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Abstract

The initial discovery of resistin and resistin-like molecules (RELMs) in rodents suggested a role for these adipocytokines
in molecular linkage of obesity, Type 2 Diabetes mellitus and metabolic syndrome. Since then, it became apparent that
the story of resistin and RELMs was very much of mice and men. The putative role of this adipokine family evolved
from that of a conveyor of insulin resistance in rodents to instigator of inflammatory processes in humans. Structural
dissimilarity, variance in distribution profiles and a lack of corroborating evidence for functional similarities separate the
biological functions of resistin in humans from that of rodents. Although present in gross visceral fat deposits in
humans, resistin is a component of inflammation, being released from infiltrating white blood cells of the sub-clinical
chronic low grade inflammatory response accompanying obesity, rather than from the adipocyte itself. This led
researchers to further explore the functions of the resistin family of proteins in inflammatory-related conditions such as
atherosclerosis, as well as in cancers such as endometrial and gastric cancers. Although elevated levels of resistin have
been found in these conditions, whether it is causative or as a result of these conditions still remains to be determined.
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Introduction
Obesity is increasing worldwide at such an alarming rate
that is has been classified as an epidemic [1]. With the
resultant increase in Body Mass Index (BMI), a paralleling
increase in the prevalence of Type 2 Diabetes mellitus
(T2DM) is also occurring [2]. Recent advances in the un-
derstanding of obesity have identified a causative genetic
influence over obesity [3], along with other contributing
factors such as excessive calorific intake, sedentary lifestyle
and a diet high in saturated fat. Such is the tightness of
this pathophysiological association between obesity and
T2DM diabetes that the term Diabesity has been coined
to represent obesity-associated diabetes [4].
Visceral fat accumulation, or white adipose tissue, has

been implicated as important risk factors not only for
the development of type 2 Diabetes mellitus [5], but also
for the development of other comorbid conditions such
as dyslipidemia [6] and a plethora of conditions related
to inflammatory dysregulation [7–9]. Obesity itself has
been shown to predispose an individual to hypertension
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and cardiovascular disease [9], with diabetes predisposing
to complications such as neuropathy, diabetic nephropa-
thy, peripheral vascular disease and retinopathy [10]. Re-
cently, a chronic low-grade sub-clinical inflammation has
been found to accompany adipose tissue deposits [11, 12].
These in turn lead to an increased risk of inflammatory-
related complications. Taken together, overweight or obese
individuals with abdominal fat distribution account for
almost 90 % of all T2DM cases [13]. However, although
rodent resistin was first described as an adipokine, its hu-
man counterpart appears to be linked with inflammatory
states within certain medical conditions.
Here, we review the dissimilarity between rodent and

human forms of resistin, and demonstrate how the func-
tion of resistin differs in rodent and human counterparts.
We present the differences between both human and
rodent resistin. We summarize the current knowledge of
the signaling of resistin in humans, as well as the current
hypotheses of the potential role of resistin in humans.
Review
Adipose tissue—an endocrine gland
White adipose tissue, one of the two types of adipose tissue
found in mammals may represent the largest endocrine
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tissue of humans [14]. Classically, the function of adipose
tissue extended to storage of lipids, and subsequent release
into circulation during times of need [15]. Over sixty years
ago, a centrally-acting circulating factor was postulated to
be involved in a negative feedback cascade to limit the
intake of food and energy. The identification of this
factor over forty years later [16], termed leptin, changed
the outlook on adipose tissue, elevating it from the
simplistic storage depot to a complex, pleiotropic endo-
crine organ [17].
A high percentage of genes expressed within visceral

adipose tissue, about 30 %, are attributed to secretory
proteins [18]. The secretory nature of adipose tissue
allows cellular regulation through a complex network of
signaling which incorporates endocrine, autocrine and
paracrine signaling. This secretome comprises a complex
array of proteins termed adipokines [19]. Efforts have been
made to sub-divide these adipokines into groups [20], and
characterize their function both a calorie-rich and calorie-
deprived environment [21]. These broadly fall into four
categories; metabolic adipokines, pro-inflammatory adipo-
kines, extracellular matrix adipokines, and pro-mitogenic
& pro-angiogenic adipokines [22, 23].

Adipocytes and chronic Low grade inflammation
In lean individuals, white adipose tissue (WAT) storage of
triglycerides is systematically regulated, controlling the re-
lease of anti-inflammatory cytokines such as Adiponectin
[24], Transforming Growth Factor (TGF)-β and interleukin
(IL)-1 [25], which aid in the homeostasis of inflammation,
metabolic control and vascular function [25]. However, in
obese individuals, homeostasis of nutrients and its
regulatory mechanisms becomes disrupted. This has
the consequence of invoking a shift in the ratio and distri-
bution profiles of inflammatory cells found infiltrating
white adipose tissue [26]. Subsequently, these infiltrating
pro-inflammatory cells secrete a corresponding pro-
inflammatory array of mediators, such as Tumor Necrosis
Factor (TNF)-α, IL-6, leptin, visfatin, and plasminogen
activator inhibitor 1 [22]. This leads to a state of chronic
low-grade systemic inflammation linked to obesity, a
condition termed metabolic inflammation [27].
The shift in cellular composition surrounding WAT sees

a shift in the balance of anti-inflammatory macrophages
(M2 phenotype) to pro-inflammatory macrophages (M1
phenotype) ([26, 28]. The resultant change in M2/M1 ra-
tio results in increased cytokine production, promoting
adipose tissue dysfunction and impairment of glucose
tolerance [29]. Eosinophils, predominantly found in lean
WAT are displaced by infiltrating neutrophils, mast cells,
and B cells in obese individuals, shifting the balance of
cellular components to a pro-inflammatory phenotype
[30]. This in turn influences the release of inflammatory
cytokines such as TNF-α [31] and IL-1β [32] as well as the
adipokines IL-6 [33], leptin and resistin [22]. These in turn
act either on a paracrine or endocrine level to further en-
hance inflammation at source [34]. The increase in inflam-
matory mediators acts as a positive feedback mechanism,
further recruiting inflammatory cells to obese adipose
tissue. Released inflammatory mediators locally and sys-
temically activate counter-regulatory signal mechanisms,
desensitizing cells to insulin signaling. These mechanisms
combined potentiate cellular resistance to insulin [34].
Infiltration of a large pro-inflammatory cluster of cells

and secretion of several pro-inflammatory cytokines
stimulate several key signaling cascades within the devel-
oping adipose bundle. Firstly, insulin signaling pathways
are affected through inhibition of insulin receptor substrate
proteins. Disruption of the insulin pathways prevents the
actions of insulin on its target tissues, preventing the up-
take of glucose into its target cells [23]. Secondly, cytokines
released from infiltrating inflammatory cells further stimu-
late inflammatory signaling pathways [35]. This is achieved
through the engagement of two main signaling cascades;
C-jun Kinase (JNK) and Inhibitor of Kappaβ Kinase (IKKβ)
[36]. Activation of these pathways results in escalation of
the inflammatory response within the surrounding tissues.
Acting together, these responses result in inflammatory-
mediated resistance to the actions of insulin [36–38].

Resistin and RELMs
Rodent resistin
Three independent research groups are credited with
the discovery of resistin. In an attempt to identify the
mechanism by how thiazolidinediones (TZDs) improved
insulin sensitivity, Steppan et al. identified resistin as a
target gene for TZD-mediated down-regulation [39].
Concurrently, Kim et al. identified a serine/cysteine-rich
secretory protein which they termed adipose tissue-specific
secretory factor (ADSF) [40]. Prior to this discovery,
Holcomb et al. first made reference to resistin as Found in
Inflammatory Zone (FIZZ) 3 [41]. The protein was identi-
fied during nucleotide homology searching against mouse
FIZZ1 (also known as RELMα), which had been identified
in the fluid from inflammation-induced bronchiolar lavage
fluid from mice. Since its discovery, the precise function of
resistin remains both controversial and elusive.
In mice, resistin is an 11 kiloDalton (kDa) protein

originating from chromosome 8A1. It is transcribed
from a longer signal sequence-containing precursor,
where it undergoes post-translational cleavage to form a
94 amino acid mature protein [42]. It is highly abundant
in and solely produced in white adipose tissue [39].
Human and mouse resistin share 59 % identity at the
amino acid level with its primary structure containing a
signal sequence, variable N-terminal and a similar repeat
sequence of cysteine residues as is found in the human
isoform (Fig. 1a) [43]. Activation of resistin transcription



Fig. 1 a. Human and Mouse Resistin. Amino acid sequence and secondary structures of human and mouse resistin show differences in folding
patterns between the two species. In contrast to the predominantly β-sheet structure of mouse resistin, allowing it to fold in the lollipop-like
structure, human resistin contains a majority of α-helices, making it unlikely that the tertiary structures of mouse and human resistin are similar.
b: Structural Conformation of Human Resistin and RELMβ. Comparison of the domain structures of Resistin and RELMβ shows 24 % identity in the
variable region (purple; V) and 62 % identity in the C-terminal (blue; C) domain. The signal peptide region is indicated in grey (S). The conserved
cysteine residues of the C-terminal domain are indicated in yellow. Also indicated in green are the cysteine residues unique to resistin and RELMβ,
found in the variable region
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is mediated through CCAAT/enhancer-binding protein
(C/EBP), with TZDs reducing expression of resistin
through the activation of the peroxisome proliferator-
activated receptor (PPAR)γ receptor [42]. In mice, re-
lease of resistin is influenced by both genetics and diet,
causing increased serum levels of resistin mouse models
of obesity. Resistin was also demonstrated to impair
glucose tolerance, leading to the postulation that resistin
caused resistance to insulin [39].
In mice, the N-terminal head domain consists mainly

of an α-helical coiled-coil domain. The C-terminal
domain folds mainly into an anti-parallel β-sheet
conformation [43]. This jelly-roll structure is similar to
other structures such as some viruses [44], octopus he-
mocyanins [45], proprotein convertase subtilisin/kexin
type 9 (PCSK9) [46], and more importantly TNF-α [44].
It is also the putative domain for receptor binding.
Analysis of the crystal structure of murine resistin and
of serum samples show that resistin circulates in two
distinct assembly states. This is most likely as tail-to-
tail hexamers, with possibility of the formation of
trimers.
It has proven difficult to definitively assign

biological properties of resistin in relation to its
rodent functions. This may be, in part, due to differ-
ing regulatory mechanisms for resistin expression
[47]. Secretory profiles of resistin change, depending
on which rodent model and/or study technique is
used [48]. This produced inconsistent or conflicting
reports of serum resistin levels in relation to obesity
and diabetes. However, it is generally accepted that
raised levels of resistin can be found in these animal
models of obesity and diabetes [39]. These levels
increase in response to acute hyperglycemia and
decrease in response to insulin. Resistin itself when
released can also impair the function of insulin, lead-
ing to insulin resistance. Furthermore, resistin inhibits
insulin-mediated glucose uptake in both skeletal
muscle and adipocyte cells. It also stimulates hepatic
glucose production [49].
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Human resistin
With the progression of research into human resistin, it
became apparent that its biological function differed
from that of its rodent counterpart. First and foremost,
resistin mRNA is only found in minor concentration in
human adipocytes [42]. Instead, human resistin is
primarily expressed in monocytic cells, from which it is
secreted [50]. As a result, increasing evidence links
human resistin with the chronic low-grade sub-clinical
inflammation that accompanies obesity rather than the
adipose deposits itself, with a high level of macrophage
infiltration seen in the adipose tissue of obese individuals
[30]. Resistin is therefore postulated to mediate the re-
cruitment of other immune cells by further stimulation
of pro-inflammatory mediators [51]. Coupled with popu-
lation studies linking resistin levels with increased meta-
bolic risk factors and insulin resistance, resistin is
suggested to play a role in the pathophysiology of diabe-
sity through inflammatory contributions [52].
In contrast to the shorter mouse form of resistin, human

resistin is a 12.5 kDa polypeptide consisting of 108 amino
acids [42]. It is split into two distinct domains; the N-
terminal or tail domain and the C-terminal globular head
domain, linked by a flexible neck domain [43].
In humans, the N-terminal head domain also consists

mainly of an α-helical coiled-coil domain. Within the
N-terminal is a cysteine residue (Cys6) critical for
oligomerization of resistin. However, sequence similar-
ity between human and mouse resistin is only 54 % at
the immature amino acid level. Furthermore, predicted
secondary structures of human resistin do not show the
β-sheet jelly roll folding pattern as displayed by the
mouse counterpart (Fig. 1b). Predictions of the second-
ary structure show only two β-sheets flanked on either
side by α-helical structures. Furthermore, a tendency to
form dimers as well as trimers has been shown, faci-
litated by Cys22 [53]. Indeed, analysis of serum resistin
in humans has shown the formation of higher order
multimers [53]. These studies also demonstrate an
increase in the ability of resistin to induce pro-
inflammatory responses with increasing oligomeric size
[54, 55]. This difference in biological properties and
functions may be attributed to the low sequence
homology of the two proteins, as well as location and
functional differences of mouse and human resistin.
Although discovered in 2001, the functional receptor

and subsequent signalling pathway for resistin still
remains elusive. Several putative receptors for resistin
have been proposed in mouse, such as mouse receptor
tyrosine kinase-like orphan receptor 1 (ROR1) [56] and
an isoform of decorin (ΔDCN [57]). However, both of
these receptors are putative receptors for murine resis-
tin, and require further research to solidify their role as
true mouse resistin receptors.
RELMβ
In humans, resistin and RELMβ share a 47 % similarity
at the immature amino acid level. This is only elevated
to 48.5 % following cleavage of the N-terminal signal
sequence. As with resistin, the structure of these RELMs
is split into three distinct domains: (i) a signal sequence
N-terminal, (ii) a middle variable region, and (iii) A
highly-conserved C-terminal domain [49]. The N-terminal
domains of resistin and RELMβ contain a signal sequence
peptide, and share a 39 % sequence similarity. These are
cleaved from the precursors to leave a 90 kDa mature
amino acid sequence for resistin and an 88 kDa mature
amino acid sequence for RELMβ. The variable region
holds the least similarity between the domains, with only
a 24 % identity. However, crucially within this region is a
sole cysteine residue, and is unique to resistin and RELMβ
[58]. This is required for end-to-end oligomerization of
both resistin and RELMβ. The C-terminal domain
consists of a highly conserved cysteine-rich signature
sequence, with identity of 62 %. This region contains the
invariant spacing of highly-conserved cysteine residues,
unique to the RELM family of proteins [40].
Resistin-like molecule (RELM)β or FIZZ2 is the only

other member of the RELM family found in humans
[59]. Located on chromosome 3q13.1, it produces an
8.5 kDa protein [41] with 48.5 % homology to resistin.
Unlike resistin, it is constitutively expressed in the gut,
being secreted from goblet cells into the intestinal lumen
of the proximal and distal colon, and at lower level in
cecum and ileum [60]. It is also located in bronchial
epithelium [61]. Here, it contributes to local immune
response regulation in gut and bronchial epithelial cells,
regulating intestinal barrier function and susceptibility
to inflammation.
Pathologically, RELMβ levels are dependent on intes-

tinal bacteria numbers, with colonization of microbial
flora inducing levels of RELMβ [62]. RELMβ has also
been implicated in the induction of insulin resistance. In
humans levels of RELMβ elevate during high-fat diets
and obesity, increasing resistance to insulin in a manner
similar to resistin [63]. RELMβ has also been found to
be abundantly expressed in foam cells within athero-
sclerotic lesions in human coronary arteries. A role for
RELMβ has been demonstrated in the accumulation of
lipids within these lesions, as well as increased pro-
inflammatory signaling in macrophages [64].

Other RELMs
Two other members of the RELMγ family exist in
rodents, but are not found in humans. RELMα (FIZZ1)
is abundantly expressed in the adipose tissue of rodents,
where it plays a role in the induction of the innate and
adaptive immune responses [41, 65]. RELMγ shows only
41 % sequence homology with resistin. This is due to the
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N-terminus being only distantly related to resistin. How-
ever, the C-terminus shows a high level of homology,
containing the conserved cysteine-rich sequence [66].
The structure of RELMγ is most closely related to that

of RELMα, although tissue expression profiles differ
[58]. In rats, high levels of RELMγ mRNA can be
detected in white adipose tissue, whereas in mice only
minute levels can be detected [66]. This demonstrates a
species-specific gene expression profile. RELMγ has also
been found in nasal respiratory epithelium in rats, where
it was upregulated in response to cigarette smoke. High-
est levels of RELMγ mRNA were found in hematopoietic
tissues, suggesting a cytokine-like role for RELMγ [66].

Resistin function
The discovery that adipose tissue functioned as an endo-
crine gland sparked a new line of research into the struc-
ture and function of adipokines. The term ‘diabesity’ is
used to define the molecular link between adipose tissue
and increased insulin resistance and desensitization [67,
68]. This molecular link offered a new line of research
into biomarkers and treatments for diabesity-related
metabolic complications [67, 68]. However, the story of
resistin is one of mice and men [69]. Structures and
tissue distribution profiles of mouse and human resistin
differ, and to date, there is very little correlation of func-
tion between the two species [47].
In mice, resistin is primarily produced in adipocytes

[39]. Release of resistin from adipose tissue is influenced
by diet and level of visceral fat, increasing circulating
levels of resistin. Neutralization of systemic resistin by
anti-resistin antibodies negatively modulates the effects
of resistin on blood sugar and insulin action, promoting
the uptake of glucose. Thiazolidinediones such as rosig-
litazone have also been shown to downregulate resistin
mRNA levels through activation of PPARγ [39]. In
addition, mouse resistin has been shown to promote in-
sulin resistance by increasing hepatic gluconeogenesis
[70]. It is believed to play a role in adipogenesis, being
expressed at a higher level in pre-adipocytes [40].
What became apparent in the case of resistin was that

observations of a potent effect on insulin resistance in
rodents were not successfully reproduced in humans [71].
This had the effect of decreasing the interest of resistin
amongst pure diabetes researchers. However, interest grew
into the inflammatory role of resistin in diabesity [52].
Human resistin was found to be produced in immuno-
competent cells [50, 72], including those that resided
around adipose tissue, providing a chronic, sub-clinical
low-grade inflammation in diabesity [12].
Structurally, human resistin differs from that of its mur-

ine counterpart [42, 73]. Growth and gonadal hormones
as well as hyperglycemia induce the release of human
resistin [74, 75]. While released within the visceral adipose
tissue environment, resistin acts on adipocytes themselves,
leading to an increase in insulin resistance [76]. Agents
that cause insulin resistance, such as TNF-α, have been
shown to negatively regulate the expression and secretion
of resistin [77], although paradoxically, studies have shown
a contradictory increase in levels of resistin in response to
TNF-α [78]. Resistin is also expressed within the β-cells of
pancreatic islets, co-localizing with insulin [79]. In T2DM,
a significant increase in resistin expression within the
β-cells occurs, suggesting a role for resistin in pancreatic
β-cell regulation [80].
Release of human resistin is mediated by inflammatory

events, such as stimulation with lipopolysaccharide or
the cytokines IL-1, IL-6 and TNF-α [51]. In vivo, resistin
aggravates atherosclerosis through stimulation of mono-
cytes to induce vascular inflammation. Systemic resistin
has also been shown to increase the expression of cell
adhesion molecules on endothelial cells. Increases in
molecules such as intercellular adhesion molecule 1
(ICAM-1), monocyte chemoattractant protein-1 (MCP-1)
and vascular cell adhesion molecule 1 (VCAM-1)
antagonize the effects of the adipokine Adiponectin, and
increase the production of IL-12 and TNF-α. [51, 81].
This, along with resistin’s ability to promote the formation
of foam cells attributes a role of resistin in the initiation of
atherosclerosis [82].
Lately, implications for resistin as a biomarker in cancer

and potential area for therapeutic intervention have been
drawn. Numerous studies have reported elevated levels of
resistin in certain forms of cancer, such as gastroesopha-
geal [83], gastric [84], colorectal [85], endometrial [86]
and postmenopausal breast cancer [87]. These elevated
levels are proposed to initiate the production of further
inflammatory cytokines through activation of the p38
Mitogen-Activated Protein Kinase (MAPK)– NF-κB
pathway [81, 88], a pathway already known to be involved
in the contribution of chronic inflammation to cancer
[89]. Transcription through the p38 MAPK—Nuclear
Factor-Kappa B (NF-κB) pathway produces stromal cell-
derived factor-1, IL-1, IL-6 and TNFα [90]. These cyto-
kines further act to stimulate angiogenesis and metastasis,
cell proliferation and cell differentiation [91]. The upregu-
lation of resistin in these cancers therefore promotes a
vicious cycle of synthesis and release of inflammatory
cytokines further promoting tumor cell progression.
Contrary to resistin is the role of the resistin-like

molecule RELMβ in carcinomas. In vitro overexpression
of RELMβ abolished invasion, metastasis and angiogen-
esis of gastric cancer cells [92]. Several studies analyzing
RELMβ in colon cancer have positively correlated the
expression of RELMβ with tumor progression [93, 94].
Patients with RELMβ expression were shown to have a
significantly longer survival rate than those with negative
RELMβ expression [94]. This implicates RELMβ both as
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a potential therapeutic approach in colon cancer, as well
as its utilization as a biomarker and prognostic tool in
colon cancer.

RETN
The gene encoding resistin, the RETN gene has been
examined by many groups in an attempt to link genetic
variants in the gene with clinical manifestations. Resistin
serum levels are genetically controlled, with up to 70 %
of the variation in circulating resistin levels explained by
genetic factors [95]. Numerous single nucleotide poly-
morphisms (SNPs) have been identified within the RETN
gene [96–98]. However, debate still continues over the
association of SNPs in the RETN gene with BMI [99],
insulin resistance, markers of metabolic syndrome and
T2DM [100]. Although some studies have shown posi-
tive correlation between RETN SNPs and resistin levels
[101, 102], there is no conclusive evidence for the role of
resistin in T2DM in humans.
Most of the focus of resistin SNP analyses has focused

on the RETN -420C > G polymorphism (rs1862513).
Located within the 5′ flanking region of the RETN gene,
this region is involved in the recruitment of the nuclear
transcription factors Sp1/3 [103, 104]. In mutated RETN
-420C > G, the GG phenotype introduces a gain-of-
function mutation, significantly increasing Sp1 binding
to this region [104]. Serum analysis of resistin associated
with the SNP RETN -420C > G appears to confirm a
gain-of-function mutation, with studies demonstrating
an increase in serum resistin concentrations accompany-
ing this SNP [101, 105–107].
There is little direct evidence to link an increase in

serum resistin with acquisition of T2DM, insulin resist-
ance and metabolic syndrome. Often evidence shows that
there is no direct correlation between high serum levels
and metabolic parameters [108, 109]. This lack of direct
evidence for an association of resistin with T2DM, insulin
resistance or metabolic syndrome deterred many investi-
gators from pursuing the role of resistin in T2DM further.
The focus on the role of resistin changed course to look

at inflammatory-related conditions. No direct correlation
was detected when comparing resistin serum levels with
BMI in individuals with T2DM [110]. Visceral adiposity
index however more closely correlates with serum levels
of resistin and other adipokines [111]. More closely,
increasing levels of resistin are correlated with an increase
in pro-inflammatory cytokines, in particular in patients
with metabolic syndrome [112]. Several studies have
correlated increased resistin levels with increased hr-C-
Reactive Protein (CRP) levels and TNF-α [32, 111, 113,
114]. This suggests that increased resistin levels are associ-
ated with increased inflammation.
The focus of resistin research expanded from T2DM and

metabolic syndrome to look at inflammatory-associated
conditions. One study for example linked elevated serum
resistin to an increased risk of stroke in patients with
T2DM [115]. Interestingly, as a broader knowledge of the
role of resistin in inflammation develops, so too does its
role in pathological conditions. One study has demon-
strated a link between elevated serum resistin and Multiple
sclerosis [116]. Subjects with the RETN -420C >G “GG”
phenotype displayed statistically higher serum resistin
levels. Also elevated in this population of patients were
other inflammatory mediators such as TNF-α, IL-1β, and
hs-CRP. Interestingly, another group drew a link between
RETN -420C >G and CRP in inflammatory intracerebral
hemorrhage, showing a parallel increase in serum resistin
and CRP levels [117]. The RETN -420C >G polymorphism
has also been implicated in the increased serum resistin
concentrations found in lipodystrophy which accompanies
combination anti-retroviral therapy in Human Immuno-
deficiency Virus (HIV)-infected individuals [118].
An increasing role for resistin in cancer has emerged

[52]. As well as higher levels of serum resistin detected
in the inflammatory component of several cancer sub-
types, such as gastroesophageal [83], colorectal [119],
endometrial [86] and breast cancers [120]. Both analyses
of the role of RETN -420C > G and serum levels of
resistin have shown positive correlations. In endometrial
cancer, a higher level of serum resistin was detected in
patients with -420C > G mutation [86]. In colorectal
cancer, the RETN -420C > G “CC” phenotype was indica-
tive of a decreased risk of this cancer [119].
Although these studies show a positive increase in the

serum levels of resistin, what is not clear from the findings
is whether elevated serum resistin is a cause of the inflam-
matory response, or is an effect of the particular condition
analyzed. Either way, these findings implicate resistin in
inflammatory-related conditions, opening serum resistin
analysis as a biomarker for these conditions.

A receptor for human resistin
Recently, a putative receptor for human resistin was iden-
tified as Adenylyl cyclase associated protein 1 (CAP-1),
and was shown to directly bind to resistin and initiate a
cascade of inflammatory events in cultured monocytes
[121]. CAP-1 consists of three domains; an N-terminal
domain which associates with adenylyl cyclase, a central
Src Homology 3 (SH3) domain and an actin binding C-
terminal domain [122]. Binding of resistin to CAP-1 was
demonstrated through the SH3 domain, initiating signal-
ling through adenylyl cyclase. This results in activation of
PKA and subsequent initiation of NF-κB, promoting
transcription of pro-inflammatory genes [121] (Fig. 2).
Although labelled as a confirmed resistin receptor,

several questions arise from this suggestion. CAP-1 is a
cytosolic protein and has been shown to be membrane-
associated [122]. However, it displays no transmembrane



Fig. 2 Cellular Regulation of Human Resistin. Activation of gene transcription of human resistin is mediated by intracellular signalling cascades
generated through activation of either TNF receptor α, or through TLR4 activation. Exocytotic secretory processes release resistin into the
extracellular environment. Resistin is postulated to bind to and activate TLR4, potentially resulting in autoregulation of resistin secretion
through a positive feedback mechanism, and/or result in the upregulation of expression of inflammatory cytokines. Alternatively, resistin has
been postulated to bind to and activate CAP-1. The resultant elevation of cAMP induces NF-κB gene expression, mediated by PKA, resulting in
the expression of inflammatory cytokines. Internalization of resistin may occur through endocytotic processes
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domain. As resistin is a secreted protein, the question of
how resistin internalizes to interact with CAP-1 still
remains unclear. Furthermore, in the study itself, a
model of the docking of the structure of mouse resistin
was used to confirm interaction [121]. With differing
secondary structures, it is unlikely that this interaction
can occur.
A second putative receptor for human resistin has been

suggested as Toll Like receptor 4 (TLR4 [90, 123, 124]).
Studies suggest that direct interaction between TLR4 and
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resistin occurs, with resistin competing with Lipopolysac-
charide (LPS) for binding to TLR4 [123]. This interaction
was shown to be independent of CD14 [123]. Further evi-
dence for the role of TLR4 as a resistin receptor came
through the discovery that resistin-induced expression of
SDF1 was mediated through interaction of resistin with
TLR4 on stromal cancer cells [90]. Activation of TLR4 has
been shown to induce gene expression through NF-κB,
through either activation of MEK Kinase 1 (MEKK1)
[125] or p38 MAPK [90]. This would suggest the possibil-
ity of autoregulation of resistin expression levels through
activation of TLR4, as well as the stimulation of expres-
sion of inflammatory cytokines.

Conclusions
The story of the resistin family of adipokines is very
much of mice and men. Vast differences exist between
these adipokine families across species in relation to
existence, expression and tissue specificity. The lack of
homology between human and rodent families of resistin
adds to the intrigue of this family of cytokines.
The physiological role of resistin and RELMβ in the

pathogenesis of human disease remains to be deter-
mined, and leaves several questions unanswered. What
is known is that elevated levels of both resistin and
RELMβ are found in certain inflammatory-based disease
states. Whether elevation of these adipokines is a cause
or a consequence of the disease still remains to be deter-
mined. What causes its elevation if determined to be
causative of an inflammatory condition? What is the effect
of their elevation if found to be consequential to an
inflammatory condition?
The determination of a signalling cascade for both

resistin and RELMβ should shed some light on the un-
derstanding of the role of these adipokines in human
disease. Determination of the mechanisms of control of
expression of these adipokines as well as determination
of the functional receptor and effects on target cells
would add invaluable insight into the biological role of
these adipokines, in normal and pathological states.
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