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Data measurement of roller bearings condition monitoring is carried out based on the Shannon sampling theorem, resulting in
massive amounts of redundant information, which will lead to a big-data problem increasing the difficulty of roller bearing fault
diagnosis. To overcome the aforementioned shortcoming, a two-stage compressed fault detection strategy is proposed in this study.
First, a sliding window is utilized to divide the original signals into several segments and a selected symptom parameter is employed
to represent each segment, throughwhich a symptomparameter wave can be obtained and the raw vibration signals are compressed
to a certain level with the faulty information remaining. Second, a fault detection scheme based on the compressed sensing is
applied to extract the fault features, which can compress the symptom parameter wave thoroughly with a randommatrix called the
measurement matrix. The experimental results validate the effectiveness of the proposed method and the comparison of the three
selected symptom parameters is also presented in this paper.

1. Introduction

Rotating machinery is widely applied in industrial fields,
such as petrochemical industry, metallurgy industry, and
power industry [1, 2]. Roller bearing, whose failure might
result in the breakdown of the whole mechanical system, is
considered as an integral component of rotating machinery
[3, 4]. Therefore, it is essential to monitor the operating
condition of the roller bearings, aiming at preventing the
occurrence of the accidents.

Since much fault information is carried by the vibration
signals, vibration-based diagnostic techniques have become
the most commonly used and effective method for the fault
diagnosis of roller bearings [5–7]. It is well known that
the vibration-based fault diagnosis of roller bearings can be
broadly classified into three categories, namely, time-domain
analysis, frequency-domain analysis, and time-frequency
analysis [8–10].

In the case of time-domain analysis, the characteristic
statistical factors in time domain, including mean, peak, root
mean square, skewness, can be viewed as descriptors to assess

the performance of roller bearings [11–13]. Wang et al. [14]
proposed a comprehensive analysis based on time-domain
and frequency-domain statistical factors in order to evaluate
the performance degradation degree of roller bearings. Niu et
al. [15] presented some new statistical moments for the early
detection of bearing failure. Heng and Nor [16] investigated
a statistical method to detect the presence of defects in a
roller bearing. Although the symptom parameters are easily
performed to evaluate the condition of roller bearings, the
successful applications are limited owing to the weak anti-
interference performance of these parameters.

Compared to time-domain analysis, frequency-domain
analysis has an advantage in highlighting the certain fre-
quency components of interest by transforming the time-
domain wave into frequency spectrum. The traditional
method in frequency-domain is fast Fourier transform (FFT).
Due to the modulation phenomenon of faulty vibration
signals, envelope demodulation should be carried out before
performing FFT, which is called envelope analysis. Guo et
al. [17] applied envelope analysis with independent com-
ponent analysis, which can extract the impulse component
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corresponding to the roller bearing faults and reduce the
dimension of vibration sources. Wang et al. [18] devel-
oped a fault detection enhancement method based on the
peak transform and envelope analysis. Cases proved that
the envelope analysis can diagnose the faults of a roller
bearing successfully when it is in combination with other
approaches [17–19]. However, the frequency analysis will
lose its effect when the vibration signals are embedded in
strong noise. Thus, the time-frequency-domain analysis was
developed. Many methods that belong to time-frequency
analysis, such as empirical mode decomposition (EMD)
[20] and wavelet transform [21], are employed to assess the
performance of roller bearings. Ma et al. [22] combined local
mean decomposition and time-frequency analysis, which
can improve the reliability of the fault diagnosis. Li et al.
[23] proposed a novel method for fault diagnosis of roller
bearings based on CEEMD. Ahn et al. [24] applied wavelet
analysis to eliminate noise. Though time-frequency analysis
is effective in processing the nonstationary signals induced
by faulty bearings, it is usually complicated and involves large
computation, which is contrary to the real-time detection.

The cited literatures demonstrated that the fault diagnosis
of roller bearings is developing increasingly. However, the
aforementioned bearing fault diagnosis method is achieved
by sampling the vibration signals under the Shannon sam-
pling theorem. With the constraint of Shannon sampling
theorem, a large amount of redundant vibration signals will
be measured, increasing the burden of roller bearings’ fault
diagnosis. There is no doubt that the increasing amount of
data will result in high accuracy of fault diagnosis with the
efficiency decreasing.Thus, it is a really toughwork to balance
the accuracy and efficiency of fault diagnosis.

A newly developed theory named compressed sensing
(CS) [25] brought a new insight to deal with the big-
data problem, which puzzled the researchers in various
fields. The core idea of the CS theory is to reconstruct the
original signals from a small number of samples far below
the Shannon sampling rate using sparse representation and
a well-designed measurement matrix. The CS theory has
been applied to numerous fields, such as image processing,
medical field, and remote sensing. Khwaja and Ma [26]
described two possible applications of the CS theory in
synthetic aperture radar image compression. Zhu et al. [27]
developed an adaptive sampling mechanism on the block-
based CS, which focused on how to improve the sampling
efficiency for CS-based image compression. Kim and Vu
[28] applied the CS theory to magnetic resonance imaging,
which can be viewed as a breakthrough technology inmedical
diagnosis. Ghahremani and Ghassemian [29] combined the
ripplet transform and the CS theory to remote sensing image
fusion. All of the aforementioned studies demonstrated the
possibility of applying the CS theory to the field of fault
diagnosis. However, the applications of the CS theory in
fault diagnosis are relatively limited. Although Zhu et al.
[30] summarized the applications in the mechanical fields,
no practical applications were reported. Chen et al. [31]
presented a novel adaptive dictionary based on the CS theory
to extract the impulse generated by the faulty bearings. Tang
et al. [32] developed a representation classification strategy

for rotating machinery faults based on the CS theory. Wang
et al. [33] proposed a novel decomposition for reconstruction
from the limited observations polluted by noise based on
the CS theory via the sparse time-frequency representation.
However, the aforementioned studies were primarily focused
on either the sparse representation of the vibration signals or
the reconstruction of the original signals, and the amount of
samples in these cases still needed to be compressed.

It is significant to ensure that the few observations contain
adequate faulty information, which is an essential condition
to guarantee the successful applications of the compressed
sensing theory. Thus, a fault features’ reservation method
called the symptom parameter wave is developed to obtain
sufficient faulty information. Combined with the compressed
sensing theory, a two-stage compressionmethod is described
in this work to further decrease the amount of samples for
fault diagnosis of roller bearings without losing significant
information, through which the fault features of roller bear-
ings can be detected timely. Compared to the work of sparse
representation and reconstruction, the samples for the fault
detection using the two-stage compression method are far
less. First, the large amount of vibration signals is divided
into several segments by a sliding window with a given size.
Then, a time-domain symptomparameter is used to represent
each data segment, through which a symptom parameter
wave can be obtained and the original signals can be reduced
to a certain level. With the symptom parameter wave, the
dimension of the analyzed signals can be shrunk and it
outperforms the traditional usage of these characteristic
factors by representing the whole signals with single value in
the presence of noise. Second, a well-designed measurement
matrix is applied to compress the symptom parameter wave.
Third, a fault detection method based on the CS theory is
employed to extract the fault features with limited samples.
Assisted by the matching pursuit, the fault features can be
detected from a small number of samples, which are far
below the Shannon sampling rate. Furthermore, the detection
method in the current work does not need to reconstruct the
original signals completely. When the components related to
the fault features are detected, the reconstruction process can
be finished,whichmeans the fault diagnosis can be completed
during the reconstruction procedure.

The rest of this paper is organized as follows. Section 2
introduces the basic concept of the two-stage compression
strategy, followed by the compressed fault detection strategy
in Section 3. The application cases are presented in Sec-
tion 4. Section 5 describes the comparing results between
the selected symptom parameters. Conclusions are drawn in
Section 6.

2. Basic Concept of the Two-Stage
Compression Strategy

2.1. First Stage of Compression by the Symptom Parameter
Wave. As is known to all, the fault diagnosis of roller
bearings based on the time-domain symptom parameters is
the simplest method in time-domain analysis. The operating
status of roller bearings can be identified according to the
change of the time-domain symptom parameters. Generally
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speaking, the symptom parameters can be classified into
two categories: dimensional symptomparameters and nondi-
mensional symptomparameters.The former, such as the peak
value, the peak-to-peak value, and the root mean square
value, reflect themagnitude change of a signal.The latter, such
as kurtosis, crest factor, and shape factor, express the shape
change of a signal.

Various symptom parameters have been utilized for fault
diagnosis of roller bearings. Some of them can be calculated
according to the following equations:
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where 𝑋Peak is the peak value of a signal, 𝑋 represents the
average of absolute value of a signal, 𝑋RMS denotes the root
mean square of a signal, 𝑋ptp expresses the peak-to-peak
value of a signal, 𝑥max is the max value of a signal, 𝑥min is the
minimum value of a signal, SF describes the shape factor of a
signal, and 𝐾 indicates the kurtosis of a signal.

In the traditional sense, the operating status of roller bear-
ing can be identified by representing the whole signals with
a characteristic value. This fault diagnosis method mainly
depends on the difference of the characteristic values between
the normal state and faulty status. However, successful cases
are limited due to the instability and insensitivity of these
parameters when the target vibration signals are submerged
by the noise, which means the traditional usage of these
symptom parameters has a weak anti-interference ability. To
strengthen the ability of antinoise, a concept of symptom
parameter wave is proposed in the present study. Three
time-domain symptom parameters are selected to represent
the signals depending on the characteristics of the faulty
vibration signals.The selected symptom parameters are𝑋ptp,
SF, and𝐾, which are more sensitive to the failures than other
characteristic factors. A symptom parameter wave can be
achieved through a sliding window in order to compress the
raw signals and preserving the fault features of the faulty
vibration signals. The flow diagram of symptom parameter
wave is shown in Figure 1. The raw vibration signals are
divided into several segments by a sliding window and a
selected characteristic parameter is used to represent each
segment, through which a symptom parameter wave can be
obtained. The acquisition of the symptom parameter wave
can reduce the original signals to a certain level with the fault
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Figure 1: Flow diagram of obtaining the symptom parameter wave.
(a) The original signals and (b) the symptom parameter wave.

features remaining, which is the first stage of compression in
this work.

2.2. Second Stage of Compression by the Compressed Sensing
Theory [34–36]. The traditional sampling scheme based on
the Shannon sampling theorem results in the big data, which
contains much redundant information. It is no doubt that
large amount of signals increases the cost of data storage
and makes signal processing more difficult. The proposal of
the CS theory brings a new insight for data acquisition and
signal processing by reconstructing the original signal from
downsampled signals.

Provided SP(𝑡) is a𝑁×1 symptomparameter wave, which
can be further compressed by a measurement matrix:

𝑦 = BSP (𝑡) , (2)

whereB is a𝑀×𝑁 (𝑀 ≪ 𝑁)measurement matrix.
The 𝑁 × 1 time-domain signal can be compressed to a
𝑀× 1 signal using a measurement matrix according to (2).

The SP(𝑡) can be represented by a group of𝑁 × 1 basis:

SP (𝑡) = 𝜓𝜃. (3)

So

𝑦 = B𝜓𝜃 = 𝐴𝜃, (4)

where 𝜓 = {𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑁
} ∈ 𝑁 × 𝑁 is the basis

vector, through which the original signals can be represented
sparsely. 𝜃 denotes the representation coefficients.The signals
can be said to be 𝐾-sparse, when 𝜃 contains only 𝐾 nonzero
coefficients (𝐾 ≪ 𝑁). 𝐴 = B𝜓 is called the sensing matrix.

It is impossible to solve the model in (3), which is an
ill-posed equation. The solution of the CS model can be
expressed as

min ‖𝜃‖0

s.t. 𝑦 = 𝐴𝜃.
(5)

The solution becomes possible owing to the sparsity of
𝜃, which can reduce the unknowns. It is more likely to
reconstruct the signals from the limited samples without
meeting the requirement of Shannon sampling theorem,
when 𝐴 satisfies the restricted isometry property (RIP).
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Figure 2: Flow diagram of the compressed fault detection strategy.

3. The Compressed Fault Detection Strategy

A force impulse is generated when operating a roller bearing
with a local defect and the resonance of the bearing system
occurs. In addition, each time the ball passes through the
location with a fault, a periodic impulse will be produced,
namely, the fault characteristic frequency, which is an indica-
tor of the existence of a fault. Due to the phenomenon of res-
onance, the fault characteristic frequency will be modulated.
Thus, the faulty vibration signals need to be demodulated in
order to obtain the fault characteristic frequency.

An obstacle should be overcome in case of the application
of the CS theory to fault diagnosis of roller bearings. In fact,
the faulty vibration signals, which contain many periodic
impulses, are not significantly sparse neither in time domain
nor in Fourier domain. In this case, the reconstruction error
will be high, which means that it makes no sense to recon-
struct the signals. Thus, we choose to detect the harmonic
signals induced by the faulty roller bearings. In addition, it is
well known that the sparsity of the harmonic signal in Fourier
domain is two. Furthermore, the advantage of the fault
detection over the reconstruction is that if the frequency of
the detected signal is of interest, the process can be completed,
which can also be called the incomplete reconstruction.

The flowchart of the compressed fault detection approach
in this work is presented in Figure 2. The amount of the
original signals can be reduced by the time-domain symptom
parameter wave through a size-fixed sliding window. As
mentioned above, a variety of impulses exist in the faulty
vibration signals and the peak-to-peak value, kurtosis, and
shape factor are more suitable to represent the fault charac-
teristics. Thus, the peak-to-peak value, kurtosis, and shape
factor are chosen to obtain the symptom parameter wave.
Then, the symptom parameter wave can be acquired and
the dimension of the original signals is reduced to a certain
level with the faulty information remaining. Additionally, the
vibration signals of faulty bearing can be demodulated by the
symptomparameterwave.Thus, it is unnecessary to adopt the
envelope demodulation to process the analyzed signals. The
measurement matrix is utilized as a compressor to further
shrink the amount of samples. At last, fault detection based on
theCS theory is employed to extract the fault featureswith the
help of matching pursuit. If the detected harmonic signal is
almost equal to the theoretical fault characteristic frequency,
the conclusion that there is a fault in this roller bearing can be
made. Otherwise, the detection process should be continued
until the frequencies of interest are extracted. Here, the basis
group is the Fourier basis for the sparsity of harmonic signal
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Figure 3: (a) Fault test rig, (b) flow diagram of the fault test rig, and (c) location of the sensors.
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Figure 4: (a) Outer-race fault, (b) inner-race fault, and (c) rolling-element fault.

in Fourier domain is 2. Various matrices can be considered
as measurement matrix, such as Gaussian random matrix,
Bernoulli matrix, and Toeplitz matrix. Since the Gaussian
random matrix can meet the requirement of RIP with the
Fourier basis, it is selected as the measurement matrix in this
study.

4. Application Cases

4.1. Test Rig. The vibration signals of roller bearing faults are
measured through an accelerometer, and the faulty bearings
are fixed in the fan system, as shown in Figure 3(a), which
mainly consists of a motor, a belt, a fan, and a couple of
bearings. The motor is a three phase induction motor, whose
type is SF-JR with a rated power of 2.2 Kw.The fan, which has
48 blades, operates at a speed of 800 rpm. The flow diagram
of the fan system is presented in Figure 3(b). The sensors are
installed on the bearing housing, as shown in Figure 3(c),
where the collected vibration signalsmight be valid and easily
measured. The faulty bearings are shown in Figure 4, con-
cluding outer-race fault, inner-race fault, and rolling-element
fault, which are created through wire-electrode cutting. In
all experiments, the sampling frequency is 100KHz and the
roller bearings are operated at a speed of 800 rpm. The fault
characteristic frequencies can be computed according to (6)–
(8) [23, 37] and the results are shown in Table 1.

Table 1: Fault characteristic frequency.

Fault location Outer race Inner race Ball element
Fault characteristic
frequency (Hz) 72.5 103.4 79.6

The fault characteristic frequency of outer race is

𝑓
𝑜
=
𝑍

2
(1 −
𝑑

𝐷
cos𝛼)𝑓

𝑟
. (6)

The fault characteristic frequency of inner race is

𝑓
𝑖
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𝑍

2
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𝑑
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. (7)

The fault characteristic frequency of ball element is

𝑓
𝑏
=
𝐷

2𝑑
(1 − (
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2

)𝑓
𝑟
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where 𝑍 denotes the number of roller elements, 𝑓
𝑟
is the

rotating frequency, 𝑑 is the roller diameter, 𝐷 represents the
pitch diameter, and 𝛼 is the contact angle.



6 Shock and Vibration

0 2 4 6 8 10
−1

−0.5

0

0.5

1

Data number

A
m

pl
itu

de

×10
4

(a)

Data number

A
m

pl
itu

de

0 500 1000 1500 2000
0

0.5

1

(b)

Figure 5: (a) Original signals and (b) symptom parameter wave using peak-to-peak value.
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Figure 6: (a) Random sampling and (b) envelope spectrum of the original signals with 600 points.

4.2. Detection of the Bearing Fault in the Outer Race. The
proposed method was employed to detect the bearing fault
in the outer race. The peak-to-peak value, kurtosis, and
shape factor are considered to represent the original signals,
acquiring a symptom parameter wave, aiming at compressing
the signals with the significant information preserved. The
size of the sliding window is 50 points and the amount of the
random sampling points is 600. All the data in this work are
processed through the normalization.

4.2.1. Detecting theOuter-Race Fault Using Peak-to-PeakValue
and Compressed Sensing. The first time-domain symptom
parameter selected to compress the original signals is peak-
to-peak value, which reflects the impact characteristic of the
signals. The time-domain waveform of the original signals is
presented in Figure 5(a), which contains plenty of impulses.
However, the number of vibration signals sampled for fault
diagnosis is 100000 points, which can be compressed to
ease the pressure of signal processing. Then the peak-to-
peak value is utilized to obtain the time-domain symptom
parameter wave as shown in Figure 5(b), which retains the

impact characteristic of the original signals. Here, the size of
the slidingwindow is 50 points.Thus, the samples are reduced
50 times and the samples are compressed from 100000 to
2000. Next, a Gaussian random matrix is selected as the
measurement matrix to reduce the amount of the signals
obtained from the envelope of the symptom parameter
wave as in Figure 6(a). Envelope analysis is selected as a
comparison to validate if it can extract the fault features from
the random samples in Figure 6(a). However, it is difficult to
find out the frequencies of interest in the envelope analysis
of the original signals with only 600 points presented in
Figure 6(b). Thus, the detection method based on the CS
theory is applied to extract the fault features with the sparsity
𝐾 = 2. With the matching pursuit, the fault features are
detected successfully, as shown in Figures 7(a) and 7(b),
which are almost equal to the theoretical values.

4.2.2. Detecting the Outer-Race Fault Using Kurtosis and Com-
pressed Sensing. Theoriginal signals in this part are presented
in Figure 8(a). The kurtosis is used to gain the time-domain
symptom parameter wave, assisted by the sliding window
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Figure 7: (a) Fault characteristic frequency and (b) twice the fault characteristic frequency.
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Figure 8: (a) Original signals and (b) symptom parameter wave using kurtosis.
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Figure 9: (a) Random sampling and (b) envelope spectrum of the original signals with 600 points.

with a fixed size of 50 points. The symptom parameter wave
is shown in Figure 8(b), which presents that the number
of the raw signals is shrunk 50 times. Compared to the
symptom parameter wave in Figure 5(b), the impulses in

Figure 8(b) are much less. Then the random sampling was
used to further reduce the amount of the symptom parameter
wave envelope signals using a measurement matrix and the
random sampling waveform is presented in Figure 9(a). The
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Figure 10: (a) Fault characteristic frequency and (b) twice the fault characteristic frequency.
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Figure 11: (a) Original signals and (b) symptom parameter wave using shape factor.

envelope analysis of the original signals in Figure 9(a) is
presented in Figure 9(b), from which the status of the roller
bearing is difficult to identify. However, the fault features are
extracted successfully using the proposed method as shown
in Figures 10(a) and 10(b), through which the conclusion that
there is a fault in outer race can be drawn.

4.2.3. Detecting the Outer-Race Fault Using Shape Factor and
Compressed Sensing. The original signals employed here are
shown in Figure 11(a). The symptom parameter wave in
Figure 11(b) obtained through the shape factor is worse than
that in Figure 5(b), and the noise in Figure 11(b) was much
more than that in Figure 5(b), since the peak-to-peak value
is more sensitive to the impacts. The amount of the target
signals is reduced from 100000 to 600 by random sampling,
as presented in Figure 12(a). From Figure 12(b), it is difficult
to identify the condition of the roller bearing. Finally, the
fault features are extracted from the random sampling signals
through the proposed method and the fault detection results
are shown in Figures 13(a) and 13(b), which illustrate that
there is a failure in the outer race.

5. Comparison between the Three
Symptom Parameters

The amount of the faulty vibration signals is reduced by the
time-domain symptom parameters and the CS theory. From
the abovementioned results, the three symptom parameters
selected to represent the raw vibration signals are all effective
in detecting the faults in roller bearings. Here, the detection
success ratio is considered as a criterion to compare the
effectiveness of the three symptom parameters.The detection
success ratio is calculated through 30 groups of vibration
signals, containing outer-race fault, inner-race fault, and
rolling-element fault. A suitable Gaussian random matrix is
selected and it is utilized to detect the remaining samples.
When the frequency of interest is detected, this fault detection
belongs to a successful example. Different sizes of the sliding
window and different dimensions of themeasurementmatrix
are selected to assess the detection success ratio.

5.1. Different Sizes of the SlidingWindow. Different sizes of the
sliding window with a fixed dimension of the measurement
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Figure 12: (a) Random sampling and (b) envelope spectrum of the original signals with 600 points.
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Figure 13: (a) Fault characteristic frequency and (b) twice the fault characteristic frequency.
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matrix are utilized to assess the performance of the proposed
method.A conclusion can be drawn that the detection success
ratio of peak-to-peak value is higher than that of kurtosis
and shape factor from Figure 14. Furthermore, the detection
success ratio of the sliding window with a 25-point size is a

bit higher than that of the sliding window with a 50-point
size. Thus, a conclusion can be drawn that more information
related to the roller bearing faults may be collected when a
smaller size of the sliding window is selected.

5.2. Different Dimension of the Measurement Matrix. Differ-
ent dimensions of the measurement matrix with a predeter-
mined size of the sliding window are also employed to evalu-
ate the effectiveness of the proposed fault detection strategy.
Also, the detection success ratio of peak-to-peak value is
higher than that of kurtosis and shape factor as presented in
Figure 15. Moreover, the detection success ratio rises with the
increase of the measurement matrix’s dimension.This means
that when a larger compression ratio is achieved, the detec-
tion success ration may decrease. Therefore, if a better com-
pression result needs to be achieved, suitable sizes of the slid-
ing window and measurement matrix should be cooperative.

6. Conclusion

In this study, a two-stage compression method is developed
to reduce the large amount of the faulty vibration signals
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Figure 15: Dimension of the measurement matrix: 200, 400, and
600.

induced by the condition monitoring. First, three time-
domain symptom parameters, namely, peak-to-peak value,
kurtosis, and shape factor, are separately considered to gain
the symptom parameter wave. In this way, the dimension of
the original signals is reduced to a certain level but the fault
features are reserved. Next, themeasurementmatrix works as
a compressor to further shrink the amount of the symptom
parameter wave. Finally, the fault features are extracted via
the CS theory from a small number of samples, which were
far below the Shannon sampling rate. Compared to the
envelope analysis, the proposed method has an advantage in
detection faults from limited samples. Detection success ratio
is considered as a criterion to compare the three symptom
parameters. From the comparing result, a conclusion can be
made that the detection success ratio of peak-to-peak value
ranked first, followed by that of kurtosis, and the ratio of
shape factor was last.
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