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This paper reports on approaches to estimate the critical buckling loads of thin-walled T-sections with closed-form solutions.
We first develop a model using energy conservation approach under the assumption that there is no correlation between the
restraint coefficient and buckling half-wavelength. Secondly, we propose a numerical approach to estimate the critical buckling
conditions under the more realistic torsional stiffener constraint condition. A dimensionless parameter correlated with constraint
conditions is introduced through finite element (FE) analysis and data fitting technique in the numerical approach. The critical
buckling coefficient and loads can be expressed as explicit functions of the dimensionless parameter. The proposed numerical
approach demonstrates higher accuracy than the approach under noncorrelation assumption. Due to the explicit expression of
critical buckling loads, the numerical approach presented here can be easily used in the design, analysis, and precisionmanufacture
of T-section webs.

1. Introduction

Thin-walled structures have been widely used in a large num-
ber of engineering applications such as civil infrastructure,
high pressure vessel, aircraft composites, and wind turbines.
Driven by those practical applications, considerable progress
has been made in the design and analysis of composite
elements such as beams and columns based on thin-walled
structures [1–4]. Owing to their relatively low stiffness, local
buckling generally occurs in thin-walled structures before
reaching the strength failure of the materials, resulting in
large deformation or even catastrophic failure of the overall
system.Therefore, local buckling has been a critically impor-
tant aspect in the design and precision manufacture of thin-
walled structures [5, 6]. Wattanutchariya and Paul proposed
a model for the prediction of plate buckling during thermally
enhancedmicrolamination process for reliability and stability
of the manufacturing process [7]. Lee and Bang developed an
approach for estimation of lateral buckling of a wind turbine
tower with a thin circular wall through finite element (FE)
analysis to ensure structure safety [8]. Kim et al. carried out a
buckling analysis of filament-wound composite cylinder sub-
ject to deep water high hydrostatic pressure [9], and so forth.

Particularly, a great deal of research effort has also been
carried out to study the buckling behaviour of thin-walled T-
sections by considering the webs and flanges of thin-walled
members as independent plates. In general, methods for
determining the buckling loads of T-sections can be summar-
ized into two categories [10]: (1) exactmethods and (2) appro-
ximate methods. The former assume that the plates of the
structures are simultaneously blended and the conjunctions
of the plates satisfy continuity conditions, while the latter are
also considered discrete plate analysis as they analyze the
plates separately by taking the elastic restraints between
adjacent plates into consideration. The discrete plate analysis
approaches assume that the plate is simply supported at the
loaded edges while being restrained by various conditions
at the unloaded edge. For example, (1) the plate is elasti-
cally restrained at two unloaded edges (restrained-restrained
(RR)) or (2) the plate is elastically restrained at one unloaded
edge and free at the other unloaded edge (restrained-free
(RF)), as shown in Figure 1.

When discrete plate analysis is used, it is necessary to
determine the elastic restraint acting on the restrained plates.
In 2001, Qiao et al. [5] obtained the critical buckling loads
and half-wave numbers of axially loaded RF and RR plates
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Figure 1: Schematics of restrained T-sections in this study: (a) cross-sectional view of T-sections; (b) uniaxially compressed T-section web
restrained at one edge by torsional stiffeners and free at the other edge.

by solving two transcendental equations. They established a
simplified expression for the critical buckling loads related to
elastic restraint coefficients by using a fitting technique. Based
on the derivation process conducted by Bleich et al. under
isotropic conditions [11], Qiao presented conservative and
simplified expressions for the restraint coefficients of rotating
springs for I- and box-sections under anisotropic conditions
by regarding the restraints as rotational spring constraints.
Moreover, Qiao and Shan [6] presented an expression for the
rotational restraint stiffness 𝑘 for various thin-walled ele-
ments through the design and analysis of the local buckling
of fibre-reinforced plastic composite. By regarding the webs
and flanges of T-sectionmembers as a whole, they performed
a finite element (FE) analysis to calculate the rotational restr-
aint stiffness. Meanwhile, by using the fitting technique, they
derived expressions for the rotational restraint stiffness of
the webs and flanges of the T-section members, respectively.
However, this method cannot be generally used since the
rotational stiffness of any new section needs to be fitted again.
Moreover, all of the analysis proposed by Qiao and Beich is
based on the assumption that the restraints provided by the T-
section flange to the web section are equivalent to rotational
springs; that is, the restraining bending moment of the flange
to the web of a unit length is

𝑀𝑥 = 𝑘𝜕𝑤𝜕𝑦 = 𝑘𝜃, (1)

where 𝜃 is the angle between the flange and the web; 𝑘 is the
rotational restraint stiffness.

However, the rotational spring restraint assumption is not
always valid; Kollar [10, 12–14] divided the elastic restraints
into two kinds based on analysis of the configurations of var-
ious sections: (1)when both of the two edges of the restrained
plates are restrained, the restraints are equivalent to a rotating
spring [11] and (2) when one edge of the restrained plates is
free, the restraints are equivalent to torsional stiffener [15].
The former occurs when the webs and flanges of box-sections
and the webs of I-, C-, and Z-sections are used as restrained
plates, as shown in Figure 2(a). While, when the flanges of
I-, C-, and Z-sections act as the restrained plates, the latter
appears, as shown in Figure 2(b). In the case of Figure 2(b),
the bending moments at the edges of the restrained web are

equal to the distributed torque imposed by the flange plates
and are related to the rate of change of the angle 𝜃󸀠. As shown
in Figure 3, the restraining bending moment at the intersec-
tion of the flange and the web per unit length is

𝑀𝑥 = (𝐺𝐽𝜃󸀠)󸀠 = 𝐺𝐽 𝜕3𝑤𝜕𝑥2𝜕𝑦 , (2)

where 𝐺𝐽 represents the torsional stiffness of the flange-web
restraint.

In addition, Kollar presented an expression for the tor-
sional restraining stiffness and a simple explicit expression
for the critical buckling loads of RF [10] and RR [16] plates.
However, this expression is not rigorous in theory and cannot
be used to obtain closed-form solutions.

In this work, we propose explicit solutions for critical
buckling load of the T-section webs based on the torsional
restraint model through Rayleigh-Ritz method and finite ele-
ment (FE) analysis. Firstly, a closed-form expression for the
critical buckling load of T-section webs is established using
energy conservation approach with the assumption of non-
correlation of the restrain coefficient and buckling half-
wavelength. Then, based on the FE analysis and the fitting
technique, an explicit expression for the buckling half-wave-
length is provided to calculate the restraint coefficients of tor-
sional stiffeners, which is more realistic than the noncorrela-
tion assumption. By introducing a dimensionless parameter𝛽
in the numerical approach, we present an explicit expression
for the critical buckling load which can be directly applied to
the design of the thin-walled of T-section structures.

2. Variational Formula for the Local Buckling
of Elastically Restrained Plates

Based on the discrete plate analysis proposed in the above
section, both the web and flange of a T-section component
can be simulated as RF plate units free at one unloaded
edge and elastically restrained at the other unloaded edge, as
shown in Figure 1. Moreover, the web and the flange can be
regarded as being restrained by torsional stiffeners. Here, the
variational formula is adopted to analyze the local buckling
of an isotropic plate with the boundary conditions presented
in Figure 1 using the Rayleigh-Ritz method. Measuring 𝑎 in
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Figure 2: Restrained plates. (a) A restrained plate whose two edges are adjacent to the plate; (b) restrained plate with a free edge.
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Figure 3: Elastic restraints of the flange on the web of the T-section:
torque balance over a small part of the flange.

length and 𝑏 in width, the rectangular plate is uniformly
loaded in the 𝑥-direction.The boundary parallel to the 𝑦-axis
is simply supported. The 𝑦 = 𝑏 edge is a free boundary, while
the 𝑦 = 0 edge is the boundary restrained by torsional stiffen-
ers with torsional stiffness 𝐺𝐽. In this plate system, the total
potential energy Π is composed of three parts: (1) the elastic
strain energy 𝑈𝑒 stored in the plate, (2) the restraint strain
energy 𝑈𝑟 preserved in the torsional stiffener constraint, and(3) the work 𝑉 done by the externally applied force. These
three parts can be calculated by using the appropriate func-
tion 𝑤 as the buckling displacement out of the plane of the
plate.

The elastic strain energy 𝑈𝑒, restraint strain energy 𝑈𝑟,
and the work 𝑉 done by the external force for orthogonal
isotropic plates can be expressed as follows:

𝑈𝑒 = 12 ∬𝐷{(∇2𝑤)2 − 2 (1 − 𝜇)

⋅ [𝜕2𝑤𝜕𝑥2 𝜕
2𝑤𝜕𝑦2 − ( 𝜕2𝑤𝜕𝑥𝜕𝑦)

2]}𝑑𝑥𝑑𝑦
= 𝐷2 ∬[𝑤2,𝑥𝑥 + 𝑤2,𝑦𝑦 + 2𝜇𝑤,𝑥𝑥𝑤,𝑦𝑦 + 2 (1 − 𝜇)
⋅ 𝑤2,𝑥𝑦] 𝑑𝑥 𝑑𝑦,

(3)

𝑈𝑟 = −12 ∫[𝐺𝐽( 𝜕3𝑤𝜕𝑥2𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=0)( 𝜕𝑤𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=0)]𝑑𝑥, (4)

𝑉 = 12 ∬[𝐹𝑥 (𝜕𝑤𝜕𝑥 )
2]𝑑𝑥𝑑𝑦, (5)

where 𝐷 = 𝐸𝑡3/12(1 − 𝜇2), 𝐸, 𝑡, and 𝜇 are the flexural
rigidity, elastic modulus, thickness, and Poisson’s ratio of the
plate, respectively; 𝐺𝐽 represents the torsional stiffness of the
torsional stiffener per unit length at 𝑦 = 0; 𝐹𝑥 is the axial
force per unit length of the loaded edge of the plate, while 𝑤
denotes the buckling shape function of the plate.

Considering small deformations and only the linear-
elastic behaviour of the plate, the first-order variational form
is presented as follows:

𝛿𝑈𝑒 = 𝐷∬[𝑤,𝑥𝑥𝛿𝑤,𝑥𝑥 + 𝑤,𝑦𝑦𝛿𝑤,𝑦𝑦 + 𝜇 (𝑤,𝑦𝑦𝛿𝑤,𝑥𝑥
+ 𝑤,𝑥𝑥𝛿𝑤,𝑦𝑦) + 2 (1 − 𝜇)𝑤,𝑥𝑦𝛿𝑤,𝑥𝑦] 𝑑𝑥 𝑑𝑦,

𝛿𝑈𝑟 = −12 ∫{𝐺𝐽[( 𝜕3𝑤𝜕𝑥2𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=0)𝛿( 𝜕𝑤𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=0)

+ ( 𝜕𝑤𝜕𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=0)𝛿( 𝜕3𝑤𝜕𝑥2𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=0)]}𝑑𝑥,
𝛿𝑉 = ∬(𝐹𝑥𝑤,𝑥𝛿𝑤,𝑥) 𝑑𝑥 𝑑𝑦.

(6)

For a plate system in an equilibrium state, the first-order
variational form of its total potential energy equals zero; that
is,

𝛿Π = 𝛿𝑈1 + 𝛿𝑈2 − 𝛿𝑉 = 0. (7)

By substituting the buckling shape function 𝑤 satisfying
certain boundary conditions into (7), we can establish a
standard buckling eigenvalue problem which can be solved
using the Rayleigh-Ritz method.

3. Explicit Solutions of the Local Buckling of
Elastically Restrained Plates

When solving the buckling problem using the Rayleigh-Ritz
method, it is crucial to select an appropriate shape function𝑤 [17]. This function is expected to satisfy certain boundary
restraints including force boundary restraints and displace-
ment boundary restraints so as to ensure accuracy. Moreover,
the structural form of the function is chosen to be as simple
as possible for the convenience of obtaining corresponding
explicit formula. Based on the recommendations of selecting
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shape functions in relevant studies [18, 19], the shape function
shown in (8) is used to simulate the buckling deformation of
plate units

𝑤 = [𝑦𝑏 + 𝜓1 (𝑦𝑏 )
2 + 𝜓2 (𝑦𝑏 )

3 + 𝜓3 (𝑦𝑏 )
4] sin 𝜋𝑥𝑎0 , (8)

where 𝜓1–𝜓3 are coefficients determined by the boundary
constraint conditions; 𝑎0 = 𝑎/𝑖 is the buckling half-
wavelength and 𝑖 is the buckling half-wave number (𝑖 =1, 2, . . .).

The shape function used here applies strictly defined force
boundary constraints at the unloaded edges. The specific
expressions are presented in (9a) to (9d)

𝑤 (𝑥, 0) = 0. (9a)

The torsional stiffener restraint is

𝑀𝑥 (𝑥, 0) = −𝐷( 𝜕2𝑤𝜕𝑦2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=0) = 𝐺𝐽( 𝜕3𝑤𝜕𝑥2𝜕𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=0) , (9b)

𝑀𝑥 (𝑥, 𝑏) = (𝜕2𝑤𝜕𝑦2 + 𝜇𝜕
2𝑤𝜕𝑥2 )

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑏 = 0, (9c)

𝑉𝑦 = (𝜕3𝑤𝜕𝑦3 + (2 − 𝜇) 𝜕3𝑤𝜕𝑥2𝑦)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=𝑏 = 0. (9d)

By substituting (8) into (9a)–(9d), specific expressions for
the coefficients 𝜓1–𝜓3 can be obtained, as shown in (10a) to
(10c)

𝜓1 = 𝐺𝐽𝜋2𝑏2𝐷𝑎20 , (10a)

𝜓2 = −(48𝑎40𝜓1 + 3𝜋4𝑏4 + 2𝜋4𝑏4𝜓1 − 12𝜋2𝑎20𝑏2 − 3𝜋4𝑏4𝑠2 + 36𝜋2𝑎20𝑏2𝑠 − 2𝜋4𝑏4𝑠2𝜓1 − 8𝜋2𝑎20𝑏2𝜓1 + 40𝜋2𝑎20𝑏2𝑠𝜓1)(72𝑎40 + 30𝜋2𝑎20𝑏2𝑠 − 6𝜋2𝑎20𝑏2 − 𝜋4𝑏4𝑠2 + 𝜋4𝑏4) , (10b)

𝜓3 = (12𝑎40𝜓1 + 2𝜋4𝑏4 + 𝜋4𝑏4𝜓1 − 2𝜋4𝑏4𝑠2 + 12𝜋2𝑎20𝑏2𝑠 − 𝜋4𝑏4𝑠2𝜓1 + 12𝜋2𝑎20𝑏2𝑠𝜓1)(72𝑎40 + 30𝜋2𝑎20𝑏2𝑠 − 6𝜋2𝑎20𝑏2 − 𝜋4𝑏4𝑠2 + 𝜋4𝑏4) , (10c)

where 𝑠 = 1 − 𝜇 and 𝜓1 is termed as the restraint coefficient
and 𝜓1 = 0 indicates that the plate is simply supported; when𝜓1 = ∞, the plate is clamped.

3.1. Plates of Finite Length. By substituting (8) into (7), the
corresponding analytical solutions for buckling loads and
buckling coefficient after solving the standard eigenvalue
problem can be derived. The specific expressions are shown
as follows:

(𝐹𝑥)cr = 𝐾cr
𝜋2𝐷𝑏2 , (11)

𝐾cr = 𝑏2𝑎20 +
𝑎20𝑏2 (2𝜂2 + 𝜓12𝜋4𝜂1 ) + (1 − 𝜇) 𝜂3 + 𝜂4𝜋2𝜂1 , (12)

where (𝐹𝑥)cr and (𝐾)cr are the critical buckling load and
buckling coefficient, respectively. For each buckling half-
wave number 𝑖, there is a corresponding critical buckling load(𝐹𝑥)cr. We are interested in finding the minimum value of(𝐹𝑥)cr. In (12) 𝜂1–𝜂4 are all functions of 𝜓1

𝜂1 = (252𝜓21 + 180𝜓22 + 140𝜓23 + 420𝜓1𝜓2 + 360𝜓1𝜓3 + 315𝜓2𝜓3 + 630𝜓1 + 504𝜓2 + 420𝜓3 + 420)5040 , (13a)

𝜂2 = (5𝜓21 + 15𝜓22 + 36𝜓23 + 15𝜓1𝜓2 + 20𝜓1𝜓3 + 45𝜓2𝜓3)5 , (13b)

𝜂3 = 𝜓21 + 1.5𝜓22 + 2𝜓23 + 2.5𝜓1𝜓2 + 3𝜓1𝜓3 + 3.5𝜓2𝜓3 + 1.5𝜓1 + 2𝜓2 + 2.5𝜓3 + 0.5, (13c)

𝜂4 = −(70𝜓21 + 126𝜓22 + 180𝜓23 + 210𝜓1𝜓2 + 294𝜓1𝜓3 + 315𝜓2𝜓3 + 105𝜓1 + 210𝜓2 + 315𝜓3)210 . (13d)

3.2. Long Plates. In this section, long plates with 𝑎 ≫ 𝑏 are
investigated to obtain the minimal critical buckling load as a
function of buckling half-wavelength 𝑎0. To get the minimal
value of (𝐹𝑥)cr, it is necessary to make 𝑑(𝐹𝑥)cr/𝑑𝑎0 = 0. An

explicit expression for the critical aspect ratio may be found
if the restraint coefficients of the rotating springs of RF plates
are not related to 𝑎0, as pointed out in the literature [6]. How-
ever, when using torsional stiffeners to simulate the restraints
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of T-sections, the restraint coefficient𝜓1 of torsional stiffeners
of RF plates (as presented in (10a)) is relevant to 𝑎0. This
condition results in a transcendental equation, which can be
only solved numerically. In the following sections, we present
two approaches to derive explicit solutions for the critical
buckling load.

3.2.1. Energy Conservation Approach under Noncorrelation
Assumption. To obtain an explicit solution, we assume there
is no correlation between 𝜓1 and 𝑎0. With the shape function
shown in (8) and energy conservation condition shown in (7),
for a long plate with one edge restrained by rotating springs
and one free edge, the critical buckling load and coefficient
can be derived as

(𝐹𝑥)cr = 𝐾cr
𝜋2𝐷𝑏2 , (14)

𝐾cr = 2√2𝜂2 + 𝜓12𝜋4𝜂1 + (1 − 𝜇) 𝜂3 + 𝜂4𝜋2𝜂1 . (15)

Specifically, 𝜓1 = 0 indicates that the plate is simply sup-
ported; the buckling coefficient is𝐾sf ; when𝜓1 = ∞, the plate
is clamped and the buckling coefficient is𝐾cf

Ksf = 0.608 (1 − 𝜇) , (16a)

𝐾cf = 1.53√1 − 𝜇. (16b)

3.2.2. Numerical Approach under Torsional Stiffener Restraint
Assumption. Aspresented earlier, the critical buckling load of
those plates restrained by torsional stiffeners is related to the
restraint coefficient 𝜓1. Meanwhile, the restraint coefficient𝜓1 of a torsional stiffener is related to the buckling half-
wavelength 𝑎0. As analytical solutions cannot be obtained for𝑎0, a simple explicit expression for 𝑎0 based on the FE analysis
and the fitting technique will be presented below.

By using FEA software ANSYS, the model of the whole
structure of the T-section shown in Figure 4 is established to
analyze the elastic buckling of the web under uniform com-
pressive stress. To highlight the torsional stiffener restraints
on the flange to the web, degree of freedom (DOF) coupling
is adopted in the modelling process. The flange and the web
are separately modelled. Afterwards, rotational freedoms 4
and 5 of the nodes on the intersection of the web and the
flange are coupled with the displacement DOF 3 outside the
web (other DOFs remain independent). The model aims to
prevent the uniform compressive stress imposed on the web
from being transferred to the flange, thus avoiding buckling
of the flange. Meanwhile, it is necessary to restrain DOFs 1
and 2 of nodes at both ends of the flange in order to prevent
the flange from rigid translational movement. In the ANSYS
model, loads are applied to the nodes on the loading edges by
means of nodal loads.The value of the nodal load is calculated
based on the tributary area of nodes: the load on tributary
area of intermediate nodes is the sum of the half-areas of the
two units adjacent to this node, while that on end nodes is
equal to half of its unit value.

By analyzing a large number of models with varying 𝑏𝑓,𝑡𝑓, 𝑏𝑤, and 𝑡𝑤 (𝑏𝑤 and 𝑡𝑤 refer to the width and thickness of
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Figure 4: The web being uniaxially compressed by uniform loads
(considering flange restraint).

the web; 𝑏𝑓 and 𝑡𝑓 refer to the width and thickness of the
flange) and using data fitting technique, the buckling half-
wavelength 𝑎0 can be expressed as follows:

𝑎0 = 1.6751 − 0.39𝛽−0.655 𝑏, (17)

where the introduced variable 𝛽 = 𝑏𝑓𝑡3𝑓/𝑏𝑤𝑡3𝑤 refers to the
ratio of the torsional stiffness of the flange to the bending
stiffness of the web. When 𝛽 = 0.2375, the constrained edge
of the web is equivalent to a simply supported edge with a
buckling half-wavelength 𝑎0 being the length 𝑎 of the plate. It
also indicates that the flange of the T-section cannot restrain
the web when 𝑏𝑓𝑡3𝑓 < 0.2375𝑏𝑤𝑡3𝑤. In addition, when 𝛽 = ∞,
the constrained edge of the web is equivalent to the simply
supported edge with the buckling half-wavelength being 𝑎0 =1.675𝑏.

By substituting (10a)–(10c), (13a)–(13d), and (17) into (15),
the critical buckling load of a long plate can be calculated
under the noncorrelation assumption. Take a T-section
shown in Figure 4, for example, where the parameters of the
T-section are follows: 𝑏𝑤 = 6 cm and 𝑡𝑤 = 𝑡𝑓 = 0.25 cm; 𝑏𝑓
is a variable, which means that 𝛽 is also a variable. Figure 5
shows that, compared with the critical buckling load of the
T-section calculated by the FE analysis, the buckling loads
of the RF plate computed by (15) under the noncorrelation
assumption present a maximum error of 3.52%.

Substituting (17) into (10a) gives

𝜓1 = 𝐺𝐽𝜋2𝑏2𝐷𝑎20 = 𝑠𝜋2𝑏𝑓𝑡3𝑓
(1.675/ (1 − 0.39𝛽−0.655))2 𝑏𝑤𝑡3𝑤

= 𝑠𝜋2𝛽
(1.675/ (1 − 0.39𝛽−0.655))2 .

(18)

An interesting point arising from (18) is that the restraint
coefficient𝜓1 can be directly correlated with 𝛽. This indicates
that the critical buckling load and coefficient can also be
derived as explicit functions of 𝛽. On this basis, an explicit
expression, simpler than that in (15), was obtained using the
fitting technique

𝐾cr = 𝐾sf + (𝐾cf − 𝐾sf) ∗ 0.51/𝛽, (19)

where𝐾sf and𝐾cf are given by (16a) and (16b).
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Figure 5: Comparison of the critical buckling coefficient of the RF
plate calculated using three methods.

As shown in Figure 5, comparedwith the critical buckling
load calculated by the FE approach, the critical buckling load
computed by (19) ismore conservative with amaximumerror
of only 2.18%. The closed-form solution of the critical buck-
ling load coefficient presented in (19) demonstrates higher
accuracy than (15) under the noncorrelation assumption, as
well as simplicity for practical implementation in engineering
applications.

4. Conclusion

We present closed-form solutions for the critical buck-
ling loads of thin-walled T-section structures. An explicit
expression of the critical buckling loads is derived based on
energy conservation and constraint coefficient-buckling half-
wavelength noncorrelation assumption. Secondly, we develop
a numerical approach by taking account of the correlation
of the constraint coefficient and buckling half-wavelength.
Through FE analysis and data fitting, the buckling half-
wavelength 𝑎0 can be correlated with the geometric parame-
ters of the T-section via a variable 𝛽. 𝛽 is not merely a data fit-
ting parameter but also directly corresponds to various cons-
traint conditions. It is found that the restraint coefficient 𝜓1
can be expressed as a closed-form solution of 𝛽 under energy
conservation approach. Therefore, the critical buckling load
and coefficient can also be derived as explicit functions of 𝛽.

The explicit expression of critical buckling coefficient [see
(19)] derived by the numerical approach provides benefits of
not only convenient applications in engineering practice, but
also higher accuracy than the explicit expression obtained
under the noncorrelation assumption [see (15)]. We expect
the closed-form solutions proposed herein to be valuable for
design and precision manufacture of T-section structures.
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