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A novel𝑁th order finite element for interior acoustics and structural dynamics is presented, with𝑁 arbitrarily large. The element
is based upon a three-dimensional extension of the Coons patch technique, which combines high-order Lagrange and Hermite
interpolation schemes. Numerical applications are presented, which include the evaluation of the natural frequencies and modes
of vibration of (1) air inside a cavity (interior acoustics) and (2) finite-thickness beams and plates (structural dynamics). The
numerical results presented are assessed through a comparison with analytical and numerical results.They show that the proposed
methodology is highly accurate. The main advantages however are (1) its flexibility in obtaining different level of accuracy (𝑝-
convergence) simply by increasing the number of nodes, as one would do for ℎ-convergence, (2) the applicability to arbitrarily
complex configurations, and (3) the ability to treat beam- and shell-like structures as three-dimensional small-thickness elements.

1. Introduction

Interior cabin noise is a challenging problem in most aircraft
design and has received considerable attention in the last
decade. This is particularly true for rotary wing aircraft
because the propulsive system induces direct acoustic dis-
turbances and fuselage vibrations that, in turn, may cause
unacceptable ride discomfort inside the cabin area hosting
passengers, as well as significant impact on the fatigue-
life of the structures and hence on the maintenance costs
[1–3]. One of the main characteristics of aircraft cabin
noise is the wide range of frequencies of interest, due to
different noise sources: fuselage boundary-layer, airborne,
and structure-borne noise are among the most important
ones [4]. Boundary-layer noise, generated by the shaking
of the fuselage-wall due to external turbulence pressure
fluctuations, is a random, broadband, high-frequency signal.
Airborne noise is a mid/low-frequency tonal noise associ-
ated with periodic pressure fluctuations from the propulsive
system impinging the fuselage structure that, in turn, excites
interior acoustics, whereas structure-borne noise is related
to the acoustic energy generated by periodic vibratory loads
(rotor hub-loads, engine vibrations, gearbox, etc.) acting on
the airframe.

From the above considerations, one may infer that inte-
rior noise prediction is a challenging problem that requires
the development of efficient formulations able to model
accurately the interactions between the fuselage structural
dynamics and the cabin interior acoustics, even in the
presence of wide frequency band signals. An approach that
may be used to address such a problem consists of coupling
Finite-ElementMethods (FEM) for structural dynamics with
Boundary ElementMethods (BEM) for interior acoustics [5].
However, in several practical applications both standard FEM
and BEM methods become inaccurate and computationally
intensive when the number of elements needed to model the
problem becomes large [6]. In fact, the accuracy of these
methods strictly depends on both the number of nodes used
in the model and the order of the shape functions used to
interpolate the solution within each element: a rule of thumb
to maintain accuracy in both methods is to have six linear
or three parabolic elements per wavelength [6]. Moreover,
in several practical applications FEM are more efficient than
BEM for the numerical solution of interior acoustic problems
[7].

In the last few years, considerable work has been done
to improve the prediction capabilities of FEM algorithms
in analyzing structural dynamics/interior acoustics problems
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characterized by midfrequency signals [8, 9]. Among these,
we can mention the Galerkin least-squares finite-element
method for the solution of the two-dimensional Helmholtz
equation [10], the Galerkin residual-free bubbles method [11,
12], the smoothed FEM using cubic spline polynomial func-
tions in hexahedral elements [13], and the isogeometric FEM
[14]. During the years, very accurate FEM methods suited
for structural dynamics and fluid dynamics applications have
been developed; among these, it is worth mentioning the
Spectral Finite-Element Method (SFEM), based on Lagrange
polynomials on the Gauss–Lobatto–Legendre grid [15], the
Fourier transform-based andWavelet transform-based spec-
tral FEM [16, 17], the hierarchical 𝑝-FEM [18–20], and 𝐶1-
FEM methods based upon isoparametric Hermite elements
[21, 22]. Since its origin, SFEMhave been successfully applied
in several fields of the physics and applied sciences: acoustics,
fluid dynamics, heat transfer, and structural dynamics. In
mechanical/aeronautical engineering they are widely used
in wave propagation, in both homogeneous and inhomo-
geneous structures [15, 23], in structural health monitoring
applications [24], as well as in structural dynamics of rotating
beams [25].

In this paper, we concentrate on finite elements. This
methodology is widely used in engineering and science appli-
cations [26, 27] and is extensively analyzed from both practi-
cal and theoretical points of view [20, 28–30]. Specifically, we
propose a new efficient and accurate finite-element method-
ology, suited for the analysis of both structural dynamics
and interior acoustics. The formulation proposed here is
a user-friendly evolution of the methodology developed in
the past by the authors and their collaborators. This was
presented in [31–38], with increasing level of algorithmic
sophistication. This work is to be understood as a first
step towards the development of a highly accurate finite-
element formulation for the evaluation of the natural modes
of vibration of the air inside a cavity (interior acoustics)
and/or of an elastic structure (structural dynamics), for
relatively high spatial frequencies (specifically higher than
those thatmay be efficiently obtainedwith themethodologies
presently available), so as to make the technique useful for
structural acoustics applications, which involve the coupling
of structure and air. Specifically, the finite-element method-
ology presented here is based upon a combination of two
important techniques: (1) the three-dimensional extension of
the Coons patch technique [39–41] and (2) the high-order
Lagrange and Hermite interpolation schemes [42–44]. This
combination is very powerful and yields the distinguishing
feature of combining high efficiency (with the possibility
of capturing relatively high spatial frequencies, as required
in aeroacoustics applications), with user-friendliness, giving
a finite element that is very accurate and computationally
efficient. More interestingly, it has the unique feature of being
flexible, in the sense that one may increase the order of
the scheme accuracy (𝑝-convergence) just by changing the
number of nodes (as one would for ℎ-convergence). Another
important feature is its applicability to arbitrarily complex
configurations, using always the same type of element. In
particular, the formulation covers both interior acoustics and
structures and is able to model beams and plates, which are

to be treated as three-dimensional small-thickness structures.
The above characteristics are important in that the technique
proposed here is envisioned within the context of fully
automatedmultidisciplinary optimal design [45]. In addition
the following two features (not all simultaneously present in
other finite elements currently available for aeroacoustics)
appear important: (1) the element captures modes with rel-
atively high spatial frequencies (as essential for aeroacoustics
utilization) and does so efficiently, so as to give good results
with relatively few elements, an important feature when
repeated calculations occur, as in automated optimization,
and (2) the element is user-friendly.

2. Preliminaries: Lagrange and
Hermite Interpolation

The formulation presented here involves a judicious com-
bination of high-order Lagrange and Hermite interpolation
polynomials [42–44], which are briefly reviewed here. First,
we address the two-point interpolation polynomials (needed
in Sections 3–5), and then we consider the𝑁-point interpo-
lation, with𝑁 arbitrarily large (used in Section 6).

The Two-Point Lagrange and Hermite Interpolation Polyno-
mials. Here, we discuss the two-point Lagrange and Hermite
interpolation polynomials [42–44]. Consider a function 𝑢 =𝑢(𝜂), defined over the interval [0, 2𝑁]. Let us divide the
interval [0, 2𝑁] into 𝑁 subintervals, for which we introduce
a local coordinate 𝜉, so as to have that the end points of each
subinterval are given by 𝜉 = ±1. Within each subinterval, the
Lagrange linear interpolation is given by

𝑢 (𝜉) ≃ 𝑢+𝐿+ (𝜉) + 𝑢−𝐿− (𝜉) , with 𝜉 ∈ [−1, 1] , (1)
where 𝑢± = 𝑢(±1) denotes the values of 𝑢(𝜉) at the end points,
whereas the Lagrange first-order interpolation polynomials𝐿±(𝜉) are given by

𝐿+ (𝜉) = 12 (1 + 𝜉) ,
𝐿− (𝜉) = 12 (1 − 𝜉) .

(2)

The resulting interpolated function over the whole interval[0, 2𝑁] is continuous (class C0) and piecewise linear. It will
be referred to as the one-dimensional first-order Lagrange
interpolation.

On the other hand, within each subinterval, the standard
Hermite interpolation is

𝑢 (𝜉) = 𝑢+𝑀+ (𝜉) + 𝑢−𝑀− (𝜉) + 𝑢󸀠+𝑁+ (𝜉) + 𝑢󸀠−𝑁− (𝜉) ,
with 𝜉 ∈ [−1, 1] , (3)

where 𝑢± denotes the values of 𝑢(𝜉) at 𝜉 = ±1 and 𝑢󸀠± denotes
the values 𝑢󸀠(𝜉) = 𝑑𝑢/𝑑𝜉 at 𝜉 = ±1, whereas the Hermite
interpolation polynomials𝑀±(𝜉) and𝑁±(𝜉) are given by

𝑀± (𝜉) = 14 (2 ± 3𝜉 ∓ 𝜉3) ,
𝑁± (𝜉) = 14 (∓1 − 𝜉 ± 𝜉2 + 𝜉3) .

(4)
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The resulting interpolated function in [0, 2𝑁] is continuous
with its first derivative (class C1) and is piecewise cubic. It
will be referred to as the one-dimensional third-order Hermite
interpolation.

The 𝑃-Node Lagrange and Hermite Interpolation Polynomials.
Here, we review the 𝑃-node Lagrange and Hermite interpo-
lation polynomials [42, 44].

Let us consider first the 𝑃-node Lagrange interpolation;
namely,

𝑢 (𝜉) = 𝑁∑
𝑘=0

𝑢𝑘𝐿𝑘 (𝜉) , (5)

where 𝑢𝑘 = 𝑢(𝜉𝑘),
𝑁 = 𝑃 − 1, (6)

is the total number of subintervals between the 𝑃 nodes 𝜉𝑘
(𝑘 = 0, . . . , 𝑁), and

𝐿𝑘 (𝜉) = 𝑁∏
𝑗=0
𝑘 ̸=𝑗

𝜉 − 𝜉𝑗𝜉𝑘 − 𝜉𝑗 (𝑘 = 0, . . . , 𝑁) . (7)

[Throughout the paper 𝜉0 and 𝜉𝑁 coincidewith the end points
of the interval under consideration.]

In particular, if 𝑁 = 2, 𝜉 ∈ [−1, 1], and 𝜉± = ±1,
we have 𝐿±(𝜉) = (1/2)(1 ± 𝜉), in agreement with (2). Note
that the Lagrange interpolation polynomials 𝐿𝑘(𝜉) satisfy the
standard interpolation condition

𝐿𝑘 (𝜉𝑗) = 𝛿𝑘𝑗 (𝑗, 𝑘 = 0, . . . , 𝑁) . (8)

It is well known that, for 𝑁 > 7, the Lagrange
interpolation polynomials are unstable if 𝜉𝑘 are uniformly
spaced [44]. However, the instability disappears if 𝜉𝑘 coincide
with the Gauss quadrature abscissas. Unfortunately, the
Gauss quadrature abscissas do not include the end points
of the interval. The Gauss–Lobatto quadrature scheme on
the other hand includes these points and is not affected by
the above instability issue. Accordingly, in the case of high-
accuracy schemes, 𝜉𝑘 used in this paper coincide with the
Gauss–Lobatto abscissas.

Next, let us consider the 𝑃-node extension of the two-
point Hermite interpolation presented in (3) and (4). There
exist two possible approaches.Thefirst is to increase the order
of the derivatives at the end points.The other consists in using
as interpolation parameters the function and its first deriva-
tive not only at the end points but also at additional interior
points. As shown in [36], the latter is the most convenient
(and definitely the most user-friendly). Accordingly, here we
concentrate on such an approach.

In analogy with the third-order formulation (see (3)), we
have

𝑢 (𝜉) = 𝑁∑
𝑘=0

𝑢𝑘𝑀𝑘 (𝜉) + 𝑁∑
𝑘=0

𝑢󸀠𝑘𝑁𝑘 (𝜉) , (9)

where the polynomials𝑀𝑘(𝜉) and𝑁𝑘(𝜉) are given by [43]

𝑀𝑘 (𝜉) = 𝜉 − 𝑎𝑘𝜉𝑘 − 𝑎𝑘
𝑁∏
𝑗=0
𝑘 ̸=𝑗

(𝜉 − 𝜉𝑗)2
(𝜉𝑘 − 𝜉𝑗)2 =

𝜉 − 𝑎𝑘𝜉𝑘 − 𝑎𝑘 [𝐿𝑘 (𝜉)]2 ,

𝑁𝑘 (𝜉) = (𝜉 − 𝜉𝑘) 𝑁∏
𝑗=0
𝑘 ̸=𝑗

(𝜉 − 𝜉𝑗)2
(𝜉𝑘 − 𝜉𝑗)2 = (𝜉 − 𝜉𝑘) [𝐿𝑘 (𝜉)]

2 ,
(10)

with 𝑎𝑘 obtained by imposing

1𝜉𝑘 − 𝑎𝑘 +
𝑁∑
𝑗=1
𝑘 ̸=𝑗

2𝜉𝑘 − 𝜉𝑗 = 0. (11)

These polynomials satisfy the Hermite interpolation condi-
tions

𝑀𝑘 (𝜉𝑗) = 𝛿𝑘𝑗,
𝑀󸀠𝑘 (𝜉𝑗) = 0,
𝑁𝑘 (𝜉𝑗) = 0,
𝑁󸀠𝑘 (𝜉𝑗) = 𝛿𝑘𝑗.

(12)

Indeed, it is apparent that the polynomials𝑀𝑘(𝜉) and 𝑁𝑘(𝜉)
vanish with their first derivatives at 𝜉 = 𝜉𝑗, for all 𝑗 ̸= 𝑘
(see (8)). Thus, we only have to verify what happens when𝑗 = 𝑘. It is apparent that𝑀𝑘(𝜉𝑘) = 1. In addition, taking the
logarithmic derivative of𝑀𝑘(𝜉), we have

𝑀󸀠𝑘 (𝜉)𝑀𝑘 (𝜉) =
d
d𝜉 ln [𝑀𝑘 (𝜉)] = 1𝜉 − 𝑎𝑘 +

𝑁∑
𝑗=0
𝑘 ̸=𝑗

2𝜉 − 𝜉𝑗 , (13)

which yields,𝑀󸀠𝑘(𝜉𝑘) = 0 (see (11)). Moreover, it is apparent
that𝑁𝑘(𝜉𝑘) = 0. In addition, we have

𝑁󸀠𝑘 (𝜉) = [𝐿𝑘 (𝜉)]2 + 2 (𝜉 − 𝜉𝑘) 𝐿𝑘 (𝜉) 𝐿󸀠𝑘 (𝜉) , (14)

which yields 𝑁󸀠𝑘(𝜉𝑘) = 1 (see (8)). In summary, 𝑀𝑘(𝜉) and𝑁𝑘(𝜉) satisfy all the conditions in (12).
The polynomials have degree 2𝑁 + 1 = 2𝑃 − 1. We will

refer to this as the interpolation of order 2𝑁 + 1.
3. Motivation: Hermite Brick and
BVD Problem

In order to set this work in the proper context, we present
some details of the formulation for the so-called Hermite
brick.This allows us tomotivate the introduction of the family
of high-order elements proposed here.

Third-Order Hermite Brick. In order to place the finite-
element family proposed here in the proper perspective, let
us consider a drawback of the Hermite interpolation. To this
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end, assume that the problem is defined in a topologically
hexahedral region. Let us subdivide the region into topolog-
ically hexahedral subregions, here referred to as the brick,
which are described by the mapping

x = x (𝜉𝛼) = x (𝜉1, 𝜉2, 𝜉3) = x (𝜉, 𝜂, 𝜁) , (15)

where 𝜉𝛼 ∈ [−1, 1] (𝛼 = 1, 2, 3) are curvilinear coordinates,
whereas x = x(𝜉𝛼) is a suitably smooth function. [Sometimes
it is more convenient to use the symbols 𝜉𝛼 (𝛼 = 1, 2, 3); other
times we prefer to use (𝜉, 𝜂, 𝜁). Accordingly, we use (𝜉1, 𝜉2, 𝜉3)
and (𝜉, 𝜂, 𝜁) interchangeably.]

In this section, we use the third-order Hermite inter-
polation in all directions (for both geometry and unknown
function).

This yields the following interpolation for the unknown𝑢(𝜉𝛼); namely,

𝑢 (𝜉𝛼) = ∑
s
(𝑢s𝑃s (𝜉𝛼) + 3∑

𝛽=1

𝑢(𝛽)s 𝑄(𝛽)s (𝜉𝛼)

+ ∑
𝛽,𝛾∈𝐼𝛽𝛾

𝑢(𝛽𝛾)s 𝑅(𝛽𝛾)s (𝜉𝛼) + 𝑢(123)s 𝑆123s (𝜉𝛼)) .
(16)

The symbol∑s, with s = (𝑠1, 𝑠2, 𝑠3), where 𝑠𝛼 stands for either
+ or −, is understood as a sum that spans over the eight
values of s, which correspond to the eight vertices of the brick.
Furthermore, the symbol 𝑢(𝛽) denotes the partial derivative
with respect to 𝜉𝛽: 𝑢(𝛽) = 𝜕𝑢/𝜕𝜉𝛽. Similarly, we have 𝑢(𝛽𝛾) =𝜕2𝑢/𝜕𝜉𝛽𝜕𝜉𝛾 and 𝑢(123) = 𝜕3𝑢/𝜕𝜉1𝜕𝜉2𝜕𝜉3. In addition, note
that the Hermite interpolation scheme requires only the
nodal values of the function and its first partial derivatives in
each direction. No second repeated derivative with respect to
the same variable arises. Accordingly, the second-derivative
summation spans only over the mixed derivatives, and hence𝐼𝛽𝛾 = [(1, 2); (2, 3); (3, 1)]. Moreover, the term 123 is the only
mixed third-order derivative. Finally,𝑃s(𝜉𝛼),𝑄𝛽s (𝜉𝛼),𝑅𝛽𝛾s (𝜉𝛼),
and 𝑆123s (𝜉𝛼) are suitable products of theHermite polynomials
in (4). For instance,

𝑃s (𝜉𝛼) = 𝑀𝑠1 (𝜉1)𝑀𝑠2 (𝜉2)𝑀𝑠3 (𝜉3) ,
𝑄(1)s (𝜉𝛼) = 𝑁𝑠1 (𝜉1)𝑀𝑠2 (𝜉2)𝑀𝑠3 (𝜉3) ,
𝑅(12)s (𝜉𝛼) = 𝑁𝑠1 (𝜉1)𝑁𝑠2 (𝜉2)𝑀𝑠3 (𝜉3) ,
𝑆(123)s (𝜉𝛼) = 𝑁𝑠1 (𝜉1)𝑁𝑠2 (𝜉2)𝑁𝑠3 (𝜉3) .

(17)

In summary, for the three-dimensional third-order Her-
mite interpolation scheme, the finite-element unknowns
are the nodal values of (1) the unknown function, (2) its
three first-order partial derivatives, (3) its three second-order
mixed derivatives, and (4) its third-order mixed derivative𝜕3𝑢/𝜕𝜉1𝜕𝜉2𝜕𝜉3. This yields a total of eight unknowns per
node, out of which only one is the nodal value of the function,
the other seven being related to the various derivatives. The
finite element described above will be referred to as the third-
order Hermite brick.

The expressions in (17) provide the local finite-element
shape functions. They may be assembled to yield a global
finite-element interpolation over the whole block, of the type

𝑢 (𝜉𝛼) = 𝑀∑
𝑗=1

𝑧𝑗𝜓𝑗 (𝜉𝛼) , (18)

where the unknowns 𝑧𝑗 comprise the values of 𝑢 and of all
the partial derivativesmentioned above, evaluated at the𝑀 =(𝑁 + 1)3 nodes. On the other hand, 𝜓𝑗(𝜉𝛼) are the global
shape functions [20], obtained by assembling the local shape
functions in (17).

The Base Vector Discontinuity (BVD) Problem. The third-
orderHermite brick is seldomused, because of a problem that
may arise at the interface of two or more bricks. Specifically,
the issue arises when the coordinate lines of two adjacent
bricks present a discontinuity, namely, when the covariant
base vectors

g𝛼 (𝜉𝛼) = 𝜕x𝜕𝜉𝛼 (𝛼 = 1, 2, 3) , (19)

which are tangent to the coordinate lines, are discontinuous
(either in magnitude or direction). In this case, the partial
derivatives of a function 𝑢(𝜉𝛼) with respect to 𝜉𝛽 are given
by

𝜕𝑢𝜕𝜉𝛽 = g𝛽 ⋅ grad 𝑢 (𝛽 = 1, 2, 3) , (20)

and are discontinuous. As far as the first-order derivatives
are concerned, the problem is removed by assuming as
unknowns the values of the Cartesian coordinates of grad 𝑢.
The first-order partial derivatives may then be obtained using
(20).

The problem, however, remains for the second-order
derivatives, because, in order to express them in terms
of Cartesian components, one needs the complete Hessian
matrix, namely, all the second-order derivatives, and not only
the mixed ones, which are the only ones utilized in the three-
dimensional Hermite interpolation. Similar considerations
hold for the third-order derivatives. The problem discussed
above will be referred to as the BVD problem (Base Vector
Discontinuity problem). [It may be noted that the Hermite
scheme is not limited to the third order. Higher order
schemesmay be easily introduced. However, these extensions
are also subject to the BVD problem, and hence of little
interest here.]

In order to remedy the problem, various unsatisfactory
attempts have been considered by the authors and their
collaborators and are summarized in [31, 32]. The problem
was resolved in [33–38] with the introduction of the Coons
patches [39–41]. The corresponding approach is addressed
here, along with recent developments.

4. The Coons Patch and Its
Three-Dimensional Extension

Throughout the rest of this paper, the region of definition
of the problem under consideration consists of the union
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of topologically hexahedral domains, referred to as blocks,
which, in analogy with (15), are described by the mapping

x = x (𝜂𝛼) = x (𝜂1, 𝜂2, 𝜂3) , with 𝜂𝛼 ∈ [𝑎𝛼, 𝑏𝛼] . (21)

[This allows for sufficient generality, since this subdivision
may be easily obtained for any region of interest in practical
applications.] Then, the intervals [𝑎𝛼, 𝑏𝛼] are divided into𝑁𝛼
subintervals (not necessarily uniform, in analogy with (5)).
By doing this, each domain (block) has been subdivided into
subdomains called bricks, which are described by (15). In the
rest of the paper, the term “element” is identifiedwith the term
“block.”However, a blockmay consist of a single brick (single-
brick element).

The various formulations presented are assumed to be
isoparametric, in the sense that the same type of interpolation
scheme is used for the geometry and the unknown.

Thefinite-element family proposed here, which, aswewill
see, is not affected by the BVD problem, is based upon an
approach introduced by Coons [39–41], for approximating
a quadrilateral surface in terms of its four edges, namely,
generating a suitable quadrilateral surface of which we know
only its four edges. The resulting surface is known as the
Coons patch and is illustrated here, along with its three-
dimensional extension.

The Coons patch technique is also known as the transfi-
nite interpolation, introduced in [46, 47].

TheCoons Patch.TheCoons patchwas introduced to describe
geometries. Accordingly, the scheme is discussed in rela-
tionship with the geometry, which is also less cumbersome
to describe. This yields no loss of generality, because, as
mentioned above, we use an isoparametric formulation.

Let x0(𝜉, 𝜂), with 𝜉, 𝜂 ∈ [−1, 1], describe a generic
topologically quadrilateral surface patch (see Figure 1). Let

x = x±1 (𝜂) = x0 (±1, 𝜂) ,
x = x±2 (𝜉) = x0 (𝜉, ±1) (22)

be the equations that describe the four edges of the patch, and
let

x+− = x0 (1, −1) = x+1 (−1) = x−2 (1) ,
x++ = x0 (1, 1) = x+1 (1) = x+2 (1) ,
x−+ = x0 (−1, 1) = x−1 (1) = x+2 (−1) ,
x−− = x0 (−1, −1) = x−1 (−1) = x−2 (−1)

(23)

denote the four corner points.



x++

x+
2 ()

x−
2 ()



x−
1 ()

x+
1 ()

x−−

x+−

x−+

Figure 1: Coons patch.

As indicated above, in the Coons patch algorithm the
functions x±1 (𝜂) and x±2 (𝜉) are assumed to be prescribed.Then,
the algorithm generates a surface x𝐶(𝜉, 𝜂) that has these lines
as edges. Specifically, the Coons patch is obtained as follows:
(1) consider the sum of the two linear interpolations between
the two sets of opposite boundary lines; (2) from this subtract
a bilinear interpolation through the four corner points. This
yields (again with 𝜉, 𝜂 ∈ [−1, 1])

x𝐶 (𝜉, 𝜂) = 𝐿+ (𝜉) x+1 (𝜂) + 𝐿− (𝜉) x−1 (𝜂)
+ 𝐿+ (𝜂) x+2 (𝜉) + 𝐿− (𝜂) x−2 (𝜉)
− 𝐿+ (𝜉) 𝐿+ (𝜂) x++ − 𝐿+ (𝜉) 𝐿− (𝜂) x+−
− 𝐿− (𝜉) 𝐿+ (𝜂) x−+ − 𝐿− (𝜉) 𝐿− (𝜂) x−−.

(24)

The four edges of this surface indeed coincide with the four
generating lines. For instance, we have (use 𝐿+(1) = 1 and𝐿−(1) = 0)

x𝐶 (1, 𝜂) = x+1 (𝜂) + 𝐿+ (𝜂) x+2 (1) + 𝐿− (𝜂) x−2 (1)
− 𝐿+ (𝜂) x++ − 𝐿− (𝜂) x+− = x+1 (𝜂) , (25)

because x++ = x+2 (1) and x+− = x−2 (1) (see (23)).
Three-Dimensional Extension of Coons Interpolation. Here, we
finally consider the three-dimensional extension of theCoons
patch. Specifically, in this subsubsection,we begin by showing
how to obtain a brick, by starting from its six generating faces.
Inspired bywhat is done to obtain (24), the function x(𝜉, 𝜂, 𝜁),
which describes the brick, is obtained as (1) the sum of the
three linear interpolations between opposite faces, minus (2)
the sum of three bilinear interpolations through three sets of
four “parallel” edges, plus (3) a trilinear interpolation through
the eight vertices. Stated in mathematical terms, we have

x (𝜉, 𝜂, 𝜁) = 𝐿+ (𝜉) x (1, 𝜂, 𝜁) + 𝐿+ (𝜂) x (𝜉, 1, 𝜁) + 𝐿+ (𝜁) x (𝜉, 𝜂, 1)
+ 𝐿− (𝜉) x (−1, 𝜂, 𝜁) + 𝐿− (𝜂) x (𝜉, −1, 𝜁) + 𝐿− (𝜁) x (𝜉, 𝜂, −1)
− 𝐿+ (𝜉) 𝐿+ (𝜂) x (1, 1, 𝜁) − 𝐿+ (𝜉) 𝐿+ (𝜁) x (1, 𝜂, 1) − 𝐿+ (𝜂) 𝐿+ (𝜁) x (𝜉, 1, 1)
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− 𝐿+ (𝜉) 𝐿− (𝜂) x (1, −1, 𝜁) − 𝐿+ (𝜉) 𝐿− (𝜁) x (1, 𝜂, −1) − 𝐿+ (𝜂) 𝐿− (𝜁) x (𝜉, 1, −1)
− 𝐿− (𝜉) 𝐿+ (𝜂) x (−1, 1, 𝜁) − 𝐿− (𝜉) 𝐿+ (𝜁) x (−1, 𝜂, 1) − 𝐿− (𝜂) 𝐿+ (𝜁) x (𝜉, −1, 1)
− 𝐿− (𝜉) 𝐿− (𝜂) x (−1, −1, 𝜁) − 𝐿− (𝜉) 𝐿− (𝜁) x (−1, 𝜂, −1) − 𝐿− (𝜂) 𝐿− (𝜁) x (𝜉, −1, −1)
+ 𝐿+ (𝜉) 𝐿+ (𝜂) 𝐿+ (𝜁) x (1, 1, 1) + 𝐿+ (𝜉) 𝐿+ (𝜂) 𝐿− (𝜁) x (1, 1, −1)
+ 𝐿+ (𝜉) 𝐿− (𝜂) 𝐿+ (𝜁) x (1, −1, 1) + 𝐿+ (𝜉) 𝐿− (𝜂) 𝐿− (𝜁) x (1, −1, −1)
+ 𝐿− (𝜉) 𝐿+ (𝜂) 𝐿+ (𝜁) x (−1, 1, 1) + 𝐿− (𝜉) 𝐿+ (𝜂) 𝐿− (𝜁) x (−1, 1, −1)
+ 𝐿− (𝜉) 𝐿− (𝜂) 𝐿+ (𝜁) x (−1, −1, 1) + 𝐿− (𝜉) 𝐿− (𝜂) 𝐿− (𝜁) x (−1, −1, −1) ,

(26)

where x(±1, 𝜂, 𝜁), x(𝜉, ±1, 𝜁), and x(𝜉, 𝜂, ±1) describe the
geometries of the six faces, which for the time being are
assumed to be prescribed. Similarly, x(1, 1, 𝜁) denotes the
edge for 𝜉 = 𝜂 = 1, and x(1, 1, 1) denotes the vertex for𝜉 = 𝜂 = 𝜁 = 1. [In analogy with (25), the brick thereby
generated does indeed have the prescribed generating faces.]

5. The Third-Order Formulation

Summarizing the results of the last subsubsection, the inter-
polation in (26) provides amappingwhich describes the brick
geometry in terms of the geometry of the six faces.We can do
better. By combining the algorithm in (26) with that in (24)
(namely, choosing that the six generating faces of the brick to
be provided as Coons patches) one is able to generate a brick
simply in terms of its twelve edges.

We can do even better. We can obtain a brick that is
described in terms of the location of its eight nodes, along
with the base vectors there. To this end, let us begin by noting
that the use of (24) can produce an interpolation scheme
at most of order three, independently of how accurate the
description the edges is. For, no matter what we do along the
edges, in the Coons patch (see (24)) the fourth-order term𝜉2𝜂2 would be missing. Thus, without any loss of accuracy,
wemight as well limit ourselves to a cubic interpolation along
the edges, namely, to the Hermite interpolation presented in
(3). Accordingly, let us consider what happens to the three-
dimensional extension of the Coons patch technique, when
the twelve generating edge lines are obtained by using the
Hermite interpolation technique.

Coons–Hermite Patch. Let us begin by examining what
happens to the Coons patch interpolation (see (24)), if we
assume that the four edge lines of the patch are described by
a Hermite interpolation of the type given in (3), which may
be written as

x±1 (𝜂) = x (±1, 𝜂)
= 𝑀+ (𝜂) x±+ +𝑀− (𝜂) x±− + 𝑁+ (𝜂) x(2)±+
+ 𝑁− (𝜂) x(2)±−,

x±2 (𝜉) = x (𝜉, ±1)
= 𝑀+ (𝜉) x+± +𝑀− (𝜉) x−± + 𝑁+ (𝜉) x(1)+±
+ 𝑁− (𝜉) x(1)−±,

(27)

where x±± are the four corner points of the patch, x(1)±± =𝜕x/𝜕𝜉|x±± and x(2)±± = 𝜕x/𝜕𝜂|x±± are the corresponding base
vectors evaluated at the four corner points, whereas 𝑀±(𝜉)
and 𝑁±(𝜉) are the standard one-dimensional third-order
Hermite polynomials (see (4)).

Combining (24) and (27) yields

x𝐶 (𝜉, 𝜂) = [𝐿+ (𝜉)𝑀+ (𝜂) + 𝑀+ (𝜉) 𝐿+ (𝜂)
− 𝐿+ (𝜉) 𝐿+ (𝜂)] x++ + [𝐿+ (𝜉)𝑀− (𝜂)
+𝑀+ (𝜉) 𝐿− (𝜂) − 𝐿+ (𝜉) 𝐿− (𝜂)] x+−
+ [𝐿− (𝜉)𝑀+ (𝜂) + 𝑀− (𝜉) 𝐿+ (𝜂) − 𝐿− (𝜉) 𝐿+ (𝜂)]
⋅ x−+ + [𝐿− (𝜉)𝑀− (𝜂) + 𝑀− (𝜉) 𝐿− (𝜂)
− 𝐿− (𝜉) 𝐿− (𝜂)] x−− + 𝑁+ (𝜉) 𝐿+ (𝜂) x(1)++ + 𝑁+ (𝜉)
⋅ 𝐿− (𝜂) x(1)+− + 𝑁− (𝜉) 𝐿+ (𝜂) x(1)−+ + 𝑁− (𝜉) 𝐿− (𝜂)
⋅ x(1)−− + 𝐿+ (𝜉)𝑁+ (𝜂) x(2)++ + 𝐿+ (𝜉)𝑁− (𝜂) x(2)+−
+ 𝐿− (𝜉)𝑁+ (𝜂) x(2)−+ + 𝐿− (𝜉)𝑁− (𝜂) x(2)−−,

(28)

where the functions 𝐿±(𝜉),𝑀±(𝜉), and𝑁±(𝜉) are given by (2)
and (3). Introducing the functions

𝑃𝑠1𝑠2 (𝜉, 𝜂) = 𝐿 𝑠1 (𝜉)𝑀𝑠2 (𝜂) +𝑀𝑠1 (𝜉) 𝐿 𝑠2 (𝜂)
− 𝐿 𝑠1 (𝜉) 𝐿 𝑠2 (𝜂) ,

(29)
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where 𝑠1 and 𝑠2 stand for either + or −, (28) may be rewritten
as

x (𝜉, 𝜂) = ∑
𝑠1 ,𝑠2

𝑃𝑠1𝑠2 (𝜉, 𝜂) x𝑠1𝑠2 + ∑
𝑠1 ,𝑠2

𝑁𝑠1 (𝜉) 𝐿 𝑠2 (𝜂) x(1)𝑠1𝑠2
+ ∑
𝑠1 ,𝑠2

𝐿 𝑠1 (𝜉)𝑁𝑠2 (𝜂) x(2)𝑠1𝑠2 .
(30)

5.1. The Third-Order Brick. Next, let us turn to the three-
dimensional extension (i.e., the expression for a brick).

Combining (26) and (30) and setting x(1)s = 𝜕x/𝜕𝜉|xs , x(2)s =𝜕x/𝜕𝜂|xs , and x(3)s = 𝜕x/𝜕𝜁|xs , one obtains
xbrick (𝜉, 𝜂, 𝜁) = xfaces (𝜉, 𝜂, 𝜁) − xedges (𝜉, 𝜂, 𝜁)

+ xvertices (𝜉, 𝜂, 𝜁) , (31)

where the three terms are defined below.
The first term in the above equation, obtained by com-

bining the first two lines on the right side of (26) with (30), is
given by

xfaces (𝜉, 𝜂, 𝜁)
= ∑

s
𝑃𝑠1𝑠2 (𝜉, 𝜂) 𝐿 𝑠3 (𝜁) xs +∑

s
𝑁𝑠1 (𝜉) 𝐿 𝑠2 (𝜂) 𝐿 𝑠3 (𝜁) x(1)s +∑

s
𝐿 𝑠1 (𝜉)𝑁𝑠2 (𝜂) 𝐿 𝑠3 (𝜁) x(2)s

+∑
s
𝑃𝑠2𝑠3 (𝜂, 𝜁) 𝐿 𝑠1 (𝜉) xs +∑

s
𝑁𝑠2 (𝜂) 𝐿 𝑠3 (𝜁) 𝐿 𝑠1 (𝜉) x(2)s +∑

s
𝐿 𝑠2 (𝜂)𝑁𝑠3 (𝜁) 𝐿 𝑠1 (𝜉) x(3)s

+∑
s
𝑃𝑠3𝑠1 (𝜁, 𝜉) 𝐿 𝑠2 (𝜂) xs +∑

s
𝑁𝑠3 (𝜁) 𝐿 𝑠1 (𝜉) 𝐿 𝑠2 (𝜂) x(3)s +∑

s
𝐿 𝑠3 (𝜁)𝑁𝑠1 (𝜉) 𝐿 𝑠2 (𝜂) x(1)s

(32)

and is the contribution from the three linear interpolations
between the opposite faces. [For the first line on the right
side of the above equation, use (30). For the other two, rotate
indices. Again, the symbol ∑s, where s = (𝑠1, 𝑠2, 𝑠3), with𝑠𝛼 = ±, is understood as a sum that spans over the eight values
of s, which correspond to the eight vertices of the brick.]

On the other hand, the second term in (31), obtained
combining the next four lines in (26) with (30) (again rotate
indices), is given by

xedges (𝜉, 𝜂, 𝜁)
= ∑

s
[𝑀𝑠1 (𝜉) xs + 𝑁𝑠1 (𝜉) x(1)s ] 𝐿 𝑠2 (𝜂) 𝐿 𝑠3 (𝜁)

+∑
s
[𝑀𝑠2 (𝜂) xs + 𝑁𝑠2 (𝜂) x(2)s ] 𝐿 𝑠3 (𝜁) 𝐿 𝑠1 (𝜉)

+∑
s
[𝑀𝑠3 (𝜁) xs + 𝑁𝑠3 (𝜁) x(3)s ] 𝐿 𝑠1 (𝜉) 𝐿 𝑠2 (𝜂)

(33)

and is the contribution from three bilinear interpolations
through “parallel” edges.

Finally, the last term in (31) (last four lines in (26)) is given
by

xvertices (𝜉, 𝜂, 𝜁) = ∑
s
𝐿 𝑠1 (𝜉) 𝐿 𝑠2 (𝜂) 𝐿 𝑠3 (𝜁) xs (34)

and is the contribution from the trilinear interpolation
through the eight vertices.

Combining these expressions, one obtains

xbrick (𝜉, 𝜂, 𝜁) = ∑
s
xs𝑅s (𝜉, 𝜂, 𝜁)

+∑
s

3∑
𝛼=1

x(𝛼)s 𝑆(𝛼)s (𝜉, 𝜂, 𝜁) , (35)

where

𝑅s (𝜉, 𝜂, 𝜁) = 𝑃𝑠1𝑠2 (𝜉, 𝜂) 𝐿 𝑠3 (𝜁) + 𝑃𝑠2𝑠3 (𝜂, 𝜁) 𝐿 𝑠1 (𝜉)
+ 𝑃𝑠3𝑠1 (𝜁, 𝜉) 𝐿 𝑠2 (𝜂)
− 𝑀𝑠1 (𝜉) 𝐿 𝑠2 (𝜂) 𝐿 𝑠3 (𝜁)
− 𝐿 𝑠1 (𝜉)𝑀𝑠2 (𝜂) 𝐿 𝑠3 (𝜁)
− 𝐿 𝑠1 (𝜉) 𝐿 𝑠2 (𝜂)𝑀𝑠3 (𝜁)
+ 𝐿 𝑠1 (𝜉) 𝐿 𝑠3 (𝜂) 𝐿 𝑠3 (𝜁) ;

(36)

that is (use (29)),

𝑅s (𝜉, 𝜂, 𝜁) = 𝑀𝑠1 (𝜉) 𝐿 𝑠2 (𝜂) 𝐿 𝑠3 (𝜁)
+ 𝑀𝑠2 (𝜂) 𝐿 𝑠3 (𝜁) 𝐿 𝑠1 (𝜉)
+ 𝑀𝑠3 (𝜁) 𝐿 𝑠1 (𝜉) 𝐿 𝑠2 (𝜂)
− 2𝐿 𝑠1 (𝜉) 𝐿 𝑠2 (𝜂) 𝐿 𝑠3 (𝜁) ,

(37)

whereas

𝑆(1)s (𝜉, 𝜂, 𝜁) = 𝑁𝑠1 (𝜉) 𝐿 𝑠2 (𝜂) 𝐿 𝑠3 (𝜁) ,
𝑆(2)s (𝜉, 𝜂, 𝜁) = 𝑁𝑠2 (𝜂) 𝐿 𝑠3 (𝜁) 𝐿 𝑠1 (𝜉) ,
𝑆(3)s (𝜉, 𝜂, 𝜁) = 𝑁𝑠3 (𝜁) 𝐿 𝑠1 (𝜉) 𝐿 𝑠2 (𝜂) .

(38)
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Equation (35) describes an interpolation of x = x(𝜉𝛼) within
the block, in terms of the values of x and of its partial
derivatives x(𝛼) = 𝜕x/𝜕𝜉𝛼, at the eight corners of the brick.

As in the case of the Hermite brick (see (18)), the local
interpolation (see (35)) may be recast in terms of global
interpolation functions.

Comments. The same expression may be used to interpolate,
within each brick, not only the geometry, but also the
unknown function 𝑢(𝜉𝛼), in terms of its nodal values, along
with those of grad 𝑢 (isoparametric formulation). Accord-
ingly, the unknowns consist solely of the values of 𝑢 and of
the three Cartesian components of grad 𝑢 at the nodes (to
which the values of the partial derivatives 𝑢(𝛼) = 𝜕𝑢/𝜕𝜉𝛼 are
related through (20)). As a consequence the above scheme is
not affected by the BVD problem.

It should be emphasized, in order to avoid being mis-
leading, that one or more vertices of a brick may coincide
(degenerate bricks). This way, we can treat bricks that have
less than eight nodes (e.g., a wedge-like brick) as if they
were hexahedral bricks. In this case, the magnitudes of the
corresponding covariant base vectors tend to zero and those
of the contravariant base vectors tend to infinity. [This does
not cause any problem, because to evaluate the integrals we
use the Gaussian quadrature scheme, which does not use the
values of the integrand at the end points of the interval.] The
number of equations and unknowns are reduced accordingly.

6. The High-Order Element Proposed

Here, we want to show that the proposed formulation is not
limited to the third-order scheme presented above. On the
contrary, it is possible to have awhole family of finite elements
that, like the third-order element, are not affected by the BVD
problem.

Indeed, note that the third-order element is obtained by a
combination of the two-pointHermite interpolation (namely,
the third-order one) and the two-point Lagrange interpola-
tion (namely, the first-order one). In order to introduce the
high-order elements of the proposed family, we subdivide the
block into bricks, as discussed at the beginning of Section 4,
so as to generate additional nodes for the block. Then, we
simply replace the two-node interpolation schemes, with the
Lagrange and Hermite 𝑃-node ones (see (5) and (9)). This
way, by increasing the number 𝑁, we do not decrease ℎ,
which remains equal to the size of the element (block, not
brick; no ℎ-convergence). What changes is the order of the
scheme, because, by using 𝑁 bricks in each direction, we
obtain polynomials of order 2𝑁 + 1 in each direction (𝑝-
convergence).

Specifically, as discussed at the beginning of Section 4, for
the high-order finite-element formulation under considera-
tion, we still have that the region of definition of the problem
consists of the union of blocks. We assume each block to be
described by the mapping in (21). Then, the intervals [𝑎, 𝑏]
are divided into 𝑁 subintervals (not necessarily uniform).
Specifically, let us start from the third-order brick (see (35)).
For each block, we replace the two-node Lagrange and

Hermite interpolations, with the 𝑃-node ones (see (5) and
(9)). Then, we can extend (35), to have

xblock (𝜉, 𝜂, 𝜁) = 𝑁∑
ℎ,𝑗,𝑘=0

xℎ𝑗𝑘𝑅ℎ𝑗𝑘 (𝜉, 𝜂, 𝜁)
+ 𝑁∑
ℎ,𝑗,𝑘=0

3∑
𝛼=1

x(𝛼)ℎ𝑗𝑘𝑆(𝛼)ℎ𝑗𝑘 (𝜉, 𝜂, 𝜁) ,
(39)

where 𝑅ℎ𝑗𝑘 (𝜉, 𝜂, 𝜁) = 𝑀ℎ (𝜉) 𝐿𝑗 (𝜂) 𝐿𝑘 (𝜁)
+ 𝑀𝑗 (𝜂) 𝐿𝑘 (𝜁) 𝐿ℎ (𝜉)
+ 𝑀𝑘 (𝜁) 𝐿ℎ (𝜉) 𝐿𝑗 (𝜂)
− 2𝐿ℎ (𝜉) 𝐿𝑗 (𝜂) 𝐿𝑘 (𝜁) ,

(40)

whereas
𝑆(1)s (𝜉, 𝜂, 𝜁) = 𝑁ℎ (𝜉) 𝐿𝑗 (𝜂) 𝐿𝑘 (𝜁) ,
𝑆(2)s (𝜉, 𝜂, 𝜁) = 𝑁𝑗 (𝜂) 𝐿𝑘 (𝜁) 𝐿ℎ (𝜉) ,
𝑆(3)s (𝜉, 𝜂, 𝜁) = 𝑁𝑘 (𝜁) 𝐿ℎ (𝜉) 𝐿𝑗 (𝜂) .

(41)

[Note that these functions satisfy interpolation conditions
analogous to those in (12). For instance, we have 𝑅ℎ𝑗𝑘(𝜉𝑙, 𝜂𝑚,𝜁𝑛) = 𝛿𝑙ℎ𝛿𝑚𝑗 𝛿𝑛𝑘 , whereas their partial derivatives vanish at all
the nodes.]

The order of the element (namely, the order of the
interpolating polynomial) is 2𝑁 + 1. Indeed, the proposed
interpolation involves functions that are continuous with all
its derivatives.

The comments regarding degenerate bricks (end of Sec-
tion 5.1) apply here as well.

7. Validation, Assessment, and Applications

In this section, we validate, assess, and apply the method-
ology. For the sake of simplicity, here the applications of
the methodology are limited to the evaluation of the natural
frequencies and modes of vibration, for interior acoustics
(Section 7.1) and structural dynamics (Section 7.2). The
theoretical formulations (variational principles, etc.) used are
also discussed.

7.1. Interior Acoustics. Here, we present how the various finite
elements formulations introduced above may be utilized to
address problems in linear aeroacoustics, specifically, for the
evaluation of the natural modes of vibration of the air inside a
given cavity and the corresponding natural frequencies. This
phenomenon is governed by the linearized wave equation
for the velocity potential 𝜑(x, 𝑡), which is such that k(x, 𝑡) =
grad𝜑. Setting 𝜑(x, 𝑡) = 𝜙(x)𝑒𝚤𝜔𝑡, we obtain the Helmholtz
equation; namely,

∇2𝜙 + 𝜔2𝑐2S 𝜙 = 0, (42)

where 𝑐S = 𝛾𝑝0/𝜌0 denotes the undisturbed speed of sound.



International Journal of Aerospace Engineering 9

The pressure is related to 𝜙 by the linearized Bernoulli
theorem in the frequency domain, which states that

𝚤𝜔𝜙 + 𝑝𝜌0 =
𝑝0𝜌0 . (43)

Next, consider the boundary conditions. Assume that
S = S1 ∪S2, where onS1 we have 𝑝 = 𝑝0 (a condition often
used for the opening of wind and brass musical instruments),
whereas S2 is a rigid wall. On S1, using (43), the boundary
condition is given by

𝜙 = 0 (x ∈ S2) . (44)

On the other hand, onS2, we have a zero-normal component
of the velocity; namely,

𝜕𝜙𝜕𝑛 = 0 (x ∈ S1) . (45)

The problem in (42) may be stated in variational form as

12 𝜔
2

𝑐2S ∫V 𝜙2dV − 12 ∫V 󵄩󵄩󵄩󵄩grad𝜙󵄩󵄩󵄩󵄩2 dV = stationary
𝜙(x)

. (46)

As for any variational formulation, the boundary conditions
in general may be divided into two types [28, 29]. The first
type is the so-called essential or geometrical boundary condi-
tion (e.g., Dirichlet boundary condition, 𝜙 = 0, (44)), which
has to be satisfied by all the shape functions.The second type
is the natural boundary condition (e.g., Neumann boundary
condition, 𝜕𝜙/𝜕𝑛 = 0, (45)), which needs not be imposed
explicitly, in that it is a direct consequence of (46), if the other
type is not imposed.

Discretization of the Problem. For the finite-element formula-
tion proposed here, set (see (18))

𝜙̂ (𝜉𝛼) = 𝑀∑
𝑗=1

𝑧𝑗𝜓𝑗 (𝜉𝛼) , (47)

where 𝜓𝑗(𝜉𝛼) (𝑗 = 1, . . . ,𝑀) are the global shape functions,
defined within each brick/block by the local interpolation
functions discussed in the preceding sections, whereas 𝑧𝑗
(𝑗 = 1, . . . ,𝑀) comprises all the corresponding unknowns.
[To be specific, 𝑧𝑗 include the nodal values of 𝜙 and grad𝜙.]

Let us examine how the boundary conditions are imple-
mented in the discretized formulation. For the first type of
boundary conditions, it is sufficient to remove the unknown
that vanishes, along with the corresponding equation. For the
second type, no action is required, since they are automati-
cally satisfied, in the limit, as𝑁 tends to infinity [28, 29].

Following the Rayleigh–Ritz method, we combine the
approximation for 𝜙(x) (see (47)), with (46), to obtain

12zTKz − 𝜆̂12zTMz = stationary
z

, (48)

where z = {𝑧𝑗} is the vector of the unknowns and 𝜆̂ = 𝜔2/𝑐2S ,
whereas the mass and stiffness matrices are, respectively,
given byM = [𝑚𝑚𝑞] and K = [𝑘𝑚𝑞], with

𝑚𝑚𝑞 = ∫
V

𝜓𝑚 (x) 𝜓𝑞 (x) dV,
𝑘𝑚𝑞 = ∫

V

grad𝜓𝑚 (x) ⋅ grad𝜓𝑞 (x) dV.
(49)

Equation (48) implies

Kz = 𝜆̂Mz, (50)

which is the equation used to obtain the unknown 𝑧𝑗.
Once the values 𝑧𝑗 are obtained, the approximate modes of
vibration are given by (47).

Definitions of Errors. Before presenting the numerical results,
let us introduce the expression used to estimate the error
in the evaluation of the eigenfunctions. Consider the least-
square error, defined by

𝜖𝑘 = [∫
V

(𝜙𝑘 − 𝜙̂𝑘)2 dV]1/2 , (51)

where 𝜙𝑘(𝜉𝛼) and 𝜙̂𝑘(𝜉𝛼) denote, respectively, the exact and
the approximate 𝑘th eigenfunction. Note that (see (47))

𝜙̂𝑘 (𝜉𝛼) = 𝑀∑
𝑗=1

𝑧𝑗𝑘𝜒𝑗 (𝜉𝛼) , (52)

where 𝑧𝑗𝑘 denotes the 𝑗th component of the 𝑘th eigenvector
of (48). The vectors z𝑘 satisfies the orthonormality relation
zT𝑗Mz𝑘 = 𝛿𝑗𝑘, which is fully equivalent to the condition∫
V
𝜙̂𝑗𝜙̂𝑘dV = 𝛿𝑗𝑘, as one may verify. Similarly, for con-

venience, the exact eigenfunctions 𝜙𝑘(𝜉𝛼) are approximated
with the same type of interpolation, namely, still using the
shape functions 𝜒𝑗(𝜉𝛼), so as to have

𝜙𝑘 (𝜉𝛼) = 𝑀∑
𝑗=1

𝑦𝑗𝑘𝜒𝑗 (𝜉𝛼) , (53)

where 𝑦𝑗𝑘 denotes the 𝑗th component of the 𝑘th vectors y𝑘
defined as follows: the components 𝑦𝑗𝑘 are the nodal values
corresponding to 𝑧𝑗𝑘 but are obtained from the exact 𝑘th
eigenfunction 𝜙𝑘(𝜉𝛼) and are normalized by yT𝑘My𝑘 = 1.
Combining (51)–(53) and using (49) as well as zT𝑘Mz𝑘 =
yT𝑘My𝑘 = 1, one obtains

𝜖2𝑘 = 𝑀∑
ℎ,𝑗=1

(𝑦ℎ𝑘 − 𝑧ℎ𝑘) [∫
V

𝜓ℎ𝜓𝑗dV] (𝑦𝑗𝑘 − 𝑧𝑗𝑘)
= (y𝑘 − z𝑘)T M (y𝑘 − z𝑘) = 2 (1 − z

T
𝑘My𝑘) .

(54)

Thus, in the following, the definition of the error used in the
assessment of the eigenfunctions is

𝜖𝑘 = √2 (1 − zT𝑘My𝑘). (55)
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Figure 2: Cube: 𝜆̂111 versus 1/𝑁 (ℎ-convergence).

On the other hand, the error on the eigenvalues, denoted
by 𝑒𝑘, is defined by

𝑒𝑘 = 󵄨󵄨󵄨󵄨󵄨𝜆𝑘 − 𝜆̂𝑘󵄨󵄨󵄨󵄨󵄨 , (56)

where 𝜆𝑘 and 𝜆̂𝑘 denote, respectively, the exact and the
approximate 𝑘th eigenvalue.

Cuboidal Cavity. The first problem investigated is that of the
evaluation of the natural frequencies and modes of vibration
of the air inside a cuboidal cavity, with edges 𝑎, 𝑏, and 𝑐. The
walls are assumed to be rigid (natural boundary condition).
In this case, we have an exact solution; namely,

𝜙𝑚𝑛𝑞 = cos 𝑚𝜋𝑥𝑎 cos
𝑛𝜋𝑦𝑏 cos

𝑞𝜋𝑧𝑐
(𝑚, 𝑛, 𝑞 = 0, 1, . . .) , (57)

𝜆𝑚𝑛𝑞 = 𝜔
2
𝑚𝑛𝑞𝑐2S = 𝑚2𝜋2𝑎2 + 𝑛2𝜋2𝑏2 + 𝑞2𝜋2𝑐2

(𝑚, 𝑛, 𝑞 = 0, 1, . . .) .
(58)

Here, we consider first a cube of side ℓ = 𝜋 (namely, 𝑎 =𝑏 = 𝑐 = 𝜋), so as to have 𝜆𝑚𝑛𝑞 = 𝜔2𝑚𝑛𝑞/𝑐2S = 𝑚2 + 𝑛2 + 𝑞2.
Consider first the ℎ-convergence. For the third-order

results, the finite elements (blocks) coincide with the bricks
(single-brick blocks). For the fifth-order results, we have𝑁/2 finite elements (blocks) in each direction, with each
block being composed of two bricks in each direction,
for a total of 𝑁3/8 blocks, with eight bricks per block.
Figures 2 and 3 illustrate the ℎ-convergence rate (namely,
the rate of convergence obtained by reducing the size ℎ
of the elements), as obtained with third and fifth-order
schemes, for 𝜆111 and 𝜆222, respectively, which are equal,
respectively, to 3 and 12. The results are compared with
those obtained using the ANSYS Fluid 220 element [27],
used within the option “absence of air-structure coupling”
(“structure absent” configuration). The ANSYS Fluid 220
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Figure 3: Cube: 𝜆̂222 versus 1/𝑁 (ℎ-convergence).

element is a higher order 3D 20-node solid element that
exhibits quadratic pressure behavior. In ℎ-convergence, the
error behaves like ℎ𝑛, where 𝑛 denotes the order of the
accuracy of the scheme, whereas ℎ = ℓ/𝑁 is the size of
the element, when the elements are uniform (or the average
size of the element, when the elements are nonuniform).
Accordingly, the results are conveniently presented in a log-
log scale, with 1/𝑁 in abscissa, as representative of the
element size.The convergence rate for each scheme, as well as
those obtained with the ANSYS element, is determined by its
angular coefficients. [Note that the rate of convergence of the
eigenvalues ismuch higher than the order of the interpolation
scheme. Indeed, it is expected because the rate of convergence
for the eigenvalues is double that of the eigenfunctions, which
in theory is equal to the order of the polynomials used in the
scheme.]

Next, let us consider the 𝑝-convergence, namely, the
convergence obtained by increasing the order of the scheme.
To study this, we use a single finite element (block), with𝑁 bricks in each direction, for total number of 𝑁3 bricks.
Again, the order of the polynomials used in the scheme is2𝑁+1. Figures 4 and 5 present the eigenvalues 𝜆111 and 𝜆222,
as functions of the order 𝑝 = 2𝑁 + 1. Similar results hold for
higher eigenvalues.

Note that, in the above test case we have, for instance,𝜆100 = 𝜆010 = 𝜆001 (degenerate eigenvalue). This phe-
nomenon makes it difficult to compare the numerical eigen-
functions to the analytical ones (see (57)), because any linear
combination of 𝜙100, 𝜙010, and 𝜙001 is still an eigenfunction
of the problem. In order to circumvent the problem it is
sufficient to avoid having 𝑎 = 𝑏 = 𝑐. Accordingly, the next
problem considered is that of a cuboid of sides 𝑎 = 𝜋, 𝑏 =0.99𝜋, and 𝑐 = 1.01𝜋.

Figures 6–11 present the results for the modes
(Figures 6, 8, and 10) and the corresponding eigenvalues
(Figures 7, 9, and 11), as obtained using the proposed
formulation with 𝑁 = 1, 2, 3 elements (namely, third, fifth,
and seventh orders, resp.).These correspond to (2𝑁+1)3 = 8,
27, and 64 nodes and hence 32, 108, and 256 total unknowns
(four unknowns per node) and modes, respectively.
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Figure 4: Cube: 𝑝-convergence of 𝜆̂111.
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Figure 5: Cube: 𝑝-convergence of 𝜆̂222.

In each figure, the modes and the related eigenvalues
are ordered according to the number of waves. The label[𝑘, 𝑙, 𝑚] relates the 𝑖th mode to its number of half-waves in
each direction. Accordingly, we have (1) only one eigenvalue
when 𝑘 = 𝑙 = 𝑚; (2) groups of three approximately equal
eigenvalues when only two of them are equal (they would
be identical if we had 𝑎 = 𝑏 = 𝑐); and (3) groups of six
approximately equal eigenvalues when 𝑘, 𝑙, and𝑚 differ.

Figures 6, 8, and 10 estimate the projections of the
numerical eigenfunction vectors z𝑗, for 𝑗 = 1, . . . , (𝑁 + 1)3
into each of the exact eigenfunction vectors y𝑖, for𝑖 = 1, . . . , (𝑁 + 1)3, through 𝛿𝑗𝑖 − z𝑗My𝑖, a generalization
of (55). The darker the mark, the poorer the agreement.
On the other hand, Figures 7, 9, and 11 depict 𝜆𝑗 for𝑗 = 1, . . . , (𝑁 + 1)3. Note that the higher the order of the
element, the higher the number of eigenvalues captured.
As a rule of thumb, one can state that, with respect to the
total amount of degrees of freedom, one-third of the total
eigenvalues have been captured accurately for this problem
(the corresponding eigenfunctions present errors well below5%).

1

8-9

20-21
23-24

29-30
32

 0

 0.01

 0.02

 0.03

 0.04

 0.05

j z

[0
,0

,0
]

[1
,1

,1
]

[2
,1

,1
]

[3
,1

,0
]

[3
,1

,1
]

8-
9

20
-2

1

23
-2

4

29
-3

0 321

iy

Figure 6: Cuboid modes (3rd order,𝑁 = 1).
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Figure 9: Cuboid eigenvalues (5th order,𝑁 = 2).
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Figure 10: Cuboid modes (7th order,𝑁 = 3).
Cylindrical Cavity.The second problem analyzed is that of the
natural frequencies and modes of vibration of the air inside
a cylindrical cavity, with radius 𝑅 = 1 and length ℓ = 1 (its
main dimensions are reported in Figure 12). The geometry
has been dealt with as a single element (block), with𝑁 bricks
along each direction.The walls are again assumed to be rigid.

An exact solution is available also in this case:
𝜙𝑚𝑛𝑞
= 𝐽𝑚 (𝜇(𝑚)𝑛 𝑟) (𝐴𝑚 cos𝑚𝜃 + 𝐵𝑚 sin𝑚𝜃) cos 𝑞𝜋𝑧ℓ , (59)

where 𝐽𝑚(𝑥) is the Bessel function of order𝑚 of the first kind.
The corresponding eigenvalues are

𝜆𝑚𝑛𝑞 = 𝜇(𝑚)𝑛 + 𝑞2𝜋2ℓ2 , (60)

where 𝜇(𝑚)𝑛 are the solutions of 𝐽󸀠𝑚(𝜇(𝑚)𝑛 ) = 0.
The type ofmesh used in this case is depicted in Figure 12.

[It may be noted that the bricks along the cylinder axis
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Figure 11: Cuboid eigenvalues (7th order,𝑁 = 3).
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Figure 12: Cylindrical cavity.

are degenerate (wedge-like bricks). The comments regarding
degenerate bricks (end of Section 5) apply here as well.]

The considerations presented in connection with Figures
2–5 hold for Figures 13–16 as well. In particular, Figures 13
and 14 pertain to the ℎ-convergence of 𝜆̂1,1,0 and 𝜆̂2,1,0, that is,
those eigenvalues with 𝑚 = 1, 2, 𝑛 = 1 and 𝑞 = 0. Figures 15
and 16 pertain to the corresponding 𝑝-convergence.
L-Shaped Prismatic Cavity. The third problem investigated
pertains the evaluation of the natural frequencies and modes
of vibration of the air inside the L-shaped prismatic cavity.
Rigid-wall boundary conditions are assumed in this case as
well. Contrary to previous test cases, exact solution is not
available for this particular problem, so the results from the
proposed formulation are only comparedwith those obtained
by ANSYS. Numerical results are obtained by subdividing the
region into three cubic blocks, having sides ℓ = 1 (Figure 17).
For each block, use 𝑁 bricks in each direction, for a total of𝑁3 bricks for each of the three blocks.

We indicate with 𝜆𝑖 the 𝑖th eigenvalue of the discretized
problem.
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Figure 13: Cylinder: 𝜆̂110 versus 1/𝑁 (ℎ-convergence).
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Figure 14: Cylinder: 𝜆̂210 versus 1/𝑁 (ℎ-convergence).
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Figure 15: Cylinder: 𝑝-convergence of 𝜆̂110.

In Figures 18-19 the convergence analysis with respect
to the number of the degrees of freedom used in the FEM
solver is presented. Specifically, we present the sixth natural
frequency, which corresponds to the best result obtainedwith
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Figure 16: Cylinder: 𝑝-convergence of 𝜆̂210.
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Figure 18: L-shaped cavity: 𝜆̂6 versus 1/𝑁DOF.

the present formulation.The corresponding results have been
compared with those obtained by using the ANSYS Fluid 220
element. From the analysis of the figures, we see that, for the
low-order case, both formulations (ANSYS and the present
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Figure 19: L-shaped cavity: 𝜆̂6 versus 𝑝.

one) show similar levels of accuracy. However, the present
results include higher accuracy ones.

7.2. Structural Dynamics. The second problem, namely, the
evaluation of the natural modes of vibration for an isotropic
elastic material with continuous material properties, may be
stated in variational form as
12𝜔2 ∫V 𝜌 ‖u‖2 dV − 12 ∫V 𝜎𝛼𝛽𝜖𝛼𝛽dV = stationary

u(x)
, (61)

where 𝜌 denotes the density, 𝜎𝛽𝛼 = 2𝐺[𝜖𝛽𝛼 + 𝜖𝛾𝛾𝛿𝛽𝛼]/(1 −2])], and 𝜖𝛼𝛽 = (𝑢𝛼/𝛽 + 𝑢𝛽/𝛼)/2, with ⋅ ⋅ ⋅ /𝛼 denoting
covariant differentiation in the undeformed configuration,
since the problem under consideration is linear. [The most
general linear stress-strain relationship is given by 𝜎𝛼𝛽 =𝑐𝛼𝛽𝛾𝛿𝜖𝛾𝛿, where 𝑐𝛼𝛽𝛾𝛿 includes only twenty-one independent
coefficients, because of the symmetry of the stress and strain
tensors, as well as from energy considerations. This general
expression, used to obtain the results, is not further addressed
here, because all the numerical results are limited to isotropic
materials.]

The boundary conditions typically considered are either
those for a free surface (natural boundary condition, which
require no action) or those for a fixed surface, for which
the values of the nodal displacements (and their tangential
derivatives) vanish. Here, for the validation of the formula-
tion we have included the case of a free beam and a plate
hinged at the boundary.

For all the numerical results regarding plates, we used
a single brick along the thickness. This seems adequate to
remove the shear locking phenomenon [48]. Similarly, a
single brick is used on the (rectangular) cross section of the
beam.

Discretization of Problem. Substituting the approximation for𝑢 discussed in the preceding sections (see (18)), where now
the interpolating functions are vector functionsΨ(𝜉𝛼), yields

Kz = 𝜔2Mz, (62)

where, again, z = {𝑧𝑛} is the vector of the unknown nodal
values.Themass and stiffnessmatrices are, respectively, given
byM = [𝑚𝑚𝑛] and K = [𝑘𝑚𝑛], with
𝑚𝑚𝑛 = ∫

V

𝜌Ψ𝑚 (𝜉𝛼) ⋅Ψ𝑛 (𝜉𝛼) dV,
𝑘𝑚𝑛 = ∑

𝛼,𝛾

∫
V

2𝐺 (𝑃𝛾𝛼𝑃𝛼𝛾 + (]/ (1 − 2])) 𝑃𝛼𝛼𝑃𝛾𝛾 ) dV,
(63)

where 𝑃𝛾𝛼 (𝜉𝜌) = ∑𝛽[Ψ𝑚,𝛼 ⋅ g𝛽 + Ψ𝑛,𝛽 ⋅ g𝛼]𝑔𝛽𝛾 (𝑔𝛽𝛾 being the
contravariant metric tensor components, in the undeformed
configuration).

In order to assess the methodology, in the following
we present some test cases that are particularly demanding,
because of the above-mentioned shear locking phenomenon
[48]. These include plates, where one dimension is much
smaller than the others, and even better beams, where two
of them are much smaller than the third.These structures are
especially important in aerospace and in other fields where
light structures are needed.

Beams and plates are typically treated as one-dimensional
and two-dimensional structures, respectively. However, in
view of our desire to have a single type of element to describe
the whole structure, we treat them as three-dimensional
structures.

Free Beam, with Rectangular Cross Section. Preliminary
results for a free beam, with length ℓ = 1, and rectangular
cross section (ℎ1 = 0.010 and ℎ2 = 0.015) are presented. In
this case, the eigenfunctions for the bending in a single plane
are solutions of the differential problem

𝜙IV = 𝜆𝜙 = 𝜔2 = 𝜇4𝜙, (64)

where 𝜙 denotes the (one-dimensional and one-directional)
mode along direction 1. The free-beam boundary conditions
are 𝜙󸀠󸀠(0) = 𝜙󸀠󸀠󸀠(0) = 0 and 𝜙󸀠󸀠(𝑙) = 𝜙󸀠󸀠󸀠(𝑙) = 0 and the
solution is given by

𝜙 (𝑥) = 𝐶(cos 𝜇𝑥 + cosh 𝜇𝑥
cosh 𝜇𝑙 − cos 𝜇𝑙 + sin 𝜇𝑥 + sinh𝜇𝑥

sin 𝜇𝑙 − sinh𝜇𝑙 ) , (65)

where 𝜇 is the solution of the characteristic equation

cos 𝜇 cosh 𝜇 = 1. (66)

Then, one obtains the eigenvalue 𝜆 = 𝜇4 by using
(64). Again, 𝜆 and 𝜆̂ indicate, respectively, the exact and
the computed eigenvalue. The geometry is described by a
sequence of𝑁 bricks along its length (a single brick is used in
the other two directions). The ℎ-convergence analysis for the
third and fourth eigenvalues is presented in Figures 20–23.
The present results are obtained with formulations of order
up to 7 and are compared with those obtained with ANSYS
elements Solid 186 and Solid-Shell 190. [The former is a 20-
node element with three degrees of freedom per node, i.e.,
the three components of the displacement. The latter is an 8-
node element with six degrees of freedom per node, i.e., the
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Figure 20: Free beam: 𝜆̂3 versus 1/𝑁DOF (ℎ-convergence).
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Figure 21: Free beam: 𝜆̂3 versus 1/𝑁 (ℎ-convergence).
three components of the displacement along with the three
rotations.]

Hinged Rectangular Plate. Consider the results relative to a
rectangular hinged plate with 𝑎 = 1.00, 𝑏 = 1.01, and ℎ =0.01. The eigenfunctions for a plate in bending are

𝜙𝑚𝑛 (𝑥, 𝑦) = sin 𝑚𝜋𝑥𝑎 sin
𝑛𝜋𝑦𝑏 . (67)

The corresponding natural frequencies are

𝜔𝑚𝑛 = √𝐷𝜌 [(𝑚𝜋𝑎 )
2 + (𝑛𝜋𝑏 )

2] , (68)

where 𝐷 denotes the bending stiffness of the plate. [Of
course, the present results should be compared not to the
eigenfunctions 𝜙𝑚𝑛 = 𝜙𝑚𝑛(𝑥, 𝑦), but rather to the three-
dimensional modesΦ𝑚𝑛(𝑥, 𝑦, 𝑧) = 𝜙𝑚𝑛(𝑥, 𝑦)k.]

The exact eigenvalues are given by

𝜆𝑚𝑛 = 𝜔2𝑚𝑛. (69)
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Proposed methodology (order 5)
Proposed methodology (order 7)

ANSYS Solid 186
ANSYS Solid-SH 190

0,07081

0,07090

0,07099

0,07108

0,07117

0,07126

0,07135

0,07144

0,07153

0,002 0,004 0,006 0,008 0,010
1/N＄O＆

 
4

Figure 22: Free beam: 𝜆̂4 versus 1/𝑁DOF (ℎ-convergence).
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Figure 23: Free beam: 𝜆̂4 versus 1/𝑁 (ℎ-convergence).

For small thicknesses, these frequencies are much lower than
those relative to the in-planemotion and therefore are a good
reference for the numerical results. Denoting with 𝜆̂𝑚𝑛 the
computed eigenvalue, Figures 24–27 show the ℎ-convergence
for the eigenvalues for𝑚 = 𝑛 = 1 and𝑚 = 𝑛 = 2, respectively,
using, again, the third-order element with a single element
along the thickness, for a total of 𝑁2 bricks. The computed
eigenvalues 𝜆̂𝑚𝑛 are compared to the exact ones 𝜆𝑚𝑛 and
with those obtained by using the 8-node ANSYS Solid-Shell
six degrees of freedom per node brick [this is specific for
thin structures applications]. The present formulation shows
better accuracy as well. Figure 28 shows the eigenvalues, as
obtained using 𝑁 = 4 third-order bricks in each in-plane
direction (only one brick is used in the normal direction).
The approximate eigenvalues 𝜆̂𝑚𝑛 are compared with the
exact ones 𝜆𝑚𝑛. Similarly, Figure 29 pertains to the calculated
eigenvalues obtained using the third-order element with𝑁 =8. The considerations presented for acoustics, regarding the
number of accurate frequencies, apply to the present case as
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Figure 24: Hinged rectangular plate: 𝜆̂11 versus 1/𝑁DOF (ℎ-con-
vergence).
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Figure 25: Hinged rectangular plate: 𝜆̂11 versus 1/𝑁 (ℎ-conver-
gence).

well. About one-half of the first (2𝑁+1)2modes are correctly
captured. [Note that the total number of degrees of freedom
is 4(2𝑁+ 1)2. However, the last 3(2𝑁+ 1)2 modes are related
to the rotation of the normal and the curvature of the fiber
along the thickness.]

8. Concluding Remarks

A novel family of finite elements has been presented. The
domain of interest is assumed to be the union of topologically
hexahedral elements, which are called blocks. [It should be
emphasized that the subdivision into blocks is important. For,
it is not always convenient to have a global body-matched
coordinate system. For example, consider a square-section
beam, which (in analogy with a Möbius strip) is twisted by90∘ degrees around the axial direction, say the 𝜁-coordinate.
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Figure 26: Hinged rectangular plate: 𝜆̂22 versus 1/𝑁DOF (ℎ-con-
vergence).
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Figure 27: Hinged rectangular plate: 𝜆̂22 versus 1/𝑁 (ℎ-conver-
gence).
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Figure 28: Eigenvalues (hinged rectangular plate; third-order brick,𝑁 = 4).
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Figure 29: Eigenvalues (hinged rectangular plate; third-order brick,𝑁 = 8).

Matching the two-end sections yields an interchange of the 𝜉
and 𝜂 coordinates.]

The blocks are assumed to be described by a smooth
mapping of the type x = x(𝜉𝛼) (see Appendix). The geometry
of each block is described by the nodal points x𝑘1𝑘1𝑘3 = x(𝜉𝛼𝑘𝛼),
along with the corresponding base vectors g𝛽(𝜉𝛼𝑘𝛼), where𝑘𝛼 = 0, . . . , 𝑁𝛼 (𝛼 = 1, 2, 3), so as to have 𝑃𝛼 = 𝑁𝛼 + 1
nodes along the direction 𝜉𝛼. This way the element (block)
is divided into subelements (bricks). The unknowns are the
nodal values of the function and the Cartesian components
of its gradient. The same interpolation scheme is used for
both geometry and unknown (isoparametric element). The
proposed interpolation family, applied to each block, is based
upon a novel three-dimensional extension of the Coons
patch. This extension requires a judicious combination of
the 𝑃-node Lagrange interpolation polynomials (of degree𝑁) and the 𝑃-node Hermite interpolation polynomials (of
degree 2𝑁 + 1). The overall order of the scheme (namely,
the degree of the polynomials used) is 2𝑁 + 1. In the case
of high-accuracy schemes, in order to avoid the well-known
instability connected with Lagrange polynomials through
uniformly spaced points, the abscissas of the Gauss–Lobatto
quadrature scheme are used to obtain 𝜉𝛼𝑘 . [However, the
standard Gaussian quadrature scheme is used for the inter-
polation, so as to avoid singularities on the degenerate faces
(see the comments regarding degenerate bricks, the end of
Section 5).]

The resulting scheme guarantees the appropriate conti-
nuity between blocks. [Specifically, at the interfaces between
blocks, the geometry is continuous (the in-plane components
of the base vectors are also continuous). However, the out-
of-plane component of the base vector is allowed to be
discontinuous. Nonetheless, the formulation is not affected
by the BVD problem (Section 3).] This feature makes it
applicable to highly complex configurations.

Numerical applications have been presented, which
include the evaluation of the natural frequencies and modes
of vibration of (1) air inside a cavity (interior acoustics) and

(2) beams and plates, treated as three-dimensional structures
(structural dynamics). [Beams and plates were used because
of their importance in aerospace and because they are the
most difficult tomodel (shear locking problem [48]). Treating
them as three-dimensional structures is important, because it
is envisioned that the proposed toolwill be usedwithin aMul-
tidisciplinary Design Optimization (MDO) program [45],
where resizing would be difficult, using one-dimensional
models of beams and two-dimensional ones of plates.]

The results indicate that the proposed methodology is
highly accurate and capable of capturing efficiently relatively
high frequencies, thereby resulting appropriate in designwith
acoustic constraints.

For low-order schemes, our results have a level of accu-
racy comparable to that of the code ANSYS. However, an
important advantage of the proposed formulation lies in
its flexibility in obtaining different level of accuracy (𝑝-
convergence) simply by increasing the number of nodes, as
onewould do for the ℎ-convergence.This factmakes it a good
candidate for addressing problems pertaining to midrange
frequencies. frequencies. [Preliminary results for very large
values of N are presented in [36].]

Further analysis in this direction is needed. Indeed, the
geometries chosen for the illustrative examples are relatively
simple. An L-shaped cavity has been used to validate the
multiblock feature.Nonetheless, the results obtained are quite
encouraging, and a deeper analysis is warranted, so as to
validate the methodology for more complex configurations,
before utilizing it to study the coupling of interior acoustics
and structural dynamics (fluid-solid interaction), by using
the methodology in [36, 49, 50]. Only then the methodology
may be considered within an MDO context [45].

Appendix

High-Order Geometry Generation,
from a First-Order One

As mentioned above, in the formulation presented in the
main body of this work, we assume that the geometry con-
sists of a collection of high-order topologically quadrilateral
blocks, which requires a geometry preprocessor that provides
the location of the nodes and the corresponding base vectors
g𝛼 = 𝜕x/𝜕𝜂𝛼 (see (19)). In this appendix we present a
user-friendly algorithm that allows one to generate such a
geometry, starting from a very simple one, which is available
in any geometry preprocessor. Specifically, we assume that we
know only the locations xℎ𝑗𝑘 = x(𝜂1ℎ, 𝜂2𝑗 , 𝜂3𝑘). Here, we show
how to obtain the base vectors at the nodes of each brick and
then those for a whole block.

TheThird-Order Surface Generation. In order to arrive at the
algorithm for a third-order brick, we begin by considering
the face of a brick. For the sake of notational simplicity, the
surface coordinates are denoted by 𝜉 and 𝜂.

Consider the mapping x = ∘x(𝜉, 𝜂), which denotes the
geometry obtained by a bilinear interpolation of the four
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nodes (first-order geometry).The corresponding surface base
vectors are given by

∘a1 (𝜉, 𝜂) = 𝜕 ∘x𝜕𝜉 ,
∘a2 (𝜉, 𝜂) = 𝜕 ∘x𝜕𝜂 ,

(A.1)

and its normal by

∘n (𝜉, 𝜂) = ∘a1 × ∘a2󵄩󵄩󵄩󵄩 ∘a1 × ∘a2󵄩󵄩󵄩󵄩 . (A.2)

In this subsection, we assume that we know the location
of the four nodes of the surface, as well as the normal at the
four corners of the patch. [How to obtain the normal at the
four corners is the subject matter of the next subsection.]
Specifically, we seek a surface described in the form

x (𝜉, 𝜂) = ∘x (𝜉, 𝜂) + 𝛿 (𝜉, 𝜂) ∘n (𝜉, 𝜂) , (A.3)

where 𝛿(𝜉, 𝜂) vanishes at the four corners,
𝛿 (±1, ±1) = 0, (A.4)

because we have chosen ∘x(±1, ±1) = x(±1, ±1).
Such a surface is to be determined so as to have the

prescribed normal at the four corners. To this end, we
use the Coons–Hermite interpolation (see (28)), applied to
the function 𝛿(𝜉, 𝜂) and obtain (see Figure 30, for symbols
definition)

𝛿 (𝜉, 𝜂) = 𝐿+ (𝜉) [𝛿(𝜂)++𝑁+ (𝜂) + 𝛿(𝜂)+−𝑁− (𝜂)]
+ 𝐿− (𝜉) [𝛿(𝜂)−+𝑁+ (𝜂) + 𝛿(𝜂)−−𝑁− (𝜂)]
+ 𝐿+ (𝜂) [𝛿(𝜉)++𝑁+ (𝜉) + 𝛿(𝜉)−+𝑁− (𝜉)]
+ 𝐿− (𝜂) [𝛿(𝜉)+−𝑁+ (𝜉) + 𝛿(𝜉)−−𝑁− (𝜉)] .

(A.5)

[The first four terms in (28) are not included here, because of
(A.4).]

Consider the first term of the four terms on the right side
of (A.5). This term vanishes (i) for 𝜂 = ±1, because𝑁±(±1) =0, and (ii) for 𝜉 = −1, because𝐿+(−1) = 0. In other words, this
term vanishes along three of the edges, whereas on the fourth
edge (namely, for 𝜉 = 1) (A.5) simply provides the Hermite
interpolation for the edge 𝜉 = 1. Similar considerations hold
for the other three contributions; each one of them affects the
function only along one of the four edges.

Accordingly, the third-order surface is fully described by
the two first-order partial derivatives of 𝛿(𝜉, 𝜂), evaluated
at the four corners. How do we obtain these? By imposing
that the normal is orthogonal to the base vectors. These are
obtained by differentiating (A.3) with respect to 𝜉 and 𝜂
respectively, to obtain

a1 = 𝜕x𝜕𝜉 = ∘a1 + 𝜕𝛿𝜕𝜉 ∘n + 𝛿𝜕
∘n𝜕𝜉 ,

a2 = 𝜕x𝜕𝜂 = ∘a2 + 𝜕𝛿𝜕𝜂 ∘n + 𝛿𝜕
∘n𝜕𝜂 .

(A.6)
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Figure 30: The function 𝛿(𝜉, 𝜂).

Recalling that 𝛿(±1, ±1) = 0 (see (A.4)), the orthogonality
condition yields, at the four corners

a1 ⋅ n = ∘a1 ⋅ n + 𝜕𝛿𝜕𝜉 ∘n ⋅ n = 0,
a2 ⋅ n = ∘a2 ⋅ n + 𝜕𝛿𝜕𝜂 ∘n ⋅ n = 0,

(A.7)

which allows one to obtain 𝜕𝛿/𝜕𝜉 and 𝜕𝛿/𝜕𝜂 at the four
corners.

Finally, the third-order surface is obtained by combining
(A.3) with the expression for 𝛿(𝜉, 𝜂) in (A.5), with 𝜕𝛿/𝜕𝜉 and𝜕𝛿/𝜕𝜂 at the four corners obtained from (A.7). Then, the
surface base vectors at the four corners are given by

a1 = 𝜕x𝜕𝜉 = ∘a1 + 𝜕𝛿𝜕𝜉 ∘n,
a2 = 𝜕x𝜕𝜂 = ∘a2 + 𝜕𝛿𝜕𝜂 ∘n,

(A.8)

because 𝛿(±1, ±1) = 0 (see (A.4)).
The fact that each edge is affected only by the derivative

along the edge at its two-end points is noteworthy. This
implies that the common edge of two adjacent surfaces is
described by the same function. This guarantees continuity
of the surface.

Third-Order Geometry. Let us now turn to a block. Let us
consider a coordinate surfaces for the whole patch, say a(𝜉, 𝜂) surface. From (A.2), at each node we obtain four values
for ∘n(𝜉, 𝜂), namely, one value for each of the four first-order
patches involved.The prescribed unit normal n(𝜉, 𝜂) (as used
in (A.7)) is obtained by taking the average of these four
normals and normalizing it so as to have a unit vector.

Then, we can repeat the same formulation for each of the
eight faces of the brick and obtain the three base vectors at
each of its eight vertices. This completes the generation for
the third-order geometry.

The Geometry of Order 2𝑁 + 1. Finally, note that once the
three base vectors are available for each node of the patch, one
may use the high-order element family proposed in Section 6.
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Therefore, the question arises: “Can the geometry generated
using the formulation above be used for the finite-element
formulation of order 2𝑁+1?” “Almost, but not quite!” Indeed,
the base vector along a coordinate line, say a 𝜉-line, may be
discontinuous at each node, albeit ever so slightly, provided
that the function x(𝜉, 𝜂, 𝜁) used to obtain the nodes for the
first-order geometry is smooth. In this case, base vectors g𝛼
that are continuous at the nodes are obtained by taking the
average of the twonodal values of g𝛼.Thefinal result is a block
x(𝜉𝛼) that is continuous, with base vectors continuous at the
nodes.

Of course, the base vectors are allowed to have a dis-
continuous out-of-plane component at the interfaces of the
blocks.
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