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ABSTRACT 

 

The evaluation of an objective function for a particular model allows one to determine 

the optimality of a model structure with the aim of selecting an adequate model in 

system identification. Recently, an objective function was introduced that, besides 

evaluating predictive accuracy, includes a logarithmic penalty function to achieve a 

suitable balance between the former model’s characteristics and model parsimony. 

However, the parameter value in the penalty function was made arbitrarily. This paper 

presents a study on the effect of the penalty function parameter in model structure 

selection in system identification on a number of simulated models. The search was 

done using genetic algorithms. A representation of the sensitivity of the penalty function 

parameter value in model structure selection is given, along with a proposed 

mathematical function that defines it. A recommendation is made regarding how a 

suitable penalty function parameter value can be determined.  

 

Keywords: Genetic algorithm; objective function; penalty function; model structure 

selection; system identification. 

 

INTRODUCTION 
 

System identification is a method of recognising the characteristics of a system, thus 

producing a quantitative input-output relationship that explains or resembles the 

system’s dynamics. The procedure involves the interpretation of observed or measured 

data into a physical relationship, often and easily interpreted in the form of 

mathematical models (Johansson, 1993). Besides other stages in system identification 

(i.e. data acquisition, parameter estimation and model validation), model structure 

selection requires a loss function, also called an objective function (OF), that evaluates 

the optimality of the model. Hereinafter, only the term objective function will be used 

such that a lower OF indicates better optimality. Besides model predictive accuracy, 

another important factor when judging the optimality of a model structure is the model 

parsimony, which refers to a lesser number of control variables and/or terms 

(hereinafter variables and/or terms might only be referred to as terms) in the model 

structure. Hong et al. (2008) and Spanos (2010) provide very good discussions on the 
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issue of goodness-of-fit versus model parsimony. This is also referred to as bias 

(systematic component) versus variance (random component) in an objective function. 

Many information criterions that are used to evaluate the optimality of a model 

incorporate such a consideration by including a penalty function, such as the Akaike 

Information Criterion, Bayesian Information Criterion and Hannan-Quinn Information 

Criterion (Kapetanios, 2007). As observed in the Bayesian Information Criterion and 

Hannan-Quinn Information Criterion, an objective function that incorporates a 

logarithmic penalty function was used in Ahmad et al. (2004b) and Jamaluddin et al. 

(2007) to cater for the balance between predictive accuracy and model parsimony. 

However, the parameter values in the penalty function were set arbitrarily. The outcome 

was a promising balance between the two mentioned characteristics. This outcome is 

seen to have a potential for further improvement. Different penalty values impose 

different selective pressures in the population of solutions in constraint-abidance (Li and 

Gen, 1996). A suitable value of penalty function parameter is thus needed. In this paper, 

the effectiveness of the objective function is investigated by testing various penalty 

function parameter values on five simulated dynamic models in the form of a difference 

equations model. These models are linear and nonlinear autoregressive models with 

exogenous input (ARX and NARX) (Ljung, 1999). The benefit of using simulated 

models is the presence of an opportunity to compare the final model directly with the 

true model. The model structure selection stage requires a robust method that is able to 

search, within its search space, the model structure that exhibits both predictive 

accuracy and parsimony with a lower computation burden. This is found in evolutionary 

computation, which is comprised of genetic algorithm, evolution strategies, 

evolutionary programming and genetic programming (Sarker et al., 2002). The 

parameters are estimated using the least squares method. 

This paper presents a method that identifies a suitable objective function, 

specifically the penalty function parameter value. The rest of the paper is organised as 

follows: Section 2 explains the objective function for model structure selection; Section 

3 explains the difference equation model, which is the mathematical model considered 

here; Section 4 presents the genetic algorithm, which is the search method used in 

selecting the models based on the specified objective function; Section 5 explains the 

simulation of system identification; Section 6 provides the results and analysis; and 

lastly, Section 7 concludes the paper along with a proposed strategy for how to 

implement the findings in a practical situation and plans or recommendations for future 

work. 

 

OBJECTIVE FUNCTION 

 

A simple OF in model structure selection is a function that emphasises the 

accuracy of the prediction of the model. Using the least squares estimation method, the 

OF is as follows: 

 

                                    2 2ˆOF ( ) ( ( ) ( ))
N N

t k t k

ε t y t y t
 

                                     (1) 

 

where ε(t) is the residual;  ŷ t  and y(t) are the k-step-ahead predicted output and actual 

output value at time t, respectively; and N is the number of data. The k-step-ahead 

prediction is used when the value of k depends on the output’s smallest lag order in the 
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selected model structure, which in turn depends on the variables selected by the search 

method. 

To cater for the balance between predictive accuracy and model parsimony, 

common objective functions are defined based on bias and variance contributions such 

as (Ljung, 1999): 

 

    ( ) ( ) ( )P BJ D J D J D      (2) 

 

where D is the design variable of a certain structure, JP is the variance contribution, and 

increases as the number of estimated terms (L), hence the parameters, increases. JB is the 

bias contribution and the value decreases as L increases.  

In accordance with Equation (1), Jamaluddin et al. (2007) and Ahmad et al. 

(2004b) define an objective function that evaluates the bias contribution by the sum of 

squared residuals while the variance contribution is calculated by a penalty function. 

This is written as follows: 

 

    
2

ˆOF PF
N

i i

i

y t y t
 

   
 
            (3a) 

 

where PF is the penalty function defined as follows: 

 

                                      PF ln( )n                (3b) 

 

and  

 

  n = number of terms satisfying (| aj | < penalty) + 1              (3c) 

 

where | aj | represents the absolute value of the parameter for term j and penalty is a 

fixed value termed penalty function parameter. The penalty function penalises terms 

with the absolute values of the estimated parameter less than the penalty. This is applied 

so that models that are more parsimonious may be selected over the those that are more 

accurate but contain many terms. 

In Jamaluddin et al. (2007), a trial-and-error approach was adopted in the 

selection of the penalty function parameter value based on the knowledge that as the 

value increases, model structures with fewer terms have lower OF. This is true as model 

structures with more terms, given that ill-conditioning does not occur, have lower 

residual values but many parameters that are small and considered insignificant to the 

model’s predictive accuracy, as based on the parameter in Equation (3c). 

 

NARX MODEL 
 

There are many choices of linear and nonlinear models to represent input-output 

relationships (Ljung, 1999). A common model structure representation for linear 

discrete-time system is the ARX (AutoRegressive with eXogenous input) model written 

as: 
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1 0 1( ) ( 1) ... ( ) ( ) ( 1) ...

          + ( ) ( )

y

u

n y

n u

y t a y t a y t n b u t b u t

b u t n e t

        

 
            (4) 

 

where y(t), u(t) and e(t) are the output, input and noise, respectively, at time t; ny and nu 

are the maximum orders of lag for the output and input, respectively, and 

1 0 1,..., , , ,...,
y un na a b b b  are coefficients, also known as the parameters of the model. 

Nonlinear models give much richer possibilities in describing systems and have better 

flexibility when inferring from a finite data set. The nonlinear version of the ARX 

model is the NARX (Nonlinear ARX) model. When a time delay exists, it is written as: 

 

   *( ) [ ( 1), ( 2),... ( ), ( ),..., ( 1), ( )]l

y uy t F y t y t y t n u t d u t d n e t                     (5) 

 

This is also a generalisation of the linear difference equation. In the above equation, 

* [ ]lF   is a nonlinear polynomial function of u and y, d is the time delay, and l is the 

degree of non-linearity, while the other notations are the same as in Equation (4). By 

allowing d = 1, the nonlinear function for a single-input-single-output NARX model can 

be expanded into its deterministic form as follows: 

 

                  
1

,

, 1

1 0 , 1 1

( ) ( ,..., ) ( ) ( )
y u

m

n n p ml m

p m p m i i

m p n n i i p

y t c n n y t n u t n

    

                     (6a) 

 

where 

 

                                       
1 1

,

, 1 1

y u y u

m m

n n n n

n n n n 

         (6b) 

 

and cp, m-p(n1,…,nm) are the parameters of the model.  

 

For a discrete time model, model structure selection refers to the process of 

determining the lags of input, nu, output, ny and time delay, d, from the information of 

input, u, and output, y, sequences (Veres, 1991). The aim in model structure selection is 

mainly to determine the significant terms to be included in a system’s model.   

Before the parameters of the model can be estimated using the least-squares 

method, the model has to be transformed into a linear regression model as follows: 

 

                      ( ) ( ) ( ),  T

yy t t e t n t N      (7) 

 

where  is the parameter vector, 1 2[   ... ]T

L    is the regressor vector, e is the value 

of noise or disturbance, L is the number of terms, which also determines the size of the 

parameter vector, and N is the number of data. From here onward, the terms of a model 

structure may be referred to as regressors. 

Given that the model structure, and consequently the vector of regressors, has 

already been defined, the estimation of the parameters   can be made using least-

squares estimation methods (Johansson, 1993, Ljung, 1999).  
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The number of regressors in a NARX model (L) is calculated as follows: 

 

                                                      L = M + 1     (8a) 

 

where 

 

                           
1

l

i

i

M n


  where l = degree of non-linearity   (8b) 

 

and  

 

                                           
1( 1)i y u

i

n n n i
n

i

   
  where no = 1               (8c) 

 

with ny and nu as in Equation (4).  

 

Suppose a NARX system is known to have a non-linearity of 2, maximum order 

of lag for input, nu = 2, maximum order of lag for output, ny = 2 and time delay, d = 0, 

the number of regressors in the model is found to be 15, along with the inclusion of a 

constant term. Since decisions on the terms are either inclusion or omission, simple 

binomial theorems apply. Therefore, in a model consisting of L possible terms, the 

search space is 2
L 

–1, which means there are 32 767 models to choose from.  

 

GENETIC ALGORITHM AND ITS REPRESENTATION OF MODEL 

STRUCTURE 
 

A genetic algorithm (GA) is a class of artificial intelligence methods that is grouped 

under a cluster named evolutionary computation. It has the potential to search for the 

solution to a problem within a small number of trials instead of an enumerative 

approach. The main characteristics of GA are that it uses binary bit string problem 

representation, fitness proportional selection in which solutions are assigned a fitness 

value before further trials are made, and manipulating these selected solutions using a 

genetic operator called a crossover (Eshelman, 2000; Holland, 1992). In GA, crossover 

is a process of bits exchange between two strings, and the most common type is one-

point crossover where only one and same side of the strings are exchanged. Another 

important, but considered less provocative, genetic operator is mutation. Mutation refers 

to the change of bits in a string to another value. GA begins its search of the optimum 

solution by initialising a set of coded strings where the number of strings is known as 

the population size, typically denoted popsize. Each string, also called chromosomes, 

consists of genes that carry an allele or partial information of a potential solution. These 

chromosomes are evaluated, selected and manipulated until a prespecified number of 

cycles or generations, typically denoted maxgen. Details of the procedure can be 

referred to in Goldberg (1989) and Michalewicz (1996). 

Following the example at the end of Section 3, the variables are y(t-1), y(t-2), 

u(t-1) and u(t-2) while the terms are the multiplications of variables e.g. y(t-1)y(t-2). 

The output y(t) of the system is represented by: 
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a y t a y t u t a y t u t a u t

a u t u t a u

          

        

         

    2 ( 2) ( )t e t 

        (9) 

 

  In a binary-represented GA, the variables and terms are represented by the genes 

of the chromosome as bit 1 for existence and bit 0 for omission (Ahmad et al., 2004a, 

2004b, Jamaluddin et al., 2007). Based on the number of variables and terms in 

Equation (9), a binary chromosome representation of length lchrom = 15 is generated. 

The first bit represents the first variable or term and so on, such that chromosome [110 

100 001 000 100] represents the following model: 

 
2

1 2 4 9 13( ) ( 1) ( 1) ( 1) ( 2) ( 1)y t a a y t a u t a y t u t a u t             (10) 

 

The model is completed by the estimation of the parameters a1, a2, a4, a9 and a13. 

 

SIMULATION SETUP 
 

A simple GA (SGA) is used in the simulation. The notion ‘simple’ emphasises that only 

common characteristics such as those described in Holland (1992) and Eshelman (2000) 

are applied. To be precise, the operators are roulette-wheel selection, one-point 

crossover and bit-flipping mutation. The mating preference is based on first-come-first-

serve rule (i.e. pairs of chromosomes that are selected first are mated with each other). 

This mating preference is the mating type of a panmictic population (Bäck and Fogel, 

2000). No elitism is used in the algorithm. The fitness of an individual i, denoted fi, is 

calculated by subtracting the OF value of the individual from the maximum OF in the 

population. In mathematical form this is written as follows: 

 

                               
 1

i i i

i ..popsize

f max OF OF


        (11) 

 

With this setting, individuals with a low OF value have a high fitness. 

 

The probabilities for crossover and mutation used are pc = 0.6 and pm = 0.01. The 

value for crossover probability is taken from De Jong’s genetic algorithm (De Jong, 

1975), claimed as the optimum for both online and offline applications and also 

recognised as the benchmark for parameter control study using meta-level GA 

(Grefenstette, 1986). The value for mutation probability is also claimed to be suitable 

for both online and offline applications in the meta-level GA study. Based on the 

number of maximum permissible regressors, a population size of 200 and maximum 

generation of 100 are considered adequate for each penalty. 

Four NARX models and an ARX model are simulated to be identified by SGA. 

Only simulated models are used, so direct comparison to the correct number of 

regressors could be made. The following are the models written as linear regression 

models, its specifications, number of correct regressors, maximum number of possible 

regressors and size of search space:  
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Model 1:  
3( ) 0.5 ( 1) 0.3 ( 2) 0.3 ( 1) ( 1) 0.5 ( 1) ( )y t y t u t y t u t u t e t           

Specification: l = 3, ny = 1, nu = 2 

Number of correct regressors: 4 out of a maximum 20 

Search space: 1 048 575    

 

Model 2:  
3( ) 0.5 ( 1) 0.35 ( 2) 0.03 ( 1) ( 1) 0.005 ( 1) ( )y t y t u t y t u t u t e t            

Specification: l = 3, ny = 1, nu = 2 

Number of correct regressors: 4 out of a maximum 20 

Search space: 1 048 575    

 

Model 3: 

)()2()1(05.0          

)3(008.0)1(03.0)1(07.0)2(002.0)( 22

tetutu

tytytutyty




 

Specification: l = 2, ny = 3, nu = 2 

Number of correct regressors: 5 out of a maximum 21 

Search space: 2 097 151  

 

Model 4: 

)()3(8.0          

)3()3(45.0)2()3(25.0)3()1(5.0          

)2()1(8.0)3(3.0)2(7.0)1(2.0)(

2

2

tetu

tutytutytuty

tutytytytyty







 

Specification: l = 2, ny = 3, nu = 3 

Number of correct regressors: 8 out of a maximum 28 

Search space: more than 2×10
8
   

 

Model 5: 

 
( ) 0.5 ( 1) 0.005 ( 4) 0.05 ( 8) 5 ( 2)

          0.0005 ( 8) ( )

y t y t y t y t u t

u t e t

        

 
 

 Specification: l = 1, ny = 8, nu = 8 

 Number of correct regressors: 5 out of a maximum 17 

 Search space: 131 071 

 

The simulation is performed to identify the effect of different values of penalty 

on the outcome of model structure selection. The identification is made by setting the 

values of penalty to 0.0001, 0.001, 0.01, 0.1 and 1, consecutively. 

The input u(t) is generated from a random uniform distribution in the interval 

[ 1,1]  to represent white signal, while noise e(t) is generated from a random uniform 

distribution [-0.01,0.01] to represent white noise. Five hundred data points are generated 

from all models. As the number of data points increases, all models are found to be 

ergodic (i.e. any sample can be assumed to have a fixed mean and standard deviation). 
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The following performance indicators are recorded: 

 

(1)  Objective function (OF) value of the best selected solution, i.e. the 

chromosome with the lowest OF value in the final generation; 

(2)  Error index (EI) of the best selected solution 

The error index refers to the square root of the sum of the squared error 

divided by the sum of the actual output squared. The calculation of EI is 

as follows: 

 

                         


 


)(

))(ˆ)((
EI

2

2

ty

tyty
   (12) 

 

where y(t) is the actual output value at time t and ŷ  is the k-step-ahead 

predicted output at time t obtained from the least-squares estimation. The 

value k depends on the specification of a minimum lag of output 

identified from the model structure selection. This indicator determines 

the level of accuracy of the final solution. This is also related to a 

widely-used statistical parameter called the multiple correlation 

coefficient squared, 2

yR  according to the following function (Ljung, 

1999): 

 
                                                      

22 EI1yR    
 (13) 

 

As such, its relation to OF is: 

 

)ln()(EIOF 22 nty                (14) 

 

(3)  Numbers of selected regressors in the best chromosome in each 

generation. 

 

RESULTS AND DISCUSSION 

 

Figure 1 shows the average numbers of selected regressors of the best chromosome in 

the last 50 generations for different values of log10 penalty. As seen, the numbers of 

selected regressors reflect the numbers of correct regressors in the models, respectively. 

An attempt is hereby made to quantify the relationship between the number of selected 

regressors and penalty in a mathematical function. In order to do this, several conditions 

must be fulfilled: 

(1) As the value of penalty increases, the function cannot rise upward as this 

is against the trend in Figure 1.  

(2) At any value of penalty, the function cannot intersect the x-axis (axis 

representing penalty). Its intersection indicates that a negative number of 

selected regressors can be chosen with a certain value of penalty, which 

is unacceptable. It can, however, asymptotically converge to any value 

higher than 0.  

(3) At any value of penalty, the function cannot intersect the y-axis value 

that is equal to the maximum number of possible regressors. Just like the 
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maximum value of penalty, there is no boundary for the minimum value 

of penalty. This indicates that it also converges to a value equal to or 

lower than the maximum number of possible regressors.   

 
 

Figure 1. Average numbers of selected regressors versus log10 penalty. 

 

Given these conditions, an arctangent function is proposed, as follows:   

 

rqpenaltyp   ))(logtan( regressor   selected ofNumber 10

1           (15) 

 

while q is the value at which the change of slope is maximum, p and r are determined 

and constrained by the conditions explained earlier, written as: 

 

                    0       regressor  ofnumber    maximum  r              (16a) 

 

          
π

r
p

-regressor ofnumber  maximum
               (16b) 

 

   p
penaltyd

d


) log(

regressor) selected of no.(

10

     (16c) 

 

Figure 2 shows samples of the fitting of the arctangent function versus log10 penalty for 

all simulated models.  

 

For the purpose of further analysis, some inferences are listed here: 

 

(1) With an increase in penalty parameter value, the number of selected regressors 

in the final model decreases, while the values of OF and EI increase. 
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Model 1                                                          Model 2 

 
Model 3                                                            Model 4 

 
Model 5 

 

Figure 2. Estimated arctangent function fitting of number of selected regressor versus 

log10 penalty. 

  

(2) With an increase in penalty parameter value, the number of regressors identified 

as insignificant increases. The number of insignificant regressors in the final 

model is calculated based on Equation (3). Referring back to Equation (14) 

which is derived by combining Equations (3a) and (12), rearranging it gives:  

 

             )(EIOF)ln( 22 tyn       (17a) 



 

 

Effect of penalty function parameter in objective function of system identification 

 

950 

 

Replacing n with number of insignificant regressors + 1 (from Equation 3c) and 

converting to the antilog gives the number of insignificant regressors as follows: 

 

1regressorsant insignific ofNumber 
)(EIOF 22


 ty

e         (17b)  

                          

(4) A switchover point regarding the number of insignificant regressors and 

significant regressors exists such that, at this point, the following function is 

obtained: 

 

regressorst significan ofnumber 

  regressorsant insignific ofNumber 
   (18) 

 

where  

 

Number of significant regressors = 

number of regressors - number of insignificant regressors
 (19) 

 

With small penalty parameter values, the number of significant regressors is 

always higher until a certain penalty parameter value, hereby denoted switchover 

penalty, is reached. Beyond this point, the number of insignificant regressors rises. 

Within a certain range of this point, the number of true regressors, i.e. correct regressors 

in the simulated model, with parameters bigger than or equal to the penalty parameter 

value reaches an agreement with the identified number of significant regressors.   

 

 
 

Figure 3. Graph of a general case of the effect of penalty parameter on objective 

function versus number of regressors. 

 

Number of regressors 

Value of OF, 

PF and EI 2 × 

sum of output 

squared  

OF 2 

1 

PF 1 

PF 2 

a b 

EI   ×sum 

of  output squared 
2 

OF 1 

c 
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Based on the first two inferences, a graph of a general case of the effect of 

penalty parameter on model structure selection can be visualised as Figure 3. Both PF1 

and PF2 (Equation 3b) refer to the penalty function for given penalty parameter values, 

penalty1 and penalty2, respectively, such that penalty2 > penalty1. Since penalty2 is 

bigger, PF2 is expected to penalise more regressors, and as other models of more 

regressors are evaluated, the penalty grows at a greater pace than PF1. Both OF1 and 

OF2 are the objective function values given the penalty parameter values, penalty1 and 

penalty2, respectively. For  )(EI 22 ty  the curve generally converges slowly to 0 as 

the number of regressors increases [19]. It shows that the minimum of the curve OF1 is 

at c, while OF2 is at b when the number of regressors > a and 1 when the number of 

regressors < a. Considering the number of regressors > a, to obtain a parsimonious 

model (model with b number of regressors), a larger penalty parameter value is 

required. Note also that the error of prediction represented by  )(EI 22 ty  in the 

graph is higher for a parsimonious model. It shows that a compromise in accuracy 

occurs as parsimony is undertaken. 

However, at a certain value of penalty parameter, the curve gives two minimum 

points such as shown with the curve OF2. This is the situation where chromosomes have 

the same OF but different EI. Higher than this penalty parameter value, the minimum is 

when the number of regressors = 1. It is a scenario when chromosomes with only 1 bit 

will be selected. It is very likely that this was encountered with Model 3 at penalty = 1. 

Unlike other models, the number of regressors is too small and too far when compared 

to penalty = 0.1 and even far less than the correct number of regressors. The value of the 

penalty parameter at which the phenomenon mentioned occurs is hereby called 

parsimony penalty. The value is crucial since, with respect to the definition of the 

objective function, it determines the most parsimonious model with adequate accuracy. 

A higher penalty will give a model structure with only 1 variable. 

 Based on the third inference, a superimposition of the number of insignificant 

regressors and significant regressors is carried out and fitted to suitable function lines. 

Due to the boundary of the minimum and maximum number of regressors for each 

model, an arctangent function is also more appropriate. However, a power function 

gives an acceptable fit. It is used instead since the purpose is only to find the value of 

intersection and it gives a better fit to most of these and other preliminary data than any 

other functions, including linear, exponential and logarithmic. A common form of the 

power function is used, written as follows: 

 

Number of regressors ( ) fd penalty g                    (20) 

 

where d, f and g are model-dependent variables while f is negative for significant 

regressors and positive for insignificant regressors. The variables are searched by trial-

and-error until the best fit is found. 

A sample plot of the superimposition using the data from Model 1 is shown in 

Figure 4. Table 1 gives the values of the switchover penalty where the intersection 

occurs for each model. A note is made here that caution s required when searching for 

switchover penalty for systems that have a low signal-to-noise ratio. Some earlier tests 

and literature show that further refinement is needed when encountering such cases 

(Junquera et al., 2001). 
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Figure 4. Number of regressors (insignificant and significant) fitted using power 

functions versus penalty value for Model 1. 

 

Table 1. Switchover penalty for each model. 

 

Models 
Maximum absolute 

parameter value 

Minimum absolute 

parameter value 
Switchover penalty 

Model 1 0.5 0.3 0.07 

Model 2 0.5 0.005 0.09 

Model 3 0.07 0.002 0.3 

Model 4 0.8 0.2 0.1 

Model 5 5 0.0005 0.07 

 

Using this information together with Figure 2, it can be seen that the switchover 

penalty can be related to the value q as follows: 

 

 10qswitchover penalty >       (21) 

 

where q is the value of log10 penalty at which the slope reaches its maximum. It is likely 

that since the curve in Figure 4 becomes flatter towards a higher log10 penalty, and by 

considering that at a certain penalty value the phenomenon of an OF curve with two 

minimum points occur, the following becomes true: 

 

 Parsimony penalty = Switchover penalty              (22) 

 

Based on this finding, an objective function is recommended by setting penalty 

equal to or slightly lower than the smallest allowable parameter value. When this value 

is unknown, it is recommended to test SGA on a few estimates of penalty value and 

rerun it by setting the penalty value to the estimated switchover penalty values until the 

penalty value become promisingly constant. 
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CONCLUSIONS 

 

This paper focuses on an investigation into the effect of the penalty parameter in 

objective functions towards establishing a suitable objective function in model structure 

selection. The genetic algorithm has been explained, as the search and optimisation 

method used in the investigation. The setting of the study has been laid out followed by 

a discussion of the results. Based on the results, a general case for the effect of the 

penalty parameter value on the objective function and number of selected regressors has 

been presented. It shows that when a higher penalty value is applied, a more 

parsimonious model is selected until a value that gives the most parsimonious and 

adequate model structure, denoted parsimony penalty. The penalty function parameter is 

shown to be related to the number of selected regressors by an arctangent function. The 

study also identifies a penalty value where the number of insignificant regressors is 

equal to the number of significant regressors, denoted switchover penalty. It was found 

that the switchover penalty is equivalent to the parsimony penalty, and it can hereby be 

concluded that by testing SGA on a few initial estimates of penalty value and rerunning 

it using estimated switchover penalty values, a constant switchover penalty value can be 

reached. This value represents the suitable penalty value in finding the most 

parsimonious and adequate model structure. In cases where the smallest tolerable 

absolute parameter value is known or can be roughly estimated, the penalty parameter 

value should be set equal to or slightly lower than the parameter value. Future work is 

aimed at validating the findings on real case studies. 
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