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Radioelectric spectrum occupancy forecast has proven useful for the design of wireless systems able to harness spectrum
opportunities like cognitive radio.This paper proposes the development of a model that identifies propagation losses and spectrum
opportunities in a channel of amobile cellular network for an urban environment using received signal power forecast.Theproposed
model integrates theHata-Okumura (H-O) large-scale propagationmodel with awavelet neuralmodel.Themodel results, obtained
through simulations, show that the wavelet neural model forecasts with a high degree of precision, which is consistent with the
observed behavior in experiments carried out in wireless systems of this type.

1. Introduction

Radioelectric spectrum is regarded as a scarce asset. Nowa-
days, the use of a great percentage of licensed bands is low;
and it has become normal to find frequency bands congested
while others remain underutilized. In that context, cognitive
radio (CR) has become a topic of increasing interest as a new
paradigm seeking to optimize the use of radioelectric spec-
trum [1, 2]. A CR is an intelligent radio aware of the context,
able to autonomously reconfigure itself to learn and adapt
to radio environment [3]. Research on CR has been boosted
by the interesting results obtained from the measuring cam-
paignsmade around theworld [4–14], which show the under-
utilization of radioelectric spectrum in domains of frequency,
time, and geographic distribution [5, 7–9, 11, 14].

One of the essentials from CR is that unlicensed users do
not interfere with the activities of licensed users. A way to
tackle this is by enabling unlicensed users to detect spectrum
occupancy in different locations as a function of the envi-
ronment considered and the propagation conditions, which
provides an invaluable tool to the design, dimensioning, and
evaluation of the performance in CR networks [15].

Propagation models were formulated in the late 1960s,
with the intent of precisely estimate propagation losses in an

environment. Initially, empirical and statistical propagation
models were designed for urban areas [16, 17]. Later, in the
early 1980s with the rise of mobile communications, propa-
gation models were employed in micro- and macrocells sce-
narios [18–20], from which numerous efforts to understand
and forecast the features of the channels in mobile communi-
cations have emerged [21].

Time series have been employed to propagation losses
forecast. For example, neural networks have been used to
forecast field strength [22], as well as average propagation
losses [23, 24]. Another used method is fuzzy logic [25].
Also, the Seasonal Autoregressive IntegratedMoving Average
(SARIMA) andGeneralizedAutoregressive ConditionalHet-
eroskedasticity (GARCH) are used for forecasting received
power in wireless channels [26]. In this paper we develop a
forecast of the received power in order to identify propagation
losses and spectrum opportunities within a licensed mobile
network integrating the H-O propagation model and the
neuronal wavelet model in an urban environment.

This paper is structured as follows. In Section 2 themodel
is put forth. Section 3 presents and discusses the results of
the received power and the duty cycle for the model studied.
Section 4 shows the conclusions of the research.
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2. Proposed Model

First the wavelet neural model was designed. Then, the H-
O propagation model was adjusted using the measurements
obtained from the urban environment. Finally, the proposed
methodology to forecast spectrum opportunities is pre-
sented.

2.1. Wavelet Neural Model. For cognitive systems in [27] a
backpropagation neural network is used to predict the state
of the spectrum; also in [28, 29] a genetic algorithm was used
to optimize the neural network. In [30] a neural network
was utilized to forecast the power of television and GSM-
900 bands. In [31], the spectrum is modeled and forecasted
using the Daubechies wavelets. All the prior examples and
those presented in [32, 33] portray the promising features of
neural networks and wavelets to forecast the received power
in wireless channels onmodels such asMarkov and empirical
mode decomposition-support vector regression. Therefore,
in this paper we propose a theory combining wavelet and
neural network [34] to improve forecasts of the received
power in a channel of the technology Global System for
Mobile Communications (GSM).

The input signal to the model that corresponds to the
received power in a GSM channel for the measurements
developed in [35] and analyzed in [32] can be decomposed
using the Discrete Meyer (dmey) mother wavelet, which
demonstrated a lower error when compared with the Daub-
echies, Coiflets, and Symlets mother wavelets [36]. The ob-
tained results were two levels containing 4 coefficients. These
coefficients are sent as an input of the wavelet multilayer
neural network of backpropagation shown in Figure 1 and
expressed as follows:

𝑓 [𝑛] = 𝑔 𝑛∑
𝑖=1

[
[

1√𝑀∑
𝑘

𝑊Φ [𝑗0; 𝑘]Φ𝑗𝑜;𝑘 [𝑛]

+ 1√𝑀
∞∑
𝑗=𝑗0

∑
𝑘

𝑊𝜓 [𝑗; 𝑘] 𝜓𝑗;𝑘 [𝑛]]]
,

(1)

where 𝑔 is the activation function of the neural network,𝑓[𝑛] is the sample projection in the time domain,𝑊Φ[𝑗0; 𝑘]
are the approximation coefficients,𝑊𝜓[𝑗; 𝑘] are the detailed
coefficients,Φ𝑗𝑜,𝑘 is the scale function, and 𝜓𝑗,𝑘 is the transla-
tion function, which are discrete functions defined within[0,𝑀 − 1], for the total of𝑀 points.

The neural network in this case contains 2 inputs, 2 out-
puts, and 2 hidden layers. The network was initially trained
with nearly five days of continuous measurements; and the
number of training patterns was increased until the error
decreased and turned relatively constant. This was achieved
for 1000 training patterns. The output of the neural network
was reconstructed using a wavelet analysis to obtain the fore-
cast power, which had a training time that was satisfied with
one day to achieve an acceptable error as indicated in [32].

2.2. Hata-Okumura Model. Figure 2 presents the environ-
ment of the Base Station (BS) used to carry outmeasurements

Table 1: BS parameters and spectrum analyzer.

Parameter Value
BS transmission power (𝑃TX) 26 dBm
BS height 26m
BS antenna gain (𝐺BS) 16.5 dBi
BS combiner losses (𝐿co) 4 dB
BS cable losses (𝐿 𝑐) 4 dB
Analyzer antenna gain (𝐺An) 3 dBi
Analyzer cable losses (𝐿ca) 0.72 dB
Low-noise amplifier gain (𝐺LNA) 11 dB
Analyzer height (𝐴𝐻) 1.5m
GSM channel transmission frequency (𝑓𝑐) 828.93MHz

Table 2: Propagation losses of the H-Omodel for the measurement
spots in Figure 2.

Spot 𝐿 GSM channel (dB)
F (58m) 82.282
C (152m) 97.191
D (226m) 103.329
B (287m) 107.026
E (290m) 107.187
A (328m) 109.093

with the spectrum analyzer in the north of Bogotá, Colombia.
The six measurement spots correspond to the covering sites
of the cell, located at different distances from BS, in order
to evaluate and adjust the H-O propagation model [37]. The
period of the measurements was of one hour approximately.
The environment is flat and consists mainly of an important
concentration of buildings; also, green zones and trees are
present, as it can be seen in the measure spot D.

In Table 1 the parameters of the transmitter and receiver
are presented, which are employed to evaluate the H-O
propagation model. The model is then adjusted using the
measured powers in the spots seen in Figure 2 [38].

Through (2) the theoretical average propagation losses (𝐿)
are obtained of the H-O model for each measuring spot, as
observed in Table 2:

𝐿 (dB) = 69.55 + 26.16 log𝑓𝑐 − 13.82 log hte − 𝑎 (ℎre)
+ (44.9 − 6.55 log hte) log 𝑑, (2)

where 𝑓𝑐 is the carrier frequency in MHz, hte is the height of
the transmitter antenna in m, ℎre is the height of the receiver
antenna in m, 𝑎(ℎre) is the correction factor for the effective
height of the mobile antenna, and 𝑑 is the distance between
the transmitter and receiver in km [37].

From the results of Table 2 and parameters in Table 1, the
theoretical average received power (𝑃RX) [39] is given by

𝑃RX = 𝑃TX + 𝐺BS + 𝐺An + 𝐺LNA − 𝐿 − 𝐿𝑐 − 𝐿co − 𝐿ca. (3)

In Figure 3 𝑃RX is presented, obtained from (3) for the H-O
model in comparison to the range of the measured received
power with its respective average values. Figure 3 reveals a
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Figure 2: Measurement spots in north Bogotá, Colombia.

significant difference between the theoretical data and the
measured ones.

In order to increase H-O propagation model precision,
the least squares method is employed [40] to adjust theoreti-
cal results to measured average values. From this, the follow-
ing equation adjusted for the GSM channel is obtained:

𝐿 (dB) = 78.2616 + 26.16 log𝑓𝑐 − 13.82 log hte
− 𝑎 (ℎre) + (19.5356 − 6.55 log hte) log 𝑑. (4)

Figure 4 presents the received power of the H-O model
adjusted by (4) in regard to the average of the measured
received power. In Figure 4 an approximation between the
measured values and the adjusted model is shown, which has
a mean squared error of 1.2688.

2.3. ProposedMethodology. In the following part themethod-
ology to develop the proposed model and the general equa-
tion to forecast received power through the wavelet neural
model and the H-O propagation model previously adjusted
is described. The general procedure to obtain the forecasting
model of spectrum opportunities in an unknown environ-
ment is shown below.
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Figure 3: Theoretical and received power for the H-O model of the
GSM channel.

(1) Measuring. In this step the time-variant(s) channel(s)
of the radioelectric spectrum is measured during a day, as
described in [35].

(2) Adjusting the Propagation Model. The H-O propagation
model is adjusted using, for example, the least squares
method according to the average values of themeasurements.

(3) Training of the Wavelet Neural Model. The measurements
obtained at least within a 24-hour time frame are used to train
the wavelet neural model designed.

(4) Integration of Models. Extrapolate the adjusted H-O prop-
agation model to the wavelet neural model, thus integrating
average propagation losses with instantaneous losses.

(5) Forecasting Received Power. Along the analyzed urban
environment, received power is forecasted during a specified
period of time using the compound model in step (4).

Therefore, the model that takes into consideration both
instantaneous and average propagation losses can be des-
cribed as follows:

𝐿 = Δ𝐿 + 𝐿, (5)
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Figure 4: Adjusted and received power for H-O model of the GSM
channel.

Table 3: Error variables for the received power forecasts in the GSM
channel, based on the wavelet neural model.

SMAPE MAPE MAE
GSM channel 0.0019 0.0010 0.1005

where Δ𝐿 = 𝑓(𝑓[𝑛])|𝑓[𝑛]=Δ𝑃RX represent the instantaneous
propagation losses according to the received power obtained
using (1) and 𝐿 are the average propagation losses obtained
from the adjustment of (2) of the H-O model. Thus, combin-
ing (1) and (3), the received power is obtained as a function
of the H-O model:

𝑃RX = 𝑔 𝑛∑
𝑖=1

[
[

1√𝑀∑
𝑘

𝑊Φ [𝑗0, 𝑘]Φ𝑗𝑜,𝑘 [𝑛]

+ 1√𝑀
∞∑
𝑗=𝑗0

∑
𝑘

𝑊𝜓 [𝑗, 𝑘] 𝜓𝑗,𝑘 [𝑛]]]
+ 𝑃RX,

(6)

where 𝑃RX = 𝑓(𝐿). Equation (6) is represented in Figure 5.

3. Results and Discussion

In this section the results of the proposed model for the
GSM channel are presented and discussed. The results were
analyzed usingMatlab� software in a dual core 2.4GHz com-
puter with a RAM of 4GB.

Figure 6 presents the forecasted power values, with
respect to thosemeasured for one hour, for the wavelet neural
model.

The availability time (it is the time interval that the
channel is not used by the primary users and that could be
used byCRusers) and the occupancy time (it is the time inter-
val that the channel is used by the primary users) of the
measured and forecasted channel through the wavelet neural
model are presented in Figures 7 and 8.The accuracy average
obtained in the forecast of the availability time is 99.8%, and
for the occupancy time it is equivalent to 99.9%.

In Table 3, the error criteria (symmetric mean absolute
percentage error [SMAPE], mean absolute percentage error

[MAPE], and mean absolute error [MAE]) are presented
between real and forecasted data for the wavelet neural
model. At the general level small errors are shown.

In Figure 9, the performance against the forecast is
evaluated, from one to five days of wavelet neural model
training.The error in the GSM channel forecast is reduced by
a total of 1.75%, to the detriment of 31.24% in the observation
time.Therefore, one training day for thewavelet neuralmodel
is sufficient to obtain an acceptable error.

Figure 10 shows the functioning of the proposed model.
In this example the CR user perceives the power of a primary
BS andmaymove over the cell coverage in the direction of the
arrows.The CR user may forecast the power level that will be
received from the primary BS at different distances, bearing
in mind the environment propagation losses.

The evaluation of the proposedmodel covers the forecast-
ing of up to one hour of received power, with amaximumdis-
tance of 328m.The duty cycle over the analyzed environment
is also presented.

By applying (6), the equation of themodel in the proposed
environment of Figure 2 is

𝑃RX = 𝑔 𝑛∑
𝑖=1

[
[

1√𝑀∑
𝑘

𝑊Φ [𝑗0; 𝑘]Φ𝑗𝑜;𝑘 [𝑛]

+ 1√𝑀
∞∑
𝑗=𝑗0

∑
𝑘

𝑊𝜓 [𝑗; 𝑘] 𝜓𝑗;𝑘 [𝑛]]]
+ 𝑓 [78.2616

+ 26.16 log𝑓𝑐 − 13.82 log hte − 𝑎 (ℎre) + (19.5356
− 6.55 log hte) log 𝑑] .

(7)

In Figure 11, (7) is graphed.
In Figure 11, the spectrum opportunities that would be

perceived and profited by CR users are observable in orange
color, although to be more precise they would depend on
the selected threshold.These are obtained from the one-hour
power forecast based on the historical information of one day.
In Figure 11, the power level tends to decrease as the distance
increases, according on the found losses.

In the example of Figure 10 the analysis of the proposed
model is done by developing the power forecast from the CR
user, using a similarity with the spectrum analyzer in which
measurements were made. However, such similarity depends
on the CR architecture deployed in the environment. Given
that the processor and the power consumption are more
limited in the device of the CR user, the use of an architecture
with infrastructure is recommended, so that the forecast is
developed from the CR BS. The CR BS is equipped with a
better processor than the CR user and without limitations
regarding power consumption.

Nevertheless, a period of time between the data collection
in the environment and the processing adds a delay in the
response that should not be ignored; but the forecast helps to
reduce the negative impact of the delay in the response. In
Figure 12 an architecture with infrastructure is shown [3].

For a CR system, the modeling developed in the channel
of GSM band may contribute to improving the use of
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Figure 6: Measured and forecasted time series for GSM channels
with the wavelet neural model.

spectrum efficiency, as it allows CR users to share channels
and to avoid collisions with primary users in the found
spectrum opportunities.

3.1. Duty Cycle. The forecast of the duty cycle can be found
using the following equation [15, 41]:

𝜓 = (1 − 𝐾∑
𝑘=1

𝛼𝑘)𝑃fa + 𝐾∑
𝑘=1

𝛼𝑘𝑄(𝑄−1 (𝑃fa) 𝜎𝑁 − 𝛾𝑘𝜎𝑆𝑘 ) , (8)

where 𝐾 > 0 represents the number of transmission power
levels that can be present in the channel. In this case, in
the measurements took on each spot of Figure 2 there is
a single transmission power. 0 < 𝛼𝑘 ≤ 1 is the activity
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Figure 7: Availability time of forecasted GSM channel.

Table 4: Experimental values of 𝜎𝑆𝑘 and 𝜎𝑁 for GSM.

Band 𝐵 (kHz) 𝜎𝑆𝑘 (dB) 𝜎𝑁 (dB)
GSM 200 1.816 0.8785

factor of the 𝑘th power level, which can be obtained from
the average value of the use of the analyzed GSM channel.𝑃fa is the target probability of false alarm considered for the
selection of the energy decision threshold, which in this case
is of 1%. 𝛾𝑘 = 𝑃RX𝑘 − 𝑃𝑁 is the signal to noise ratio result-
ing from the 𝑘th average transmission power level. 𝜎𝑆𝑘 and𝜎𝑁 represent the standard deviation in decibels of the 𝑘th
signal and noise power levels, respectively. These values were
obtained experimentally using the spectrum analyzer and are
presented in Table 4. 𝑄(⋅) is the Gaussian 𝑄-function and𝑄−1(⋅) is the inverse of 𝑄(⋅).



6 International Journal of Antennas and Propagation

GSM channel

Occupancy time  

Forecasted
Measured

0.5

1

1.5

2

2.5

Ti
m

e (
s)
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Figure 9: Forecast error versus observation time for the GSM
channel.

𝑃RX𝑘 is the received power by the user, which has already
been found for the proposed model, whereas 𝑃𝑁 represents
the CR terminal’s noise floor created from the sum of all the
noise sources in the receiver (including thermal noise) and
can be expressed as follows:

𝑃𝑁 (dBm) = −174 (dBm/Hz) + 10 log𝐵 (Hz)
+NF (dB) , (9)

where −174 dBm/Hz is the thermal noise power spectral
density at 290∘K, 𝐵 is the band width of the sensed channel,
andNF is the total noise figure of the receiver.Thenoise figure
of the lownoise amplifier is 4 dBwith a gain of 11 dB, and cable
losses are of 0.72 dB. The noise figure of the analyzer is 16 dB
for the implemented configuration.Thus, NF can be found by
the total noise factor (𝐹𝑇) [42]:

𝐹𝑇 = 𝐹ca + 𝐹LNA − 1𝐺ca
+ 𝐹An − 1𝐺ca𝐺LNA

= 3.266; (10)

here, 𝐹ca is the noise factor of the cable, 𝐹LNA is the noise
factor of the low noise amplifier, 𝐹An is the noise factor of the
spectrum analyzer, 𝐺ca is the gain of the cable, and 𝐺LNA is
the gain of the low noise amplifier. Therefore, NF is 5.14 dB.

The duty cycle resulting from (8) for the proposed model
in the sector of the BS cell of the exterior environment is
shown in Figure 2.

Figure 13 shows that, as a result of the approach employed
in (8), the scenario reveals different occupancy levels and not

Primary transmitter
(BS)

CR user

Figure 10: Application of the proposed model.

only busy or idle. For example, the probability of channel
occupancy is low or high, but it is not equal to zero or one. In
this way the performedmodeling affords a realistic character-
ization of the spectrum occupancy forecast according to the
considered propagation scenario, which constitutes a major
aspect in the design and dimensioning of CR systems for real
implementation.

Figure 13 warns that the maximum occupancy levels fluc-
tuate about 0.3. These values correspond to locations close
to the BS and are graphed with the range of red colors. In
general, occupancy values decrease and therefore the spec-
trum opportunities for CR users increase, as the signal moves
away from the BS; such values are represented by the range of
blue colors.This is consistent at a practical level and strength-
ens the proposed model.

4. Conclusions

In this study a model to forecast the spectrum opportunities
was developed. The first step was the adjustment of the
H-O propagation model with the measurements taken in
an urban environment. Then, given the approximation of
the adjustment and the average of the measured data, the
integration with a wavelet neural model was performed.

The spectrum opportunities of the proposed model were
set through the forecast of the received power in a determined
time and the duty cycle within an urban environment. These
results show the consistencywith the practical behavior of the
mobile communication systems.

The proposedmethodology presents a novel and practical
approach to forecasting the spectrum occupancy that would
be perceived by CR users in real settings. The forecast of
received power through propagation models is relevant as it
allows CR users to access benefits such as saving energy in
the spectrum sensing process, taking advantage of spectrum
opportunities by increasing the successful transmission rate
aswell as the transmission opportunities, reducing the time to
find available channels, and adjusting the transmission power
levels to protect primary users from collisions and inter-
ferences.

Another advantage and difference is that whereas most
of the forecast schemes are based on determining spectrum
holes, the proposed methodology in this paper is based on
an a priori knowledge of the received power by a channel
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of primary users, which facilitates the selection of nonnoisy
channels and entails a better sharing of the spectrum among
CR users. This leads to achieving superior quality of service
parameters involving fewer radio resources.
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Distrital Francisco José de Caldas, Bogotá, Colombia, 1st edi-
tion, 2016.

[3] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt
generation/dynamic spectrum access/cognitive radio wireless
networks: a survey,” Computer Networks, vol. 50, no. 13, pp.
2127–2159, 2006.

[4] S. Rocke and A. M. Wyglinski, “Geo-statistical analysis of wire-
less spectrum occupancy using extreme value theory,” in Pro-
ceedings of the 13th IEEE Pacific Rim Conference on Communi-
cations, Computers and Signal Processing (PACRIM ’11), August
2011.

[5] T. M. Taher, R. B. Bacchus, K. J. Zdunek, and D. A. Rober-
son, “Long-term spectral occupancy findings in Chicago,” in
Proceedings of the IEEE International Symposium on Dynamic
Spectrum Access Networks (DySPAN ’11), pp. 100–107, Aachen,
Germany, May 2011.

[6] F. H. Sanders, Broadband Spectrum Survey at Los Angeles, Cali-
fornia, U.S. Department of Commerce National Telecommuni-
cations and Information Administration, Boulder, Colo, USA,
1997.
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tions, Birkhäuser, New York, NY, USA, 2nd edition, 2014.

[37] A. F. Molisch, Wireless Communications, John Wiley & Sons,
New York, NY, USA, 2nd edition, 2011.

[38] L. F. Pedraza, C. A. Hernandez, and E. Rodriguez-Colina, “A
spectral opportunities forecasting method in a mobile network
based on the integration of COST 231 Walfisch-Ikegami and
wavelet neuralmodels,”Contemporary Engineering Sciences, vol.
10, pp. 113–128, 2017.

[39] T. S. Rappaport,Wireless Communications: Principles and Prac-
tice, Prentice-Hall, Upper Saddle River, NJ, USA, 2nd edition,
2002.

[40] K. Madsen, H. B. Nielsen, and O. Tingleff, Methods for Non-
Linear Least Squares Problems, Informatics and Mathematical
Modelling, Technical University of Denmark, Kongens Lyngby,
Denmark, 2nd edition, 2004.

[41] M. Lopez and F. Casadevall, “Space-dimension models of spec-
trum usage for cognitive radio networks,” IEEE Transactions on
Vehicular Technology, vol. 66, no. 1, pp. 306–320, 2017.

[42] W. F. Egan, Practical RF SystemDesign, JohnWiley & Sons, Inc.,
Hoboken, NJ, USA, 1st edition, 2003.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


