNCCS-observed snow cov-
er. In these examples, areas in the basins where snow
cover was not observed but where it had existed in the
unmodified initial conditions (which had previously
been based on PRMS simulations leading up to the start-
ing date of the RNNCCS observations) were simply
stripped of all snow in the models. In the Merced River
model, this revision of the initial snow cover resulted
in a moderate decrease in streamflows throughout the
simulation, because too much snow was removed by the
simple process and thus was not available to contribute
snowmelt and streamflow. The resulting simulation er-
rors were quickly realized and persistent, yielding a
slight increase in rms error as compared with the sim-
ulation with only basin-averaged RNNCCS insolation
inputs (Table 3). In the Carson River, however, removing
snow from areas that were not actually snow covered
at the beginning of the simulation yielded a simulation
that, although also tending to underestimate the flows,
reproduced the tendency of the flows, from day 168 on,
much more realistically than did the simulations with
unmodified snow cover. The rms errors in the simulation
with corrected initial snow cover are markedly improved
in comparison with the other simulations (Table 3).
These examples from 1998 only hint at the importance
that snow cover may have in improving simulated flows,
but they demonstrate the persistence and impact that
such modifications will have on models that are better
designed to accept such observations directly.

7. Advantages of new satellite products for
hydrology

Robust retrievals of hydrologic basin model variables
(e.g., insolation or areal extent of snow cover) provide
several advantages over the current operational use of
point measurements and model parameterizations. In-
solation can be provided at hourly time scales (or better
if needed—e.g., during rapid melt events associated
with flooding) at 1-km spatial resolution. These satellite-
based retrievals incorporate the effects of highly vari-
able and unpredictable cloud cover on estimates of in-
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solation. In situ measurements of insolation are very
limited in extent and cannot capture the basinwide var-
iability. The insolation estimates are further adjusted for
the effects of basin topography using a high-resolution
DEM prior to model input. Direct retrieval of areal ex-
tent of snow cover may mitigate the need to rely entirely
on internal calculations of this variable, a reliance that
can yield large errors that are difficult to correct until
long after the season is complete and that often leads
to underestimation or overestimation of the volume of
the water in model reservoirs.

8. Conclusions

The streamflow simulations described here demon-
strate that some streamflow fluctuations in these rivers
reflect insolation variations that are not being captured
in current operational parameterizations. These varia-
tions derive from the passage of clouds over the ba-
sins—clouds that are transitory and almost random in
their effects and that can only be identified and quan-
tified at basin scales by remote sensing approaches like
the RNNCCS system used here. These clouds are of
spatial scales that are comparable to the scales of the
river basins, and, although generally smaller than those
basins, the clouds interfere with insolation on areas that
constitute significant fractions of the snowfields and
drainages. The influences of these clouds are apparently
separate from the large-scale fluctuations of temperature
that are typically measured at weather stations used to
force the models and commonly are not associated with
precipitation. Therefore the influences of these clouds
are not presently reaching current snowmelt models.
Immediate gains in simulation skill were made when
the effects of cloud variations were included in the mod-
els used here.

Further gains are to be expected if a new generation
of models is designed to incorporate more such infor-
mation, as well as more information about the evolution
of snow cover in the basins. These new models should
be more physically based than current operational mod-
els, which are highly parameterized. In addition to such
new models, improvements in simulation skill by this
approach will require establishment of an operational
system to provide practitioners with access to real-time
remotely sensed insolation and snow cover data, along
the lines of the RNNCCS system described here, for
input to river models. Beyond this, incorporation of such
‘‘new’’ information into river forecast models will re-
quire a ready stream of forecasts of insolation from
existing weather-forecast sources. Insolation forecasts,
added to the currently available temperature and pre-
cipitation forecasts, will make for better streamflow
forecasts while also finding uses in many emerging tech-
nical areas such as ecosystem and cryospheric fore-
casting.
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