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RECONSTRUCTION OF ROUND VOIDS IN THE ELASTIC
HALF-SPACE: ANTIPLANE PROBLEM
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We study the reconstruction of geometry (position and size) of round voids located in
the elastic half-space, in frames of antiplane two-dimensional problem. We assume that a
known point force is applied to the boundary surface of the half-space, and we can mea-
sure the shape of the surface over a certain finite-length interval. Then, if the geometry of
the defect is unknown, we construct an algorithm to restore its position and size. Some
numerical examples demonstrate a good stability of the proposed algorithm.

Copyright © 2006 Mezhlum A. Sumbatyan et al. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In the engineering applications of strength theory, the detection and recognition of de-
fects in elastic materials is one of the most important problems of nondestructive eval-
uation. Various methods are used for this purpose, and one of them is founded on the
theory of inverse problems. In order to detect and recognize the image of the void, one
may apply over a boundary of the sample a certain type of load, in order to measure
the boundary deformation caused by this load. Then, one may suppose that the presence
(or absence) of interior defects will influence the measured obtained data. It is also quite
natural to suppose that if there is an interior void in the sample, then its position and ge-
ometry can influence significantly the shape of the deformed boundary. This idea creates
a good basis for defects reconstruction from the measured deformation of the boundary
of loaded samples.

A number of theoretical works were devoted to the inverse problems of this kind, with
applications to the recognition of cracks [1, 5, 8]. Some important papers concern the
uniqueness of the solution, others develop explicit-form analytical results or numerical
algorithms [2, 3]. Unfortunately, much less results are devoted to reconstruction of volu-
metric (nonthin) defects in elastic samples under the same conditions and with the same
type of input data.
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2 Reconstruction of round voids in the elastic half-space

In the present work, we study the antiplane (i.e., scalar) problem of linear isotropic
elasticity in the half-space, with an outer load applied to its boundary surface. We show
that the so-formulated direct problem can be reduced to the Laplace partial differential
equation. Then, we construct Green’s function, which automatically satisfies the trivial
boundary condition over the plane surface of the considered half-space. Such Green’s
function allows us to formulate the direct problem as a single integral equation holding
over the boundary of the void, in the case when a volumetric defect is located in the
elastic half-space. Solution of this integral equation permits to determine the shape of
the boundary surface, if the form of the void is known. Further, we formulate the inverse
problem to restore the geometry of the void from the measured input data, which is the
known deformation of the boundary line over some finite-length interval. A specially
proposed numerical algorithm is suitable to solve this inverse problem. This is reduced to
a sort of minimization of the discrepancy functional. Finally, we give some examples of
the application of the proposed method, in the case of the reconstruction (location and
size) of round voids.

2. Mathematical formulation, the basic BIE, and Green’s function for the half-space

Let us consider the (two-dimensional) antiplane problem about a volumetric flaw with
the boundary L located in the homogeneous and isotropic elastic half-space y = 0 (see
Figure 2.1). The antiplane formulation implies that the components of the displacement
vector u are of the following form:

u(x, y,z) = {0,0,w(x, y)}, (2.1)

where w is the component of the displacement vector in the direction z. Then, the equa-
tion of equilibrium can be simplified to the ordinary Laplace equation (see, e.g., [4])

. ’;w  Pw
pAu+ (A +p)graddivu =0 = w+87y2 =0, (2.2)
where A and p are elastic constants. It is obvious that the only nontrivial components of
the elastic stress tensor, among other six ones, are oy, and o)., which can be represented
in terms of function w(x, y) as follows: 0y, (x, y) = uow/ox, 0,.(x,y) = uow/ay.

In the direct problem, the position and the geometry of the void are known, but in the
inverse problem, they should be determined from some input data. In order to provide
such input data, let us assume that a known tangential point force 0,, = g9 §(x) is applied
to the boundary line y = 0 of the half-space, for example, at the origin (see Figure 2.1).
Due to linearity of the problem, let us represent the full solution of this problem as a
superposition of the two ones: (1) corresponding to the applied load for the fully contin-
uous (i.e., without any void) half-space; (2) corresponding to the problem with the free
boundary line y = 0 and with the void located in the half-space, whose boundary L is
subjected to some tangential stress:

w(x,y) = goo(x,y) +o(x,y). (2.3)
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Figure 2.1. Volumetric flaw in the elastic half-space: antiplane problem.

We imply that both functions ¢° and ¢ satisfy the Laplace equation (2.2). The solution
to the problem in the perfect half-plane, free of void and loaded by an outer point force
0y at the origin (see Figure 2.1), can be found in classical books on the elasticity theory
(see, e.g., [4]):

@(x,y) = — 2070“ In (x* + y?). (2.4)

Now we are ready to consider the half-space with void. Let a void with the boundary
L free of load be located in the elastic half-space under consideration (see Figure 2.1).
Under conditions of the antiplane problem, among all three components of the stress
vector on the boundary curve L, there is the only one, which reads as

ow ow ) ow

Tzzaxznx+0yzny=y(nx$+ny@ =ya, (2.5)

where n is the normal to L. If the upper plane surface y = 0 is loaded at the origin by a
point force gy, then the mathematical formulation of the direct problem is to solve the
Laplace equation (2.2), with the boundary conditions

M _gy= % awl| _
5, V=0 =0, | =0 (2.6)

Then, taking into account representation (2.3) and boundary condition (2.7) for func-
tion ¢°(x, y), we can conclude that the boundary value problem for function ¢(x, y) is
formulated as follows:

%’

9| __
L_ on

?o(x,y) N *¢(x,y) 09
on

Ox2 ayz = 01 @(y = 0) = O)

. (2.7)
L
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Let ®(&,7,x, y) denote Green’s function for the Laplacian in the considered half-space,
that is, the function which satisfies the equation

*d D
a—fz-f—a—’/lzz—(S(E—X)(S(?]—y), y>0,7]20; (28)

in the half-space # > 0 with the trivial boundary condition

oD
oy =0 n=0 (2.9)

Then, following the classical potential theory [10], we can write out the basic integral
representation for the unknown function

-J, (o5 -0 )ai- [ (o5 405
<p(x,y)—L( 95, (Dan)dl 5 +<Dan dl, (2.10)

where we have taken into account the boundary condition (2.7).

Now, applying the limit (x, y) — (X,Y), (X,Y) € L, and using the well-known proper-
ties of the potential of double layer [10], we can reduce the direct problem to a boundary
integral equation (BIE):

Lo06Y) - [ g S En X 1l = FOLY),
(2.11)

f@l%ﬂ;ﬁﬁmm@ﬁxmd

Here Green’s function ®(&,7,X,Y) should be constructed as a solution to (2.8) with
boundary condition (2.9) that is given by the virtual images method in the following
form:

O=— o {ln[x O’ +(y—n)?l+In[(x-&*+(y+n)*]}. (2.12)

Let us show that BIE (2.11) can be rewritten in a more advanced form, when its right-
hand side f(X,Y) is free of any integration. For this aim, by using Green’s integral for-
mula applied to the pair of functions ¢°(&,7) and ®(&,#,x, y) inside the contour L, we
prove that

(2o -0

Then, the summation of (2.13) with the left equality in (2.10) gives
0D 0
o) = | (wo2 -0Vl = [ wiem S (€ ), (2.14)

due to boundary condition (2.6). It should be noted that both the normal n and the
elementary arc-length di are applied at the point (£,7). So, with (x,y) — (X, Y), we come
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to a considerably simpler form of the basic BIE than the one written in (2.11):

w(X,Y)
2

- Lw(f,n)%(&mw)dl =¢’(X,Y), (X,Y)elL. (2.15)

A more detailed representation for the kernel @ in (2.15) can also be given in a finite
form:

D I D

E—a—&,}’lf'i'%nq

_ x—¢ x—&
= Zﬂ{ns[(x_f)Z_F(,,l_i_y)z + (x_£)2+(’1_y)2:| (216)

B n+y n-y
n”[(x—€)2+(11+y)2+(x—f)2+(11—y)2]}’

where ng, n, are direction cosines of the vector n.

3. Calculation of physical quantities and formulation of the reconstruction problem

As soon as integral equation (2.15) is solved, that is, the function w(x, y) is determined,
the displacement field at arbitrary point of the elastic medium can be calculated by using
(2.3), (2.14):

) 0
wiey) =g+ [ wEnGrdl=— e )+ [ wEn Gl )

where the quantity 00/0n is given again by (2.16). After that the components of the stress
tensor can be calculated as oy, = yuow/0dx, 0,, = pow/dy (see Section 2). We thus can cal-
culate all physical quantities at the arbitrary point (x, y) inside the medium. In particular,
the shape of the upper boundary surface (y = 0) is

1

F(x) = —ﬂln|x|+—J —(x—f)ng—nnﬂ
Ty Tl

(=02

From this formula we can easily extract the contribution given by two physically different
components: (1) the deformation of the boundary in the perfect (i.e., free of any void)
half-space under the applied force oy that is given by the first logarithmic term in (3.2);
(2) the contribution given by the influence of presence of the flaw, the second integral
term in (3.2). The latter can be calculated as

_ 1 =8mne—nny
FO(x) - JL (x_ 5)2 +7]2

i1
and gives, as has been said above, the contribution of the defect presence to the deforma-
tion of the boundary surface.
Concrete realization of the proposed ideas is founded on the collocation technique
(see, e.g., [6]). Let us arrange a dense set of nodes (x;, i), i = 1,...,N, on the contour L:
(x5, i) € L, for all i, which subdivides the contour to N small intervals of the length ¢;.

w(&,n)dl. (3.2)

w(&,n)dl, (3.3)
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As follows from the general theory of integral equations of the second kind (see, e.g., [11,
Chapter 1]), if max;(¢;) — 0, then the approximate numerical solution to (2.15) can be
obtained by solving the linear algebraic system

N
> ajwi=¢), i=1,.,N, (3.4a)
j=1
with

o 1

wi = w(xi, yi), 9 =- ﬁ In (xf +y7), di = 5>

1 { Xi — Xj Xi — Xj
ajj = — nx(x-,y-)[ + ]
7o P i) ()’ - x) ()’
Yityi Yi—Ji L
—n(x-,y‘)[ + ]}é’ i# j.
P i)+ ()’ - x) () 1)

(3.4b)

This system is constructed so that the set of the “inner” discrete integration points
{(&j,1j)}, over which the integration is being performed, coincides with the set of the
“outer” nodes {(x;, ¥;)}, which are used to provide the equality between the left- and the
right-hand sides in (2.15). In this case, {(fj, ni)} = {(xi, i)}, and this justifies the method
used to be called the “collocation” technique.

Note that the long elements a;;, as expressed by the last equality in (3.4), are ex-
cluded from the diagonal elements (the case i = j). These elements correspond to the
case when (£,7) = (X,Y) in the kernel (2.16), and they may have a singular behavior as
(&,1) — (X, Y). However, the contribution of such elements to the full sum (2.4) is small
(as max(€;) — 0) when compared with the contribution of the “outer” term in (3.4a)
staying outside the integral, which in the discrete form results in the diagonal element
aii = 1/2 in (3.4). Such an approach allows us to avoid unnecessary troubles connected
with a potentially singular behavior of the kernel in (3.4a) as (§,7) — (X, Y).

It should also be noted that another traditional approach to solve arising integral
equations, like that studied in the present work, is founded on a choice of a set of ba-
sic weighting functions, with further satisfaction of the equation in a weak sense. The
collocation technique we prefer to use here does not require any numerical treatment
of integrals in order to calculate elements of the matrix for respective linear algebraic
system. Our approach can successfully be applied since the real behaviour of the kernel
with (§,%) — (X,Y) is continuous—a classical result of the theory of boundary element
method for kernels arising from the simple Laplace equation [6]. Moreover, for arbitrary
smooth contour, this limiting value is expressed in terms of curvature of the given bound-
ary line L.

The problem of void reconstruction from boundary measurements can be formulated
in the following way. Let the shape of the deformed boundary surface (y = 0), which is
caused by the applied point force 0yd(x), be known on a certain finite-length interval
x € (x~,x") of this boundary line y = 0. In this case, we know the function Fy(x) in (3.3)
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for x € (x~,x"), but we do not know the form of the void, contour L. The task is just to
reconstruct this contour from the given input data for function Fy(x).

Mathematically, the problem can be presented as a (nonlinear) system of two equa-
tions (2.15) and (3.3) for the two unknown functions: (1) function w(&,7), (§,1) € L, (2)
defining equation of the contour L. The considered system seems to be linear with respect
to function w(&,7) but this is so only at first sight, because this function is defined over
the contour L, which is unknown a priori.

In practice, the measurements on the deformation of the boundary surface cannot be
carried out absolutely precisely. This predetermines the input data to be known with a
certain error. Therefore, the proposed algorithm should provide a stability with respect
to small perturbations of the input data.

4. Numerical algorithm and examples of reconstruction in the case of round flaw

The proposed numerical method is founded on the collocation technique described
above. For concrete implementation of algebraic system (3.4), we put in the case of
smooth contour L

2

\/(xi —xi+1)2 + (i _)’i+1)2 +\/(xi —Xi—1)2 +(yi— yi-1)

&= : |
ny(xi, yi) = nf = )’i+12— Vi1 B}
\/(xi+l _xi,l) + ()’i+1 _)/;;1)

Xi—1 — Xi+1 .
) = d d =, 1<i<N,

\/(Xm _xi—l)z + (yie1 — yic1)

V=) + (1 = )"+ (1 —xn)* + (31— )

€1 = 2 >
(4.1)
oy = \/(xN _xl)z +(yn —y1)2 +\/(XN —961\1—1)2 +(yN _)’N—l)z
2 b
x _ J2— )N y_ XN — X2
m= 2 2’ = 2 2’
\/(xz—xN) +(y2— ) \/(xz—xN) +(y2—yN)
. Y1~ YN-1
N — 5
\/(xl —xN—l)2 +(n —)/N—l)2
n{, _ XN-1— X1

\/(x1 —xN—l)2 +(n _)’N—l)z.

Such a construction automatically provides a symmetric solution for symmetric con-
tours.
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These formulas are valid for arbitrary smooth contour L. However, if the flaw is a
round cylinder of the radius a, with its center being located at the point (c, /), then the
above formulas can be written in a more concrete form since

xi=c+acos(Bi), yi=h+asin(Bi), pi=e(i—0.5), s=2§. (4.2)

Under such conditions the reconstruction problem becomes 3-dimensional, in the
sense that this consists of a search of the three parameters , ¢, a. Two different algorithms
can be proposed to resolve this inverse problem.

The first one operates with the set of N + 3 unknown quantities #, ¢, a, and w; (i =
1,...,N) from the system (3.4) (N equations), which has to be considered after substitu-
tion of (4.2) into (3.4). The additional set of required equations may be constructed by
choosing a number of nodes x,, € (x~,x*) (m = 1,...,M) in the equality (3.3) over the
interval where the input data of the measured values Fy(x,,) is collected. If we take M > 3,
then we come to an overdetermined system of N + M relations for N + 3 unknown quan-
tities.

In order to resolve this system of equations, we can pose a problem on minimization
of the discrepancy functional:

mil’l[Ql (h,C,a, {Wl})]’

2

Qi (hyc,a,{w;}) = +

N
Z ws — P

aijwj — @;
j=1

In the case when the input data is given exactly, this functional attains the minimum
min(Q;) = 0 just on the exact contour. The question whether there is another combi-
nation of the sought quantities, which provides the zero value of the functional Q,, is
related to the uniqueness of the solution to the formulated reconstruction problem. This
question is out of the present study, whose principal goal is to propose an efficient con-
crete numerical algorithm of the reconstruction and to test it in the case of round flaws
rather than to investigate (also important in some aspects) questions about solvability
and uniqueness.

Another approach can be founded on explicit (numerical) resolution of system (3.4)
considered as a linear algebraic system only for the values of w;. If this system is repre-
sented in the operator form as

Aw=¢% A= (aj), w=(w), ¢"=(¢}), (i,j=1,...,N) (4.4)
then its inversion is

w=A"¢" = w;=(A""¢"). (4.5)
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Obviously, operator A~! depends on the three parameters: A~! = A~1(h,c,a), so the
substitution of (4.5) into (3.3) results, in the discrete form, in the overdetermined system
of nonlinear equations for parameters 4, ¢, a:

[A*I(h,c,a)fpo]jej =Fy(xp), m=1,...,M. (4.6)

This can also be resolved by a minimization of the discrepancy functional:

min [Q,(h,c,a)],

N CEVE —
Q,(h,c,a) Z(xm ) — (A7 (h,c,@)9°] 1€ — Fo(xm)

(4.7)

M (N - O 2
L > {Z (xm — &) nj '1;271 [A—l(h,c,a)(PO]jEj—Fo(xm)} :
j

By the same reason as in the minimization of functional Q,, (4.3), in the case of exact
input data, a zero minimum of ), corresponds to the exact solution of the inverse prob-
lem under consideration. And we are not able to predict a priori whether this solution is
unique.

By their basic ideas and in some technical aspects, these approaches are different. The
principal difference is that the first algorithm does not require any solution of the direct
problem, as it is formulated in the form of integral equation (2.15), or in the equivalent
discrete form of linear algebraic system (3.4).

Another difference between the minimization of the two functionals, Q; and Q,, is
that the latter is really a usual function of three variables. From this point of view the
minimization of Q, seems to be a simpler problem.

However, any regular method to solve both minimization problems is based on a cal-
culation of the gradient operator of the corresponding functional. For Q;, this can be
found analytically in an explicit form since the dependence of the functional upon w; is
quadratic and explicit, and the dependence on the parameters (h,¢,a) is more complex
but still explicit (in fact, a;; is explicitly written in (3.4b) in terms of (x;, y;), and the latter
clearly contains the three parameters from (4.2)). From this point of view, the determi-
nation of the gradient is a simpler task just in the case of Q,, since for this functional the
gradient can be easily calculated analytically. For the functional Q),, this gradient can be
calculated numerically.

As soon as the method to calculate the gradient of Q; and Q) has been arranged, the
minimization of these functionals can be achieved by some iterative gradient process,
like steepest descent method or conjugate gradient method (see, e.g., [9]). Both iterative
methods converge to the exact solution in the case of linear operator equation, which
corresponds to a quadratic functional. Our inverse problem is nonlinear, so we cannot
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Table 4.1
Input data error h c a Type of result
3.000 0.000 1.000 Exact
0% 3.044 0.001 0.993 Restored
1.47% — 0.7% Relative error
1.500 2.000 1.000 Exact
0% 1.508 2.002 1.003 Restored
0.53% 0.1% 0.3% Relative error
7.000 4.000 5.000 Exact
0% 6.977 3.970 4,983 Restored
0.33% 0.75% 0.34% Relative error
2.000 —5.000 0.300 Exact
0% 2.007 —4.980 0.300 Restored
0.35% 0.4% 0% Relative error

prove strictly that the iterative scheme converges. However, since any smooth functional
is locally quadratic near a minimum, there is a good chance that this iterative method is
convergent.

The most important point is that any iterative method provides a convergence to a
local minimum only. In the case of nonlinear equations, such values of local minima may
be too far from the desired value Q;, = 0.

For this reason, we used in our numerical experiments a version of the method of ran-
dom search contiguous to the one described in detail in [7]. This provides a search of
the global minima by moving step by step among the most promising iterations. When
performing the numerical implementation, we could clearly observe that the minimiza-
tion of ; and Q, gives results very close to each other, but operation with Q, permits
reconstruction within a shorter time of computations.

Some examples of the reconstruction are demonstrated in Table 4.1. For all examples
demonstrated below, we used M = 200 points of measurements over the interval x €
(—5,5) to form the array of the input data, so that x,, = 0.05m, X100 = —0.05m, m =
1,...,M/2. It is clear that with such a choice of the trial points they represent a relatively
uniform set around the applied force.

These results are related to the case of exact input data. The latter was obtained by
a solution of the direct boundary value problem by boundary element technique. The
physical conclusions on Table 4.1 are quite evident.

Then, we studied the stability of the proposed algorithm if the input data is given with
an error. In order to model the input data with a certain error, we first did construct the
solution of respective direct problem, and then arranged some stochastic perturbations of
the so-obtained data. Some results of such a numerical simulation are shown in Table 4.2.

Further increase in the error of the input data leads to Table 4.3.

From the presented results of the numerical simulation, as well as from other numer-
ous calculations performed, the authors come to some important conclusions.
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Table 4.2
Input data error h c a Type of result
1.000 0.000 0.500 Exact
10% 1.013 —0.004 0.512 Restored
1.3% — 2.4% Relative error
4.000 —2.500 1.500 Exact
10% 4.019 —2.524 1.502 Restored
0.47% 0.96% 0.13% Relative error
8.000 5.000 0.100 Exact
10% 7.485 4.259 0.096 Restored
6.44% 14.8% 4% Relative error
8.000 5.000 1.200 Exact
10% 8.010 4.937 1.197 Restored
0.12% 1.26% 0.25% Relative error
Table 4.3
Input data error h c a Type of result
3.000 2.500 2.000 Exact
20% 2.998 2.498 2.002 Restored
0.07% 0.08% 0.1% Relative error
7.000 —2.500 0.600 Exact
20% 6.978 —2.418 0.597 Restored
0.31% 3.28% 0.5% Relative error
8.000 0.000 4.000 Exact
20% 7.858 0.054 3.951 Restored
1.77% — 1.22% Relative error
0.500 —4.500 0.200 Exact
20% 0.521 —4.537 0.202 Restored
4.2% 0.82% 1% Relative error

(1) It is interesting to notice that Table 4.3 in some cases shows better results than
Table 4.2, despite rougher input data. This indicates an important property that the pre-
cision of the reconstruction is less dependent on the error of the input data than on the
geometry of the void, that is, its size and position.

(2) The most critical parameter seems to be the ratio of the radius to the depth, as can
be seen from the third line of Table 4.2. This result is not unexpected and can be explained
by observing that the decrease of the flaw size and the increase of the depth reduce the
amplitude of the free surface deformation.

(3) The most sensitive parameter in view of relative error is the horizontal position of
the void. This can be observed from the relative error lines reported on the tables.
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(4) The results do not depend significantly on the precision of the input data. This
may be connected with the overdetermined character of the input data for the inverse
problem. It also indicates implicitly that the input data randomly perturbed have the
same mean value as precise input data. In other words, the proposed algorithm arranges
automatically something like a filtering of a randomly distributed error.

One of the authors’ next works will be devoted to reconstruction of voids of a more
complex geometry located in the elastic medium.
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