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The main purpose of this paper is to analyze and compare the Hopf bifurcation behavior of a two-axle railway bogie and a dual
wheelset in the presence of nonlinearities, which are yaw damping forces in the longitudinal suspension system and heuristic
creep model of the wheel-rail contact including dead-zone clearance, while running on a curved track. Two-axle railway bogie
and dual wheelset were modeled using 12-DOF and 8-DOF system with considering lateral, vertical, roll, and yaw motions. By
utilizing Lyapunov’s indirect method, the critical hunting speeds related to these models are evaluated as track radius changes.
Hunting defined as the lateral vibration of the wheelset with a large domain was characterized by a limit cycle-type oscillation
behavior. Influence of the curved track radius on the lateral displacement of the leading wheelset was also investigated through 2D
bifurcation diagram, which is employed in the design of a stablemodel. Frequency power spectra at critical speeds, which are related
to the subcritical and supercritical bifurcations, were represented by comparing the two-axle bogie and dual wheelset model. The
evaluated accuracy to predict the critical hunting speed is higher and the hunting frequency in unstable region is lower compared
to the dual wheelset model.

1. Introduction

The prior issue, which should be clarified in railway vehicle
design under rail load, is the dynamic response of the vehicle
having clearances between wheel tread-rail, wheel flange-
rail contacting forces, and dry friction in suspension system.
When the velocity of the railway vehicle increases, the vehicle
evolves into a less stable state and expresses strictly oscilla-
tions due to the velocity dependency of “lateral and yaw cou-
pled” stability, commonly called “hunting” [1]. The motion
dynamics is highly nonlinear by the reason of the effects of
nonconservative wheel-rail creep forces. To design safe and
robust vehicle, it is essential to investigate the influence of the
railway vehicle parameters on the hunting motion. Hunting
is characterized by a limit cycle-type oscillation. The most
important nonlinearities, which have influence parameters of
hunting or chaotic motion occurrence, are classified such as
clearances between the components, the wheel flange contact
forces, and dry friction in suspension components [2]. The

real cause of the hunting phenomenon is the tangential
contact forces in combination with the longitudinal and
lateral suspension forces. “Bifurcation” or “branching” is a
phenomenon that takes place in nonlinear problems, when
their solutions rely upon one or more parameters, which
characterize the problem. As examples of such parameters,
Reynolds number in fluid mechanics, the dimensionless load
in buckling of structures, and the speed of the train in the
problem of bogie oscillations can be given [3]. The stability
assessment in railway industry necessitates the chance to
apply the stability analysis on complex vehicle models under
realistic operation conditions. Polach [4] has applied the
use of nonlinear calculations and bifurcation analysis when
dealing with the running stability during vehicle design and
development in railway industry and discussed the relation-
ship between the bifurcation diagram and the assessment
of safety risk and the dynamic behavior. Wu and Chi [5]
have formulated a suspended single wheelset model, which
was adopted to the roller rig tests to investigate the effect of
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the vehicle parameters on the features of Hopf bifurcation.
The lateral and yaw motions of the wheelset were considered
in their model. Suspension elements and creep forces were
taken into account as linear properties. To study the features
of Hopf bifurcation of the wheelset model, the continuation
method was used and examined the combined influence of
parameters and coupling regions between the parameters.
Kaas-Petersen [6] has analyzed the hunting motion in the
Cooperrider bogie and has revealed that the behavior of the
railway bogie has been strongly influenced by wheel flanges.
If the bogie has wheel without having a flange, a symmetry
breaking bifurcation is emerged with a transitive process,
which is changing from a symmetric periodic oscillation
state to an asymmetric periodic oscillation state. If the bogie
has flanged wheels, which is represented as a dead-band
spring, chaotic behavior appears [7]. Zboinski and Dusza
[8] have investigated the nonlinear lateral stability of railway
vehicles with different pairs of wheel/rail profiles in a curved
track by using self-exciting vibration and bifurcation theories.
Lieh and Haque [9] have studied the excited behavior of
passenger and freight vehicles on a tangent track by the
reason of harmonic variations in the conicity via linear
models and the effect of primary and secondary stiffness on
parametric excitation. Zhang and Dai [10] have built a lateral
mathematical model of railway wheelset to study the effect
of yaw damper on the stability under the rigid constraint
between the wheelset and bogie. Center manifold theorem,
the method of normal form, and Poincare method have been
used to reduce the model to a planar dynamical system and
which kind of bifurcation will occur at the critical speed has
been determined. Ahmadian and Yang [11] have searched
on the analytical representation of Hopf bifurcation and
hunting behavior of a rail wheelset with nonlinear primary
yaw dampers and wheel-rail contact forces.They have proved
that the nonlinearities in the primary suspension and flange
contact contribute significantly to the hunting phenomenon.
The critical speed and the nature of bifurcation are influ-
enced by the nonlinear elements. Reza [12] has investigated
the analytical formulation of bifurcation, nonlinear lateral
stability, and hunting behavior of rail vehicles in a tangent
track by using Bogoliubov method. This model includes also
a nonlinear primary yaw dampers and flange contact. Due
to the three-dimensional creep forces acting between the
wheel and rail, the lateral movement of the wheelset can be
oscillated around the equilibrium position with increasing or
decreasing amplitude over time, even in the case of positive
conicity. Factors such as wheelset yaw and track irregularity
also reinforce this kind of oscillation. The resulting vibration
must remain acceptable to provide certain comfort and safety
requirements.Depending on the design of the railway vehicle,
it may experience severe oscillations, which may be the cause
of the source of disturbance or derailment above a certain
operating speed. The speed at which the railway vehicle
becomes unstable is called “critical speed.” Above the critical
speed, the vehicle is subjected to much higher forces due to
the increasing oscillatingmotion and to the collision between
wheel flange and the rail. The impact between the flange and
the rail is known as the secondary contact point. The contact
point between the wheel tread and rail head is also referred to

as the primary contact point [13]. Two-point contact occurs
in the outer wheel of the leading wheelset of a rail vehicle
moving on a curve: one contact patch among the wheel tread
and the rail head and the other between the flange and the
rail gauge.The two-point contact situation is necessary in the
analysis of hunting and derailment. Piotrowski and Chollet
[14] described the force distribution over the tread and flange
contact zones for a rolling wheelset. The contact forces for
both the contact zones are determined using Kalker’s empir-
ical nonlinear theory under the condition of a rigid wheelset
[15]. Linear and nonlinear critical speeds were obtained
while concentrating the change of the parameter effect in
differing the speeds with altered lateral stiffness in primary
suspension system. Scheffel [16] analyzed the combined effect
of the longitudinal and lateral suspensions on the hunting
stability in a four-wheeler model. According to this study,
the bogie hunting can be restrained if the speed, where
kinematic frequency of the wheelset accompanies the natural
frequency of the bogie vibration, is low compared to the
critical speed of wheelset hunting. True et al. [17] found that
the allowed speed on the curved track and the critical speed
on a tangent track can be higher than the critical speed only in
curves by investigating the quasi-stationary dynamics of the
Cooperrider bogie running on a curved track with a realistic
wheel-rail contact geometric relation.The excitation terms in
the equations of motion that was derived for stability analysis
were validated by using a roller rig model. A comprehensive
approach to the dynamic response to large discrete inputs,
including both suspension andwheel-rail contact nonlineari-
ties, was conducted with a full-scale experimental validation.
It can be stated that irregularities are perturbed continuously
along the track.The approach proposed by stochastic process
theory was applied to the lateral motions of a restrained
wheelset. Full railway vehicle responses were established
as an indication of ride quality and for passenger comfort
assessments. The first measurements of power spectral den-
sity using a specially developed trolley-based measurement
system were carried out. Extensive measurements of the
power spectra of irregularities of the track have been made
on railways resulting in inputs utilized in design [18]. There
is a phase difference between the inputs of the front and rear
wheelsets because the rear wheelsets pass the same portion
of track after the front wheelsets. If the same input to the rear
wheelsets with a time delay was given, the phase difference
can be modeled. The rail joints on the right and left tracks
may be staggered.This is another source of a phase difference,
which causes roll motion of the vehicle. The effects of
staggered rail joints can not be captured by using the 10-DOF
model inwhich the roll degree of freedom is not included [19].
The nonlinear dynamical characteristics of a railway vehicle
are checked into thoroughly by applying two different wheel-
rail contact models: a heuristic nonlinear friction creepage
model derived by using Kalker’s theory and Polach model
including dead-zone clearance. Twomodels arematchedwith
the quasi-static form of the LuGre model to obtain a more
realistic wheel-rail contact model. LuGre model parameters
are determined using nonlinear optimizationmethod, whose
objective is to minimize the error between the output of the
Polach and Kalker model and the quasi-static LuGre model
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for specific operation conditions, in our previous research
[20]. However, in the case of high values of spin, the heuristic
theory leads to unsatisfactory results [21].

In this paper, a low frequency bogie and two-axle
wheelset’s hunting problem of a conventional high speed
railway vehicle were examined with respect to the various
radius of the curved track.Themodels have been constructed
by considering all of the possible design concerns from the
viewpoint of hunting stability which existed in the literature
to estimate the critical hunting speed more accurately. A
complex nonlinear wheel-rail contact relation is applied in
our analysis of the bifurcation for the lateral displacement of
the leading wheelset with respect to the different radius of the
curved track. The results evaluated from the heuristic model
are in good agreement with Kalker’s simplified theory. The
wheel flange force is modeled as a linear spring with a nonlin-
ear damping including a dead zone caused by the wheel-rail
clearance.This investigation emphasizes the influences of the
system suspension nonlinearities and the wheel-rail interface
nonlinearities on Hopf bifurcation. Hunting frequencies and
critical velocities are found by using PSD (power spectral
density) and Lyapunov’s indirect method for bogie and dual
wheelset model. The relationship between the hunting speed
and radius of the curved track parameters of the system is
introduced. Two-dimensional bifurcation diagrams to study
the Hopf bifurcation in the system are demonstrated. It was
deduced that the railway bogie is getting destabilized when
the kinematic frequency of wheelset approaches to a natural
frequency of the bogie on the suspension system. From the
knowledge acquired from this investigation, one concludes
that the critical hunting speed information evaluated from
two-axle bogie model is more accurate as compared with the
dual wheelset model. The acquired results are suitable for
railway industry from the point of view of experimental and
operational systems.

The remainder of this paper is arranged as follows. Sec-
tion 2 contains the formulations of the equations ofmotion of
a two-axle bogie and dual wheelset, respectively. Numerical
analysis of the hunting behavior of these systems is done in
Section 3. Results and discussion are presented in Section 4
and concluding remarks are given in the final section.

2. Formulation of the Equations of Motion of
a Two-Axle Bogie and Dual Wheelset

2.1. Description of the System. Figure 1 is a schematic of
the dual wheelset and bogie system, where stiffness and
damping elements have been incorporated into the sus-
pensions. Figure 2 represents the free-body diagram of
the wheelset. Dual wheelset model is considered to be 8-
DOF system and bogie model is considered to be 12-DOF
system. The difference between the two-axle bogie and dual
wheelsetmodel is that the lateral, vertical, rolling, and yawing
motions of the bogie frame are not considered in the dual
wheelset model; therefore the lateral, vertical, yaw, and roll
motions of the bogie frame are not coupled to the dual
wheelset model. It means that their coordinates are equal
to zero when suspension forces are calculated. The bogie
frames andwheelsets are connected through the suspensions.

Suspensions are modeled with three spring-damper systems
that are capable of movement in the longitudinal, lateral, and
vertical directions. Lateral, vertical, yaw, and roll motions
of the system components (bogie frame and wheelsets) are
coupled through these suspensions.The contact mechanisms
between the wheel and rail surfaces are complex and are of
great importance because they partially govern the dynamic
behavior and hunting stability. The contacts between the
wheel and rail can be classified into primary and secondary
contacts that occur at the interfacial surface and at the wheel
flange and rail side, respectively.The primary contacts induce
nonconservative creep forces in the elliptical contact region.
The secondary contacts impact the rail side when the actual
clearance between the wheel flange and the rail is zero. In
this study, the wheel is assumed to be conical, and the rail is
modeled as possessing a knife-edge and having known lateral
and vertical stiffness. This kind of linear geometry can be
compensated with the stiffness force representing rail/wheel
flange contact. Such action is not adequate for classical two-
point contact (wheel tread/rail, wheel flange/rail). Such type
of contact is more often expected in tramway systems where
curve radii are much smaller, the profiles can be different
than railway ones, wheel and rail wear are usually higher,
and maintenance is usually weaker than in railway systems.
For real nonlinear wheel and rail profiles geometry, influence
of the flange area starts gradually and relatively mildly with
the fluent increase of contact angle corresponding to bigger
lateral wheel/rail shifts. Such a simplification is preferred for
ease of calculation (computational effort). It is claimed that
it is compensable because it compares two identical systems
(two-axle bogie and dual wheelset).

2.2. Wheel-Rail Contact Model. A heuristic contact model,
in which the nonlinear effect of the adhesion limit is incor-
porated, is derived to reveal the creep mechanism. Kalker’s
linear creep theory has been modified with the function of
creep force saturation to evaluate the creep forces acting on
the wheel-rail interface [24, 25]. The unlimited creep forces
and moments at the left and right contact planes are solved
by utilizing Kalker’s linear theory as

𝐹∗𝑤𝐿𝑥𝑖 = −𝑓33
𝜉𝐿𝑥𝑖⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[𝑉 (1 + 𝑎/𝑅𝑦 − 𝑟𝑤𝐿𝑖/𝑟0) − 𝑎𝜓̇𝑤𝑖]
𝑉

𝐹∗𝑤𝐿𝑦𝑖 = −𝑓11
𝜉𝐿𝑦𝑖⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞( ̇𝑦𝑤𝑖 + 𝑟𝑤𝐿𝑖 ̇𝜙𝑤𝑖 − 𝑉𝜓𝑤𝑖)
𝑉

− 𝑓12

𝜉𝐿𝑠𝑝𝑖⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝜓̇𝑤𝑖 − 𝑉/𝑅𝑦 − (𝑉/𝑟0) 𝛿𝐿)
𝑉

𝑀∗𝑤𝐿𝑧𝑖 = 𝑓12
𝜉𝐿𝑠𝑝/𝑦,𝑖⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞( ̇𝑦𝑤𝑖 − 𝑉𝜓𝑤𝑖 + 𝑟𝑤𝐿𝑖 ̇𝜙𝑤𝑖)
𝑉

− 𝑓22
𝜉𝐿𝑠𝑝𝑖⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝜓̇𝑤𝑖 − 𝑉/𝑅𝑦 − (𝑉/𝑟0) 𝛿𝐿)
𝑉
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Figure 1: Schematic of the two-axle railway bogie.
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Figure 2: Free-body diagram of the wheelset.

𝐹∗𝑤𝑅𝑥𝑖 = −𝑓33
𝜉𝑅𝑥𝑖⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[𝑉 (1 − 𝑎/𝑅𝑦 − 𝑟𝑤𝑅𝑖/𝑟0) + 𝑎𝜓̇𝑤𝑖]
𝑉

𝐹∗𝑤𝑅𝑦𝑖 = −𝑓11
𝜉𝑅𝑦𝑖⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞( ̇𝑦𝑤𝑖 + 𝑟𝑤𝑅𝑖 ̇𝜙𝑤𝑖 − 𝑉𝜓𝑤𝑖)
𝑉

− 𝑓12
𝜉𝑅𝑠𝑝𝑖⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝜓̇𝑤𝑖 − 𝑉/𝑅𝑦 + (𝑉/𝑟0) 𝛿𝑅)
𝑉

𝑀∗𝑤𝑅𝑧𝑖 = 𝑓12
𝜉𝑅𝑠𝑝/𝑦,𝑖⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞( ̇𝑦𝑤𝑖 − 𝑉𝜓𝑤𝑖 + 𝑟𝑤𝑅𝑖 ̇𝜙𝑤𝑖)
𝑉

− 𝑓22
𝜉𝑅𝑠𝑝𝑖⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝜓̇𝑤𝑖 − 𝑉/𝑅𝑦 + (𝑉/𝑟0) 𝛿𝑅)
𝑉 ,

(1)

where the subscripts “𝑖” (𝑖 = 1 for the leadingwheelset and 𝑖 =2 for the trailingwheelset) show the positions of thewheelsets
in the railway vehicle and the subscripts 𝐿 and𝑅 represent the
left and right hand sides, respectively.

The saturation constant 𝛼 is calculated by using the
unlimited resultant creep force as

𝛼𝑖 = 1
𝛽𝑖 (𝛽𝑖 −

1
3𝛽2𝑖 +

1
27𝛽3𝑖 )

⋅ [12 tanh {104 (3 − 𝛽𝑖)} + 1
2]

+ 1
𝛽𝑖 [

1
2 tanh {104 (𝛽𝑖 − 3)} + 1

2] ,
(2)

where

𝛽𝑖 = 𝛽𝑅𝑖 + 𝛽𝐿𝑖2
𝛽𝐿𝑖 =

√(𝐹∗𝑤𝐿𝑥𝑖)2 + (𝐹∗𝑤𝐿𝑦𝑖)2

𝜇√(𝑁𝑤𝐿𝑦𝑖)2 + (𝑁𝑤𝐿𝑧𝑖)2
,
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√(𝑁𝑤𝐿𝑦𝑖)2 + (𝑁𝑤𝐿𝑧𝑖)2 = 𝑁𝑤𝐿𝑖

𝛽𝑅𝑖 =
√(𝐹∗𝑤𝑅𝑥𝑖)2 + (𝐹∗𝑤𝑅𝑦𝑖)2

𝜇√(𝑁𝑤𝑅𝑦𝑖)2 + (𝑁𝑤𝑅𝑧𝑖)2
,

√(𝑁𝑤𝑅𝑦𝑖)2 + (𝑁𝑤𝑅𝑧𝑖)2 = 𝑁𝑤𝑅𝑖.
(3)

The vertical and lateral components of normal forces, which
affect the primary contact patch, are determinedwith the help
of the wheelset configuration information as follows:

𝑁𝑤𝐿𝑧𝑖 = −𝐾𝑟𝑧 (𝑧𝑤𝑖 − 𝜆𝑦𝑤𝑖 + 𝑎𝜙𝑤𝑖)
𝑁𝑤𝑅𝑧𝑖 = −𝐾𝑟𝑧 (𝑧𝑤𝑖 + 𝜆𝑦𝑤𝑖 − 𝑎𝜙𝑤𝑖)
𝑁𝑤𝐿𝑦𝑖 = 𝐾𝑟𝑧 (𝑧𝑤𝑖 − 𝜆𝑦𝑤𝑖 + 𝑎𝜙𝑤𝑖) tan (𝛿𝐿 + 𝜙𝑤𝑖)
𝑁𝑤𝑅𝑦𝑖 = −𝐾𝑟𝑧 (𝑧𝑤𝑖 + 𝜆𝑦𝑤𝑖 − 𝑎𝜙𝑤𝑖) tan (𝛿𝑅 − 𝜙𝑤𝑖) .

(4)

The vertical reaction force acting on each wheel is modeled as
a spring force, which is an implicit function of the axle load(𝑊axle = 𝑊ext + 𝑚𝑤𝑔), suspension, and inertial forces of the
wheelset. The flange contact force at the secondary contact
patch is evaluated as a spring reaction force as

𝐹𝑤𝑡𝑖
= 𝐾𝑟𝑦 (𝑦𝑤𝑖 − 𝛿) [12 tanh {104 (𝑦𝑤𝑖 − 𝛿)} + 1

2]
+ 𝐾𝑟𝑦 (𝑦𝑤𝑖 + 𝛿) [12 tanh {104 (−𝑦𝑤𝑖 − 𝛿)} + 1

2] .
(5)

The logistic functions used in (2) and (5) are utilized to
characterize the nonlinear dead-band behaviors of the vehicle
originated from the saturation of the creep constant and the
flange contact without falling any numerical singularity.With
the help of the numerical analysis and the actual contact
mechanism, the saturation constant and flange contact force
proposed are converged to their real values by fusing hyper-
bolic tangents into the functions.

2.3. Derivation of the Equations of Motion. Three sets of
Cartesian coordinate system are depicted in Figure 3. The
coordinate system “𝑥𝐸, 𝑦𝐸, 𝑧𝐸” has its origin at the track
center line and moves at a constant forward velocity 𝑉 with
respect to a fixed inertial reference frame. The coordinate
system “𝑥𝐼, 𝑦𝐼, 𝑧𝐼” is an intermediate frame that is rotated
through an angle 𝜓𝑤𝑖 about the axis 𝑧𝐸. The axes “𝑥𝐵, 𝑦𝐵, 𝑧𝐵”
make up the wheel axle set body coordinate system, which
has its origin at the center of mass [24].

The equations of motion for the bogie frame and
wheelsets in the lateral, yaw, vertical, and roll directions are
based on the following equations [22], respectively.

𝑚𝑏 ̈𝑦𝑏 = 𝐹𝑠𝑦𝑏 + (𝑚𝑏 + 𝑚V𝑏/2)𝑉2𝑅𝑦 − 𝑔𝜙𝑠𝑒 (𝑚𝑏 + 𝑚V𝑏2 )
𝐼𝑏𝑧𝜓̈𝑏 = 𝑀𝑠𝑧𝑏
𝑚𝑏𝑧̈𝑏 = 𝐹𝑠𝑧𝑏 − 𝑚𝑏𝑔 − 𝑚𝑏𝑉2𝜙𝑠𝑒𝑅𝑦
𝐼𝑏𝑥 ̈𝜙𝑏 = 𝑀𝑠𝑥𝑏

𝑚𝑤 ̈𝑦𝑤𝑖 = 𝑚𝑤𝑉2𝑅𝑌 − 𝑚𝑤𝑔𝜙𝑠𝑒 + 𝐹𝑛𝑤𝐿𝑦𝑖 + 𝐹𝑛𝑤𝑅𝑦𝑖 + 𝑁𝑤𝐿𝑦𝑖

+ 𝑁𝑤𝑅𝑦𝑖 + 𝐹𝑠𝑦𝑤𝑖 − 𝐹𝑤𝑡𝑖 + 𝑉2𝑊ext𝑔𝑅𝑦
− 𝑊ext𝜙𝑠𝑒

𝐼𝑤𝑧𝜓̈𝑤𝑖 = −𝐼𝑤𝑦 (𝑉
𝑟0 +

𝑉 sin (𝜙𝑠𝑒)𝑅𝑦 ) ̇𝜙𝑤𝑖 + 𝑅𝑅𝑥𝑖𝐹𝑛𝑤𝑅𝑦𝑖
− 𝑅𝑅𝑦𝑖𝐹𝑛𝑤𝑅𝑥𝑖 + 𝑅𝐿𝑥𝑖𝐹𝑛𝑤𝐿𝑦𝑖 − 𝑅𝐿𝑦𝑖𝐹𝑛𝑤𝐿𝑥𝑖
+ 𝑅𝑅𝑥𝑖𝑁𝑤𝑅𝑦𝑖 + 𝑅𝐿𝑥𝑖𝑁𝑤𝐿𝑦𝑖 + 𝑀𝑛𝑤𝐿𝑧𝑖
+ 𝑀𝑛𝑤𝑅𝑧𝑖 + 𝑀𝑠𝑧𝑤𝑖

𝑚𝑤𝑧̈𝑤𝑖 = −𝑚𝑤𝑉2𝜙𝑠𝑒𝑅𝑦 − 𝑚𝑤𝑔 + 𝐹𝑤𝐿𝑧𝑖 + 𝐹𝑤𝑅𝑧𝑖 + 𝑁𝑤𝑅𝑧𝑖
+ 𝑁𝑤𝐿𝑧𝑖 + 𝐹𝑠𝑧𝑤𝑖

𝐼𝑤𝑥 ̈𝜙𝑤𝑖 = −𝐼𝑤𝑦𝑉(𝑉/𝑅𝑦 − 𝜓̇𝑤𝑖)
𝑟0 + 𝑅𝑅𝑦𝑖𝐹𝑤𝑅𝑧𝑖

− 𝑅𝑅𝑧𝑖𝐹𝑛𝑤𝑅𝑦𝑖 + 𝑅𝐿𝑦𝑖𝐹𝑤𝐿𝑧𝑖 − 𝑅𝐿𝑧𝑖𝐹𝑛𝑤𝐿𝑦𝑖
+ 𝑅𝐿𝑦𝑖𝑁𝑤𝐿𝑧𝑖 + 𝑅𝑅𝑦𝑖𝑁𝑤𝑅𝑧𝑖 − 𝑅𝑅𝑧𝑖𝑁𝑤𝑅𝑦𝑖
− 𝑅𝐿𝑧𝑖𝑁𝑤𝐿𝑦𝑖 + 𝑀𝑤𝐿𝑥𝑖 + 𝑀𝑤𝑅𝑥𝑖 + 𝑀𝑠𝑥𝑤𝑖.

(6)

Themoments generated by the nonlinear longitudinal damp-
ing forces (𝐹𝑑𝑖) are included in vertical suspension moment
(𝑀𝑠𝑧𝑤𝑖). These damping forces can be represented by fourth-
order polynomials of 𝑉𝜓𝑥𝑖 [11].
𝐹𝑑𝑖
= {{{

𝐶1𝑉𝜓𝑥𝑖 + 𝐶2 (𝑉𝜓𝑥𝑖)2 + 𝐶3 (𝑉𝜓𝑥𝑖)3 + 𝐶4 (𝑉𝜓𝑥𝑖)4 󳨐⇒ 𝑉𝜓𝑥𝑖 ≻ 0
𝐶1𝑉𝜓𝑥𝑖 − 𝐶2 (𝑉𝜓𝑥𝑖)2 + 𝐶3 (𝑉𝜓𝑥𝑖)3 − 𝐶4 (𝑉𝜓𝑥𝑖)4 󳨐⇒ 𝑉𝜓𝑥𝑖 ≺ 0

}}}
, (7)

where 𝑉𝜓𝑥𝑖 = 𝑏𝑡𝑖𝜓̇𝑤𝑖 is the relative longitudinal velocity
between the bogies and their wheelsets (which leads to the
yawmotion).The additivemoments generated by these forces
are represented as

𝑀𝑑𝑖 = 𝐹𝑑𝑖𝑏𝑡𝑖 (8)
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Figure 3: Axis systems [24].

The linear creep forces and moments can be arranged in the
following forms by transforming the creep forces defined at
the contact plane into the equilibriumcoordinate system [26].

𝐹𝑤𝐿𝑥𝑖 = 𝐹∗𝑤𝐿𝑥𝑖 − 𝐹∗𝑤𝐿𝑦𝑖𝜓𝑤𝑖.
𝐹𝑤𝐿𝑦𝑖 = 𝐹∗𝑤𝐿𝑦𝑖 + 𝐹∗𝑤𝐿𝑥𝑖𝜓𝑤𝑖
𝐹𝑤𝐿𝑧𝑖 = 𝐹∗𝑤𝐿𝑦𝑖 (𝛿𝐿 + 𝜙𝑤𝑖)

𝑀𝑤𝐿𝑥𝑖 = 𝑀∗𝑤𝐿𝑧𝑖 (𝛿𝐿 + 𝜙𝑤𝑖) 𝜓𝑤𝑖
𝑀𝑤𝐿𝑧𝑖 = 𝑀∗𝑤𝐿𝑧𝑖
𝐹𝑤𝑅𝑥𝑖 = 𝐹∗𝑤𝑅𝑥𝑖 − 𝐹∗𝑤𝑅𝑦𝑖𝜓𝑤𝑖
𝐹𝑤𝑅𝑦𝑖 = 𝐹∗𝑤𝑅𝑦𝑖 + 𝐹∗𝑤𝑅𝑥𝑖𝜓𝑤𝑖
𝐹𝑤𝑅𝑧𝑖 = −𝐹∗𝑤𝑅𝑦𝑖 (𝛿𝑅 − 𝜙𝑤𝑖)

𝑀𝑤𝑅𝑥𝑖 = −𝑀∗𝑤𝑅𝑧𝑖 (𝛿𝑅 − 𝜙𝑤𝑖) 𝜓𝑤𝑖
𝑀𝑤𝑅𝑧𝑖 = 𝑀∗𝑤𝑅𝑧𝑖.

(9)

Thenonlinear heuristic creep forces andmoments can be rep-
resented by their corresponding linear creep force multiplied
by the associated saturation factor such that [26]

𝐹𝑛𝑤𝐿𝑥𝑖 = 𝛼𝑖𝐹𝑤𝐿𝑥𝑖
𝐹𝑛𝑤𝑅𝑥𝑖 = 𝛼𝑖𝐹𝑤𝑅𝑥𝑖
𝐹𝑛𝑤𝐿𝑦𝑖 = 𝛼𝑖𝐹𝑤𝐿𝑦𝑖
𝐹𝑛𝑤𝑅𝑦𝑖 = 𝛼𝑖𝐹𝑤𝑅𝑦𝑖
𝑀𝑛𝑤𝐿𝑧𝑖 = 𝛼𝑖𝑀𝑤𝐿𝑧𝑖
𝑀𝑛𝑤𝑅𝑧𝑖 = 𝛼𝑖𝑀𝑤𝑅𝑧𝑖.

(10)

The position vectors can be formed by using geometric
configuration of the vehicle-rail system as

𝑅𝐿𝑥𝑖 = −𝑎𝜓𝑤𝑖
𝑅𝐿𝑦𝑖 = 𝑎 + 𝑟𝑤𝐿𝑖𝜙𝑤𝑖
𝑅𝐿𝑧𝑖 = 𝑎𝜙𝑤𝑖 − 𝑟𝑤𝐿𝑖
𝑅𝑅𝑥𝑖 = 𝑎𝜓𝑤𝑖
𝑅𝑅𝑦𝑖 = −𝑎 + 𝑟𝑤𝑅𝑖𝜙𝑤𝑖
𝑅𝑅𝑧𝑖 = −𝑎𝜙𝑤𝑖 − 𝑟𝑤𝑅𝑖.

(11)

The suspension forces and moments acting on wheelsets and
bogie, which are induced from the lateral stiffness and yaw
damping of the primary suspension, can be expressed as
follows:

𝐹𝑠𝑦𝑤𝑖 = −2𝐾𝑝𝑦𝑦𝑤𝑖 − 2𝐶𝑝𝑦 ̇𝑦𝑤𝑖 + 2𝐾𝑝𝑦𝑦𝑏 + 2𝐶𝑝𝑦 ̇𝑦𝑏
+ 2𝐾𝑝𝑦𝐿 𝑡1𝜓𝑏 + 2𝐶𝑝𝑦𝐿 𝑡2𝜓̇𝑏 + 2𝐾𝑝𝑦ℎ𝐺𝜙𝑏
+ 2𝐶𝑝𝑦ℎ𝐺 ̇𝜙𝑏

𝐹𝑠𝑧𝑤𝑖 = 2𝐾𝑝𝑧𝑧𝑏 + 2𝐶𝑝𝑧𝑧̇𝑏 − 2𝐾𝑝𝑧𝑧𝑤𝑖 − 2𝐶𝑝𝑧𝑧̇𝑤𝑖
𝑀𝑠𝑥𝑤𝑖 = −2𝐾𝑝𝑧𝑏2𝑡1𝜙𝑤𝑖 − 2𝐶𝑝𝑧𝑏2𝑡2 ̇𝜙𝑤𝑖 + 2𝐾𝑝𝑧𝑏2𝑡1𝜙𝑏

+ 2𝐶𝑝𝑧𝑏2𝑡2 ̇𝜙𝑏
𝑀𝑠𝑧𝑤𝑖 = 2𝐾𝑝𝑥𝑏2𝑡1𝜓𝑤𝑏 − 2𝐾𝑝𝑥𝑏2𝑡1𝜓𝑤𝑖 + 2𝐶𝑝𝑥𝑏2𝑡2𝜓̇𝑏

− 2𝐶𝑝𝑥𝑏2𝑡2𝜓̇𝑤𝑖 + 𝑀𝑑𝑖
𝐹𝑠𝑦𝑏 = −2𝐾𝑝𝑦 (𝑦𝑏 − 𝑦𝑤1) − 2𝐾𝑝𝑦 (𝐿 𝑡1𝜓𝑏 − 𝐿𝑤𝜓𝑤1)

− 4𝐶𝑝𝑦ℎ𝐺 ̇𝜙𝑏 − 2𝐾𝑝𝑦 (𝑦𝑏 − 𝑦𝑤2) + 2𝐾𝑝𝑦 (𝐿 𝑡1𝜓𝑏



Mathematical Problems in Engineering 7

− 𝐿𝑤𝜓𝑤2) − 2𝐶𝑝𝑦 ( ̇𝑦𝑏 − ̇𝑦𝑤2) + 2𝐶𝑝𝑦 (𝐿 𝑡1𝜓̇𝑏
− 𝐿𝑤𝜓̇𝑤2)

𝐹𝑠𝑧𝑏 = −2𝐾𝑝𝑧 (𝑧𝑏 − 𝑧𝑤1) − 2𝐶𝑝𝑧 (𝑧̇𝑏 − 𝑧̇𝑤1)
− 2𝐾𝑝𝑧 (𝑧𝑏 − 𝑧𝑤2) − 2𝐶𝑝𝑧 (𝑧̇𝑏 − 𝑧̇𝑤2)

𝑀𝑠𝑥𝑏 = 𝑏𝑡3 {−2𝐾𝑝𝑧𝑏𝑡3 (𝜙𝑏 − 𝜙𝑤1)
− 2𝐾𝑝𝑧𝑏𝑡3 (𝜙𝑏 − 𝜙𝑤2)} + 𝑏𝑡4 {−2𝐶𝑝𝑧𝑏𝑡4 ( ̇𝜙𝑏 − ̇𝜙𝑤1)
− 2𝐶𝑝𝑧𝑏𝑡4 ( ̇𝜙𝑏 − ̇𝜙𝑤2)} + ℎ𝐺 {−2𝐾𝑝𝑦 (𝑦𝑏 − 𝑦𝑤1)
− 2𝐾𝑝𝑦 (𝐿 𝑡1𝜓𝑏 − 𝐿𝑤𝜓𝑤1) − 4𝐾𝑝𝑦ℎ𝐺𝜙𝑏
− 2𝐶𝑝𝑦 ( ̇𝑦𝑏 − ̇𝑦𝑤1) − 2𝐶𝑝𝑦 (𝐿 𝑡1𝜓̇𝑏 − 𝐿𝑤𝜓̇𝑤1)
− 4𝐶𝑝𝑦ℎ𝐺 ̇𝜙𝑏 − 2𝐾𝑝𝑦 (𝑦𝑏 − 𝑦𝑤2)
+ 2𝐾𝑝𝑦 (𝐿 𝑡1𝜓𝑏 − 𝐿𝑤𝜓𝑤2) − 2𝐶𝑝𝑦 ( ̇𝑦𝑏 − ̇𝑦𝑤2)
+ 2𝐶𝑝𝑦 (𝐿 𝑡1𝜓̇𝑏 − 𝐿𝑤𝜓̇𝑤2)}

𝑀𝑠𝑧𝑏 = 𝑏𝑡1 {−2𝐾𝑝𝑥𝑏𝑡1 (𝜓𝑏 − 𝜓𝑤1)
− 2𝐾𝑝𝑥𝑏𝑡1 (𝜓𝑏 − 𝜓𝑤2)} + 𝑏𝑡2 {−2𝐶𝑝𝑥𝑏𝑡2 (𝜓̇𝑏 − 𝜓̇𝑤1)
− 2𝐶𝑝𝑥𝑏𝑡2 (𝜓̇𝑏 − 𝜓̇𝑤2)} + 𝐿 𝑡1 {−2𝐾𝑝𝑦 (𝑦𝑏 − 𝑦𝑤1)
− 2𝐾𝑝𝑦 (𝐿 𝑡1𝜓𝑏 − 𝐿𝑤𝜓𝑤1) + 2𝐾𝑝𝑦 (𝑦𝑏 − 𝑦𝑤2)
− 2𝐾𝑝𝑦 (𝐿 𝑡1𝜓𝑏 − 𝐿𝑤𝜓𝑤2)}
+ 𝐿 𝑡1 {−2𝐶𝑝𝑦 ( ̇𝑦𝑏 − ̇𝑦𝑤1) − 2𝐶𝑝𝑦 (𝐿 𝑡1𝜓̇𝑏 − 𝐿𝑤𝜓̇𝑤1)
+ 2𝐶𝑝𝑦 ( ̇𝑦𝑏 − ̇𝑦𝑤2) − 2𝐶𝑝𝑦 (𝐿 𝑡1𝜓̇𝑏 − 𝐿𝑤𝜓̇𝑤2)} .

(12)

3. Numerical Analysis of the Hunting Behavior
of the Systems

3.1. Lyapunov’s Indirect Method to Determine the Critical
Speed. This kind of equations of motion has nonlinear
nature. In this method, to calculate the critical hunting speed,
the dynamical equations ofmotion should be expressed in the
state space form as

𝑥̇ (𝑡) = 𝐹 [𝑥 (𝑡)] , (13)

where 𝑥(𝑡) denotes 16-dimensional state vector for wheelset
case and 24-dimensional state vector for bogie case. 𝐹[𝑥(𝑡)]
is also same dimensional nonlinear vector, that is, a function
of the state variables [27, 28]. To obtain the equilibrium
points, the nonlinear algebraic equations (6) must be solved.
Taylor series expansion is applied to the right side of (13) at
the equilibrium point.The linearized version can be obtained
by utilizing the following matrix/vector form as

̇̃𝑥 = 𝐴𝑥 (𝑡) , (14)

where𝐴 ≡ 𝐽[𝑥(𝑡)]𝑥=𝑥𝑒 and 𝐽 is the Jacobian matrix calculated
at the equilibrium point from the linearized system matrix.

With the help of the evaluated eigenvalues of the system,
the hunting stability problem can be clarified.

It can be inferred that when all eigenvalues of matrix
“𝐴” are placed in the left-half complex plane, the equilibrium
point, which corresponds to the actual nonlinear system, is
asymptotically stable. When all eigenvalues of matrix “𝐴”
are placed in the left-half complex plane except at least one
of them being on the imaginary axis, one can not make a
judgement of stability from the linear approximation due to
the marginally stable case. When at least one eigenvalue of
matrix “𝐴” is strictly in the right-half complex plane, the
equilibrium point is unstable for the nonlinear system [29].

3.2. Definition of the Limit Cycle-Type Oscillation. Oscillation
is one of the most important phenomena that occur in
dynamical systems. A system vibrates when it has a nontrivial
periodic solution.

𝑥 (𝑡 + 𝑇) = 𝑥 (𝑡) , ∀𝑡 ⩾ 0, (15)

for some 𝑇 > 0. “Nontrivial” term is used to exclude constant
solutions corresponding to equilibrium points. The image of
a periodic solution in the phase portrait is a closed trajectory,
which is usually called a periodic orbit or a closed orbit [30].

The oscillation of nonlinear systems due to a center
equilibrium point is not structurally stable. Infinitesimally
perturbations may change the type of the equilibrium point
to a stable focus (decaying oscillation) or unstable focus
(growing oscillation).

3.3. Hopf Bifurcation Characteristics of Two-Axle Railway
Bogie. Bifurcation is defined as a change in the equilibrium
points or periodic orbits or in their stability properties, when
a parameter varies. Hopf bifurcation points out a critical
parameter value, bywhich the equilibriumpoint of the system
becomes unstable and produces the limit cycle behavior.

TheHopf bifurcation occurs generally in the supercritical
and subcritical forms as shown in Figure 4.

Supercritical bifurcation indicates the limit cycle and
the stable equilibrium point of the system divided into two
sides of the Hopf bifurcation. Controversially, the subcritical
bifurcation of the system refers to the limit cycle and a
stable equilibrium point found on the same side of the Hopf
bifurcation. The solid lines show a stable limit cycle, and
the dotted lines show a nonstable limit cycle. The speed at
point𝑄, which is named Hopf bifurcation point, is the linear
critical velocity. 𝑃 is the saddle-node bifurcation point. The
speed at point 𝑀 is the nonlinear critical speed. The limit
cycle-type oscillations are generated when the vehicle speed
exceeds the linear critical velocity. If the critical speed at
this point 𝑄 is exceeded, the maximum value of the limit
cycle amplitude increases or decreases progressively as speed
increases or decreases [31, 32]. In the subcritical bifurcation
case, while vehicle speed is left of the point 𝑀, the system
stands absolutely in stable state.The system exhibits hysteresis
phenomenon. When the speed exceeds point 𝑄, the system
suddenly produces significantly limit cycle and jumps to
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Figure 4: Bifurcation forms for railway vehicle.

large stable limit cycle or periodic oscillation. If the speed
reduces until point 𝑃, the periodic oscillation damped to
stable equilibrium position [33]. If the value of the speed
is between 𝑀 and 𝑄 point, one cannot decide about the
characteristic of the system stability. The system tends to
instability when the perturbation is large, by contrast with the
perturbationwhich is small; then the system remains in stable
condition. Stability can be regained only when the vehicle
speed is reduced to 𝑉𝑀 [34].

3.4. Methods of Computation. Several methods exist for solv-
ing nonlinear multibodied equations. Two common meth-
ods are Newton Raphson’s method and the Quasi-Newton
method. Newton Raphson method is a numerical method
for solving simultaneous nonlinear equations. Quadratic
convergence is supplied by this method. The algorithm for
implementing this method is

𝑥𝑘+1 = 𝑥𝑘 − 𝐽−1𝑓 (𝑥𝑘) , (16)

where 𝐽−1 is inverse Jacobian matrix of 𝑓(𝑥𝑘), 𝑥𝑘 is initial
conditions for iterations, and 𝑥𝑘+1 is the next state. Newton
Raphson algorithm terminates only when the function 𝑓(𝑥)
is close to zero. Newton Raphson’s method is less efficient
than Quasi-Newton method. In Newton Raphson’s method,

the Jacobianmatrix has to be evaluated for every iteration but
with the Quasi-Newton method, a single Jacobian matrix is
determined and thus used in the iteration.The algorithms can
be improved by implementing Gauss-Newton, Levenberg-
Marquardt, Trust-Region-Reflective method, and so forth.
For example, Levenberg-Marquardt algorithm is a numerical
optimizationmethod used to reveal the solution of nonlinear
function by minimization over a region of parameters of that
function [35].

Runge-Kutta 4th-order method is a numerical technique
used to solve ordinary differential equation of the form

𝑑𝑦
𝑑𝑥 = 𝑓 (𝑥, 𝑦) ,

𝑦 (0) = 𝑦0.
(17)

This method is utilized to solve high order ordinary dif-
ferential equations or coupled (simultaneous) differential
equations. In the forward Euler method, the information
on the slope or the derivative of 𝑦 at the given time step
to extrapolate the solution to the next time step was used.
Runge-Kutta methods are a class of methods which judi-
ciously utilizes the information on the “slope” at more than
one point to extrapolate the solution to the future time step.
In contrast to multistep methods, the Runge-Kutta method,
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Figure 5: Critical hunting speed variations with respect to the radius of the curved track. (a) Bogie model. (b) Dual wheelset model.

as other one-step methods, only requires the value at the
last time point of the approximate solution and allows one
to carry out calculations under initial conditions which are
natural for equation. Since this method does not make use of
information concerning the solution at previous nodes of the
grid, it allows one to use it directly also for not equally spaced
grids [36–38].

4. Results and Discussion

4.1. Determination of Critical Hunting Speed with respect
to Various Radius of the Curved Track. Lyapunov’s indirect
method was performed on the linearized system to investi-
gate the variation of the critical hunting speed with respect to
the different radius of the curved track parameters, which are
changed between 250 and 10000m. The equilibrium points
were obtained by solving system of nonlinear equation with
Levenberg-Marquardt algorithm iteratively. In order to solve
(13), with zero initial condition, Runge-Kutta method of
order four and the parameter values in “Table 1” were used.
The 8-DOF dual wheelset and 12-DOF bogie model that
considers flange contact, the heuristic creep, and nonlinear
damping, were employed. The simulations were performed
on Matlab&Simulink. The results are given in Figure 5 for
dual wheelset and bogie model.

Comparing critical hunting speeds obtained from Lya-
punov’s indirect method and from numerical simulation, the
relative error is approximately %8,75. The stability of the
original nonlinear system then cannot be determined exactly
using the linearized model.

4.2. Analysis of the Limit Cycle Motion. At the hunting speed,
a self-sustained vibration of the vehicle occurs, and the
resulting motions show the limit cycles in the phase planes.
Numerical simulations are performed with the linear elastic
rail model (𝑛 = 1) and the radius of the curved track
value 𝑅𝑦 = 6250m. The lateral displacement and yaw
rotation phase portraits and the time dependence of lateral
displacement for𝑉, above and below the critical value𝑉cr-NL,
are illustrated in Figures 6–9 both in bogie and in dual
wheelset model, respectively.

One can conclude from below the critical hunting speed
that the vibrations tend to the equilibrium point and stable
motion reaches for freely long time behavior. By increasing
velocity, the vibrations amplitude increases. Above the critical
hunting speed, the vibrations of the limit cycle motion are
preserved and the vibration amplitudes increase for freely
long time.

4.3. Bifurcations of the Leading Wheelset. The wheelset and
bogie considered in this study include several nonlinear
elements, such as the heuristic creep, flange contact, and
nonlinear damping. The dynamic behavior of such a non-
linear system is highly dependent upon its initial state.
As the forward velocity increases, the vehicle becomes less
stable and ultimately exhibits rigorous oscillations [1]. In the
bifurcation theory, appearance of hunting is represented by
Hopf bifurcation of a fixed point. The motion is stable below
a certain “critical” forward velocity (or exhibits a stable fixed
point in phase space). Above the critical speed, the hunting
appears as an undamped or damped vehicle motion through
the tangential forces that depend on velocities through the
creepages relations (the fixed point loses its stability and a
limit cycle bifurcates from it). The decay rate of the phase
portrait of wheelset depends on control parameter. Super-
critical Hopf bifurcation occurs when a stable spiral changes
into an unstable spiral surrounded by a small limit cycle
[39]. The stability and dynamic behavior of the nonlinear
system can exhibit divergent result depending on its initial
conditions [40]. In order to analyze the influence of the radius
of the curved track parameter on the hunting behavior, the
forward speed V varies between 10 and 180m/s. The stable
response of lateral displacements versus speed with respect to
different radius of the curved track values is plotted for 5 sec.
Bifurcation diagrams are drawn for bogie and dual wheelset
model at range of curved track radius of 250m, 500m,
750m, 1000m, 2500m, 6000m, and 10000m, respectively, in
Figures 10 and 11.

It can be derived from the figures that the maximum
lateral displacement is getting larger when the radius of
the curved track decreases and the critical hunting speeds
occurred at lower speed while the radius of the curved track
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Figure 6: 𝑉 = 115m/s ≺ 𝑉cr-NL, 𝑅𝑦 = 6250m. (a) Phase portrait of lateral displacement of bogie. (b) Phase portrait of yaw rotation of bogie.
(c) Time dependence of the lateral displacement of bogie.
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Figure 7: 𝑉 = 120m/s ≻ 𝑉cr-NL, 𝑅𝑦 = 6250m. (a) Phase portrait of lateral displacement of bogie. (b) Phase portrait of yaw rotation of bogie.
(c) Time dependence of the lateral displacement of bogie.
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Table 1: Parameters and their numerical values of the two-axle railway bogie [1, 22, 23].

Parameters Numerical value
Vehicle body, bogie frame, and wheelset masses (kg) 𝑚V𝑏 = 34000,𝑚𝑏 = 3000,𝑚𝑤 = 1800
Nonlinear longitudinal damping coefficients (kNs/m) 𝐶1 = 19.1, 𝐶2 = 514, 𝐶3 = −3112.7, 𝐶4 = 5140
External load (kN) 𝑊ext = 196.2
Acceleration due to gravity (m/s2) 𝑔 = 9.81
Wheel conicity 𝜆 = 0.05
Flange clearance (m) 𝛿 = 0.00923
Friction coefficient 𝜇 = 0.2
Cant angle (rad) 𝜙𝑠𝑒 = 0.0873
Roll and yaw moments of inertia of the bogie frame (kgm2) 𝐼𝑏𝑥 = 2260, 𝐼𝑏𝑧 = 3160
Roll and yaw moments of inertia of the wheelset (kgm2) 𝐼𝑤𝑥 = 915, 𝐼𝑤𝑧 = 915
Primary longitudinal, lateral, and vertical stiffness (kN/m) 𝐾𝑝𝑥 = 86.7, 𝐾𝑝𝑦 = 56.7, 𝐾𝑝𝑧 = 750
Primary longitudinal, lateral, and vertical damping coefficients (kNs/m) 𝐶𝑝𝑥 = 12, 𝐶𝑝𝑦 = 12, 𝐶𝑝𝑧 = 450
Vertical and lateral stiffness (N/m) 𝐾𝑟𝑧 = 62 × 106, 𝐾𝑟𝑦 = 16.17 × 106
Wheel radius (m) 𝑟0 = 0.4575
Half of the track gauge (m) 𝑎 = 0.7176
Lateral creep coefficient (N) 𝑓11 = 6.563 × 106
Lateral/spin creep coefficient (Nm) 𝑓12 = 1.2 × 103
Spin creep coefficient (Nm2) 𝑓22 = 16
Longitudinal creep coefficient (N) 𝑓33 = 6.563 × 106
Half of the primary longitudinal and vertical spring arms (m) 𝑏𝑡1, 𝑏𝑡3 = 0.978
Half of the primary longitudinal and vertical damper arms (m) 𝑏𝑡2, 𝑏𝑡4 = 0.978
Half of the primary lateral spring and damper arms (m) 𝐿 𝑡1, 𝐿 𝑡2 = 1.2
Distance between the wheelset and the bogie frame mass center (m) 𝐿𝑤 = 1.2
Height of the vehicle body mass center above the wheelset mass center (m) ℎ = 1.4
Height of the bogie mass center above the wheelset mass center (m) ℎ𝐺 = 0.44

decreases. It should be noted that use of the fully nonlinear
models could lead to results different than those shown
in both figures. For example, subcritical properties might
eventually be reviled.

4.4. Power Spectral Density Approach. To specify power
spectrum of the lateral displacement of the leading wheelset,
power spectral density approach should be carried out [23].
The result of this analysis is presented for subcritical hunting
speed in Figure 12 and for supercritical hunting speed in
Figure 13. As seen in Figure 12 main frequencies for the bogie
and dual wheelset model are 1.005 and 0.855Hz, respectively.
RMS (root mean square) values for bogie and dual wheelset
model are 100.3711 and 118.4378.(𝑉cr-NL < 𝑉 < 𝑉cr-L) term referred to in Figure 12 states
the speed between the linear and nonlinear critical speed.
Frequency response for the supercritical hunting speed is
illustrated in Figure 13. In Figure 13, main frequencies for
the bogie and dual wheelset model are 2.734 and 2.78Hz,
respectively. RMS values for bogie and dual wheelset model
are 77.9542 and 74.5568, respectively. The hunting frequency
calculated via the dual wheelset model is greater than that
derived using the bogiemodel.The railway bogie loses its sta-
bility when the kinematic frequency of wheelset approaches
to a natural frequency of the bogie on the suspension system.

The individual wheelset kinematic mode can emerge if its
frequency is higher than the bogie frame natural frequencies
[41]. The frequency of the bogie mode is the kinematic
frequency of the coupled wheelset mode. At low speeds,
this kinematic frequency is lower than the bogies natural
frequencies, which are usually around 1Hz. The motion of
the vehicle is primarily determined by the wheel/rail forces
and by the primary suspension forces. The car body moves
without affecting the motion of the vehicle significantly. If
the speed of the vehicle is gradually increased, a special
situation occurs in the kinematic frequency of the vehicle.
Therefore, the car body hunting problem can usually be
solved by increasing the secondary lateral damping ratio. A
well designed vehicle can experience increased but stable
motions near the speed at which the wheelset kinematic
frequency equals the bogie’s natural frequencies.

5. Conclusion

The system dynamic of the two-axle bogie and dual wheelset
was modeled using 12-DOF and 8-DOF system together with
the lateral, vertical, yaw, and roll displacements, respectively.
Phase portraits were drawn to analyze the railway bogie
movement and related limit cycle motion. Runge-Kutta order
of four methods was used to solve the nonlinear equations
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Figure 8: 𝑉 = 130m/s ≺ 𝑉cr-NL, 𝑅𝑦 = 6250m. (a) Phase portrait of lateral displacement of dual wheelset. (b) Phase portrait of yaw rotation
of dual wheelset. (c) Time dependence of the lateral displacement of wheelset.
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Figure 9: 𝑉 = 140m/s ≻ 𝑉cr-NL, 𝑅𝑦 = 6250m. (a) Phase portrait of lateral displacement of dual wheelset. (b) Phase portrait of yaw rotation
of dual wheelset.

of motion. Hopf bifurcation in two-axle bogie and dual
wheelset was also studied through a nonlinear model, which
includes nonlinear wheel-rail contact and nonlinear yaw
damper suspension. Critical hunting speeds were evaluated
with respect to the different radius of the curved track
through Lyapunov’s indirect method and the results were
compared with the simulations in Matlab&Simulink. Long
term behavior exhibits that the oscillations tend to the

equilibrium state for speeds lower than the critical hunting
speed. Stable movement is ensured lower than the critical
speed. When the railway bogie is at critical hunting speed,
the limit cycle motion is raised. Above the critical speed,
the vibrations amplitude increases. The hunting frequencies
of the lateral displacement of the wheelset were calculated
via PSD method for two different models. In consequence
of the simulations, it can be concluded that when the curved
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Figure 10: Bifurcation diagram of the bogie model for the lateral
displacement of leading wheelset with respect to the different radius
of the curved track.
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Figure 11: Bifurcation diagram of the dual wheelset model for the
lateral displacement of leading wheelset with respect to the different
radius of the curved track.

track radius decreases, the critical speed reduces. The critical
hunting speed and hunting frequencies obtained from dual
wheelset model are higher than those derived from two-
axle bogie model. It can be deduced from the analysis done
that the critical speed obtained from two-axle bogie model
becomes more accurate.

Nomenclature

𝑖: Subscript in the nomenclature
referring to position of wheelsets:𝑖 = 1 (leading wheelset) and 𝑖 = 2
(trailing wheelset)𝑎: Half of the track gauge𝑉: Forward speed of the vehicle𝜉𝐿𝑥𝑖, 𝜉𝐿𝑦𝑖, 𝜉𝐿𝑠𝑝𝑖, 𝜉𝐿𝑠𝑝/𝑦,𝑖: Longitudinal, lateral, spin, and
lateral/spin creepages of the left
wheels, respectively𝜉𝑅𝑥𝑖, 𝜉𝑅𝑦𝑖, 𝜉𝑅𝑠𝑝𝑖, 𝜉𝑅𝑠𝑝/𝑦,𝑖: Longitudinal, lateral, spin, and
lateral/spin creepages of the right
wheels, respectively
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Figure 12: Frequency power spectrum for the bogie and dual
wheelset model at stable region (𝑉cr-NL < 𝑉 < 𝑉cr-L).
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Figure 13: Frequency power spectrum for the bogie and dual
wheelset model at unstable region (𝑉 > 𝑉cr-NL).

𝑓11, 𝑓12, 𝑓22, 𝑓33: Lateral, lateral/spin, spin, and longitu-
dinal creep coefficients, respectively𝑅𝑦: Radius of the curved track𝑟0: Nominal (effective) wheelset rolling
radius𝑟𝑤𝐿𝑖, 𝑟𝑤𝑅𝑖: Left and right wheel of the rolling radii,
respectively𝑦𝑤𝑖, 𝑧𝑤𝑖, 𝜓𝑤𝑖, 𝜙𝑤𝑖: Lateral, vertical displacements and yaw,
and roll angular displacements of the
wheelsets, respectivelẏ𝑦𝑤𝑖, 𝑧̇𝑤𝑖, 𝜓̇𝑤𝑖, ̇𝜙𝑤𝑖: Lateral, vertical velocities and yaw, and
roll angular velocities of the wheelsets,
respectively𝐹∗𝑤𝐿𝑥𝑖, 𝐹∗𝑤𝐿𝑦𝑖: Linear creep forces of the left wheels
in the longitudinal and lateral direc-
tions given by Kalker’s linear theory,
respectively𝐹∗𝑤𝑅𝑥𝑖, 𝐹∗𝑤𝑅𝑦𝑖: Linear creep forces of the right wheels
in the longitudinal and lateral direc-
tions given by Kalker’s linear theory,
respectively𝛿𝐿, 𝛿𝑅: Contact angle of the left and right
wheels, respectively
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𝑀∗𝑤𝐿𝑧𝑖: Linear creep moment of the left
wheels in the vertical direction given
by Kalker’s linear theory𝑀∗𝑤𝑅𝑧𝑖: Linear creep moment of the right
wheels in the vertical direction given
by Kalker’s linear theory𝛼𝑖: Saturation constant in the heuristic
creep model𝛽𝑖: Nonlinearity in the heuristic creep
model𝛽𝐿𝑖, 𝛽𝑅𝑖: Nonlinearities of the left and right
wheels in the heuristic creep model,
respectively𝑁𝑤𝐿𝑦𝑖, 𝑁𝑤𝐿𝑧𝑖: Components of normal forces on the
left wheels in the lateral and vertical
directions, respectively𝑁𝑤𝑅𝑦𝑖, 𝑁𝑤𝑅𝑧𝑖: Components of normal forces on
the right wheels in the lateral and
vertical directions, respectively𝑁𝑤𝐿𝑖,𝑁𝑤𝑅𝑖: Resultant normal forces on the left
and right wheels on the equilibrium
axis, respectively𝜇: Coefficient of friction𝜆: Wheel conicity𝛿: Flange clearance𝐾𝑟𝑦, 𝐾𝑟𝑧: Lateral and vertical rail stiffness,
respectively𝑔: Gravitational constant𝜙𝑠𝑒: Cant angle𝑚𝑤: Wheelset mass𝑚V𝑏: Vehicle body mass𝑊ext: External load𝐹𝑤𝑡𝑖: Flange contact force𝑚𝑏: Bogie frame mass𝐹𝑤𝐿𝑥𝑖, 𝐹𝑤𝐿𝑦𝑖, 𝐹𝑤𝐿𝑧𝑖: Linear creep forces at the equilib-
rium coordinate system of the left
wheels in the longitudinal, lateral,
and vertical directions, respectively𝐹𝑤𝑅𝑥𝑖, 𝐹𝑤𝑅𝑦𝑖, 𝐹𝑤𝑅𝑧𝑖: Linear creep forces at the equilib-
rium coordinate system of the right
wheels in the longitudinal, lateral,
and vertical directions, respectively𝑀𝑤𝐿𝑥𝑖,𝑀𝑤𝐿𝑦𝑖,𝑀𝑤𝐿𝑧𝑖: Linear creep moments at the equi-
librium coordinate system of the left
wheels in the longitudinal, lateral,
and vertical directions, respectively𝑀𝑤𝑅𝑥𝑖,𝑀𝑤𝑅𝑦𝑖,𝑀𝑤𝑅𝑧𝑖: Linear creepmoments at the equilib-
rium coordinate system of the right
wheels in the longitudinal, lateral,
and vertical directions, respectively𝐹𝑛𝑤𝐿𝑥𝑖, 𝐹𝑛𝑤𝐿𝑦𝑖: Nonlinear heuristic creep forces of
the left wheels in the longitudinal
and lateral directions, respectively𝐹𝑛𝑤𝑅𝑥𝑖, 𝐹𝑛𝑤𝑅𝑦𝑖: Nonlinear heuristic creep forces of
the right wheels in the longitudinal
and lateral directions, respectively𝑀𝑛𝑤𝐿𝑧𝑖,𝑀𝑛𝑤𝑅𝑧𝑖: Nonlinear heuristic creep moment
of the left and right wheels in the
vertical direction, respectively

𝑅𝑅𝑥𝑖, 𝑅𝑅𝑦𝑖, 𝑅𝑅𝑧𝑖: Longitudinal, lateral, and vertical
components of the contact position
vector on the right wheels,
respectively𝑅𝐿𝑥𝑖, 𝑅𝐿𝑦𝑖, 𝑅𝐿𝑧𝑖: Longitudinal, lateral, and vertical
components of the contact position
vector on the left wheels, respectively𝐹𝑠𝑦𝑤𝑖, 𝐹𝑠𝑧𝑤𝑖: Lateral and vertical suspension
forces of the wheelsets, respectively𝑀𝑠𝑥𝑤𝑖,𝑀𝑠𝑦𝑤𝑖,𝑀𝑠𝑧𝑤𝑖: Suspension moments of the
wheelsets in the longitudinal, lateral,
and vertical directions, respectively𝐼𝑤𝑥, 𝐼𝑤𝑦, 𝐼𝑤𝑧: Roll, pitch, and yaw moment of
inertia of the wheelsets, respectively𝐼𝑏𝑥, 𝐼𝑏𝑧: Roll and yaw moments of inertia of
the bogie, respectively𝐾𝑝𝑥, 𝐾𝑝𝑦, 𝐾𝑝𝑧: Primary longitudinal, lateral, and
vertical stiffness, respectively𝐶𝑝𝑥, 𝐶𝑝𝑦, 𝐶𝑝𝑧: Primary longitudinal, lateral, and
vertical damping coefficients,
respectively𝑏𝑡1, 𝑏𝑡3: Half of the primary longitudinal and
vertical spring arms𝑏𝑡2, 𝑏𝑡4: Half of the primary longitudinal and
vertical damper armsℎ𝐺: Height of the bogie mass center
above the wheelset mass center𝐿 𝑡1, 𝐿 𝑡2: Half of the primary lateral spring
and damper arms𝐿𝑤: Distance between the wheelset and
the bogie frame mass center.
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