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Multispectral and hyperspectral images are well established in various fields of application like remote sensing, astronomy, and
microscopic spectroscopy. In recent years, the availability of new sensor designs, more powerful processors, and high-capacity
storage further opened this imaging modality to a wider array of applications like medical diagnosis, agriculture, and cultural
heritage. This necessitates new tools that allow general analysis of the image data and are intuitive to users who are new to
hyperspectral imaging. We introduce a novel framework that bundles new interactive visualization techniques with powerful
algorithms and is accessible through an efficient and intuitive graphical user interface. We visualize the spectral distribution of an
image via parallel coordinates with a strong link to traditional visualization techniques, enabling new paradigms in hyperspectral
image analysis that focus on interactive raw data exploration. We combine novel methods for supervised segmentation, global
clustering, and nonlinear false-color coding to assist in the visual inspection. Our framework coined Gerbil is open source and
highly modular, building on established methods and being easily extensible for application-specific needs. It satisfies the need for
a general, consistent software framework that tightly integrates analysis algorithms with an intuitive, modern interface to the raw
image data and algorithmic results. Gerbil finds its worldwide use in academia and industry alike with several thousand downloads

originating from 45 countries.

1. Introduction

Multispectral imaging allows capturing of rich reflectance
information that is not available with traditional RGB cam-
eras. It has played a key role in the field of remote sensing for
decades, ever since aircrafts and satellites became equipped
with hyperspectral sensors systems. One such notable exam-
ple is the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) [1]. Hyperspectral sensors are less widely used “on
the ground,” though they are becoming more popular in areas
like astronomy, cultural heritage, agriculture, and medical
imaging.

In a multispectral image, each pixel is a vector of intensity
values, where each value corresponds to the scene radiance
over a small range of wavelengths. The resulting vectors
typically are of lengths ranging between 31 and 200. The
high-dimensional nature of the data and its strong interband
correlations pose challenges to computer vision algorithms.

Adaptations are needed to expose and exploit the information
contained in the data. A similar problem arises when one tries
to manually process such high-dimensional data. There is a
lack of intuition which demands a presentation that guides
the user during data exploration. Effectively, one needs two
components: simultaneous visualization of different aspects
of the information and strong user interaction.

As the popularity of multispectral sensors has been
increasing, so has the need for computer-aided, interactive
analysis. For example, one of the first popular analysis frame-
works for providing a graphical interface for inspection was
the Spectral Image Processing System which was introduced
in 1992 [2]. However, almost all available multispectral anal-
ysis software is tailored to specific applications. As expected,
most of the available software focuses on remote sensing and
is designed to foster a workflow specific to this domain.

In recent years, the availability of cheaper, easier-to-
use multispectral cameras further opened this modality to



FIGURE 1: Gerbil user interface. (a) Spectral distribution view, (b)
spectral gradient distribution view, (c) spatial view of a single image
band with segment overlays, (d) label manager, and (e) false-color
display.

new applications. Various devices based on electronically
tunable filters [3] or imaging spectrometers [4] are com-
mercially available from several vendors. An example of
sensor targeting emerging applications is MuSIS [5], which is
currently in use in several museums and libraries. However,
the users of these sensors lack a software solution that enables
them to explore the data in an interactive and intuitive
fashion.

To address this limitation we developed the Gerbil
software platform which incorporates established interactive
visualization concepts to provide a new presentation of spec-
tral images as well as a new workflow for inspecting them.
Figure 1 depicts a screenshot of Gerbil in use for inspecting a
multispectral image. Gerbil is developed by an open-source
software project in the tradition of free software frame-
works in the signal processing research community such as
OpenCV [8] or Weka [9]. In this paper we provide a scientific
reference for Gerbil and describe the core methodologies it
encompasses. We also provide a detailed presentation of the
feasibility and performance of the algorithms in Gerbil and
show how our novel approach is a significant improvement
compared to established practice.

The paper bundles and expands on the following contri-
butions:

(i) Interactive visualization of spectral distributions
based on eflicient parallel coordinates [6]

(ii) Supervised segmentation of hyperspectral data [10]
(iii) Fast global clustering with superpixel support [11]

(iv) Fast nonlinear false-color visualization [12]

These methods were derived by adapting established
algorithms for hyperspectral data and interactive time con-
straints. They allow us to introduce new paradigms in hyper-
spectral image analysis that focus on interactive raw data
exploration, built on the tight incorporation of the afore-
mentioned techniques into a comprehensive open-source
software framework. The software is publicly available at
http://gerbilvis.org/ under a free software license.
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2. Previous Work

One of the first widely recognized software packages for
multispectral analysis, LARSYS, became available in the
1960s. It was operated via a text terminal. Several frameworks
for graphical, interactive multispectral, or hyperspectral data
analysis that are still of broad influence today date back
to the early 1990s. Earlier frameworks focus on a specific
application, most prominently in the field of remote sensing.
Boardman et al. [13] provided an overview of the history of
established software systems for remote sensing hyperspec-
tral data. Biehl [14] created an updated list on the web in
2007. In this section we give first a brief overview of domain-
specific software packages before reviewing more widely
applicable software. We focus on the interactive inspection of
images.

2.1. Remote Sensing. The Spectral Image Processing System
(SIPS) was presented by Kruse et al. [2] in 1993. It introduced
the Spectral Angle Mapper (SAM), a spectrum-comparison
tool still popular in the field of spectral matching [15]. Data
was presented either as single bands or in a false-colored
composite of three user-selectable bands. The user could also
view a selected pixel’s spectrum. Color-coded stacked spectra
were provided for a selected slice (a vertical or horizontal
line scan or an arbitrary path in the image). This set of
visualization forms are still typical of popular software for
hyperspectral capture or analysis.

The MultiSpec freeware package by Biehl and Landgrebe
[16] can analyze multispectral images from various sources,
using the powerful GDAL library [17] for data I/O. The
focus of this software is classification. The target audience is
the general Earth science community. Besides providing all
common visualizations already mentioned, it can generate
biplots that relate selected regions in a pair of bands and a
statistics image display, which depicts the correlation between
these bands.

A widely used commercial software is ENVI [18], initially
developed by Boardman et al. [13]. Several innovations in
hyperspectral analysis were introduced in ENVI, including,
for example, the Pixel Purity Index (PPI) [19]. PPI finds the
most spectrally pure pixels in an image. These pixels typically
correspond to endmembers (constituent spectra of an image).
A notable innovation in visualization is the n-Dimensional
Visualizer, which uses PPI as input. It is an interactive data
visualization method that allows real-time rotation of scat-
terplots in n-dimensions. The presentation of n-dimensional
scatterplots in 2D can be somewhat unintuitive. Yet the tool
is valuable to experts for identification of endmembers based
on the depicted point clouds.

Two other notable pieces of software for hyperspectral
remote sensing data analysis are HyperCube [23] and Opticks
[24]. HyperCube is released by the US Army Corps of
Engineers and contains functions to filter, warp (register
two images), calibrate and undistort, photometrically project,
and arithmetically manipulate the data. Opticks also includes
many common tools like GIS annotations, false coloring, and
histograms. Additionally, third parties can provide function-
ality through an external module, adding further capabilities



Journal of Electrical and Computer Engineering

to the software. For example, the Spectral Processing Exten-
sion [25] includes typical tools for hyperspectral data analysis.

Within the remote sensing context, many works exist on
visualizing a multispectral image by employing dimensional-
ity reduction. The goal is to present the image in false-color
RGB by reducing dimensionality from spectral vectors of
length D to length 3, which are then used as r, g, and b values.
Based on the resulting pixel colors, the user should be able
to discriminate regions of the image according to his specific
interests. Methods to achieve this include variants of the
principal component analysis (PCA), independent compo-
nent analysis (ICA), and nonlinear methods. Some variants
also incorporate classification results. A recent approach by
Cui et al. [26] focuses on the interactive adaptation of such
visualization. However, it still uses the common pixel map
representation of the image.

2.2. Astronomy. A field with a long history of hyperspectral
imaging is astronomy. The most notable software framework
in this area is ds9 [27], available from the Smithsonian
Astrophysical Observatory. This software is very powerful in
the spatial representation of astronomical imagery. However,
it provides a limited 3D visualization of the data cube that is
rarely viable for nonastronomical data.

Recently, Li et al. [28] explicitly tackled the question of
how to present multiband data. They draw image bands in
3D either as an image-stack or as a volume-rendered model,
for example, horseshoe. Their volume rendering handles
the obvious problem of clutter by applying transparency to
individual data points based on their intensity or on a user-
adjusted mask. However, one cannot generally assume that
large image regions can be faded out to still unobstructedly
display more relevant data.

2.3. Other Application Domains. Multispectral imaging has
become increasingly popular in the preservation and analysis
of artwork as well as historical documents. Colantoni et al.
[29] analyzed multispectral images of paintings from the
perspective of human color perception. From the image data,
arepresentation in the CIE XYZ color space [30] is computed
under controlled virtual illumination. Several tools can then
be applied for visualization of trichromatic data. The original
spectra are not considered in the analysis.

In 2010, Kim et al. [31] presented a solution for interac-
tive visualization of historical documents. They provided a
nicely designed self-contained analysis tool and incorporated
innovations in how the data is presented. Some are specific to
document analysis, for example, dealing with aging-related
artifacts, while others are more general. The spectral lens
feature, for example, presents data from two spectral bands
in a single display. Similarity maps can be computed based
on the L, norm between the mean spectral value of a selected
region and all image pixels. However, similarity measures like
SAM [15] would be better suited for spectra comparison. A
3D histogram plot is used to compare two spectra.

The National ICT Australia (NICTA) offers the Scyven
software free of charge which features the reflectance recovery
and material classification pipeline developed at NICTA [7,
32]. Its visualization includes false coloring and an adaptation

of the parallel coordinates visualization introduced in Gerbil
(see Section 3.2).

Labitzke et al. [33] introduced an interactive framework
for linear spectral unmixing of multispectral datasets. Spec-
tral unmixing is especially popular in remote sensing, where
the spatial resolution is often low. Many algorithms exist
for finding endmembers and performing spectral unmixing
[34]. Labitzke et al. introduced an incremental method
that can semiautomatically find endmembers. Then, visual
feedback is provided by their complementary visualization
that reflects the quality of the characterizing set. This set can
be interactively modified in order to improve the unmixing.
The authors explicitly differentiated their approach from
Gerbil [33]. Spectral unmixing is integral to their interactive
visualization approach, while in our methods we visualize the
raw data. The algorithm and workflow proposed by Labitzke
et al. are not in opposition to our approach, but instead they
nicely complement the visualization capabilities of Gerbil.

3. Visual Inspection

In general, existing approaches share the same basic set of
data representations and user interactions, while individual
extensions typically follow a specific application scenario.
However, the wider range of applications of multispectral
imaging necessitates an interactive visualization framework
that is both sufficiently general for a broader range of
applications and more versatile than existing basic repre-
sentations. In our framework, Gerbil, we follow a novel
concept that enables an entirely new workflow in exploring
a multispectral image. It revolves around presentation and
exploration that make the image data more apparent to the
user, effectively allowing a more direct interpretation of the
data. The user does not rely on, but is merely guided by,
automatic processing.

3.1. Main Concept. Figure 2 gives an overview of the key
features that constitute Gerbil. In order to have a framework
that is suitable for use in a large variety of applications, we
incorporate several well-understood hyperspectral analysis
tools into Gerbil, while adding concepts from the data
visualization and computer vision communities. The value
of our approach lies in employing these features in a fash-
ion that enriches the user experience while investigating a
multispectral image. One such example is the incorporation
of parallel coordinates, a technique for display of high-
dimensional data. Parallel coordinates are used in visualizing
spectral distributions. The visualization is highly dynamic
and interacts with the topological representations of the
image (e.g., a grayscale depiction of a single image band).
Another contributing factor is the emphasis on the spectral
gradient descriptor [35]. Its distribution is displayed next to
the spectral distribution. The spectral gradient is a multispec-
tral descriptor that focuses on data aspects, which are directly
related to material and reflectance properties.

Figure 1 depicts the three main components of the
graphical user interface: the visualization of original spectra
(Figure 1(a)) and the spectral gradient spectra (Figure 1(b))
both via parallel coordinates and the spatial image view
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FIGURE 2: Overview of the Gerbil feature set and corresponding
article sections.

(Figure 1(c)). The interaction between these elements, as is
explained in detail in Section 3.3, is augmented by tools
that give further guidance to the user. One such example is
dimensionality reduction via PCA or nonlinear methods, as
discussed in Section 5. Another tool is feature-space cluster-
ing of data, described in Section 4.2. Especially important
in our workflow is supervised segmentation, where the user
provides input depending on the goal of their investigation
or on prior knowledge. In Section 4.1, we describe how we
employ a graph-based segmentation algorithm for this task.

3.2. Spectral Distribution View. Existing approaches on
depicting a multispectral image in its entirety are limited by
the spatial layout of the image. The image data is viewed
as a cube, with the z-axis corresponding to spectral bands,
which are stacked on top of each other. Use of modern volume
rendering techniques can make this representation useful in
some scenarios [28]. However in most cases, where there is no
sparsity in pixels of interest, a very cluttered view is obtained
that reveals the shortcomings of a simple 3D arrangement.
Other methods, such as scatter plots or false coloring, rely on
dimensionality reduction. While the visualization of reduced
data is helpful in many applications, it is hard to preserve
subtle details. In contrast, a good visualization of the original
data helps the observer evaluate how well a dimensionality
reduction method fits a specific application.

One way of addressing this issue is to defer from the
topological relations in the image, for the time-being, and
concentrate instead on a graspable representation of the
spectral distribution. To do this efficiently, we employ the
parallel coordinates [36] method as explained below. This is
a well established technique for visualizing high-dimensional
geometry and analyzing multivariate data. It has been widely
used, for example, in financial applications and geographic
information systems. One can see the traditional spectral
visualization as a specific instantiation of parallel coordinates
visualization. By building on the more general concept, we
can incorporate tools from the visualization community for
high-dimensional data presentation.
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According to the parallel coordinates concept, a D-
dimensional feature space (resulting from D spectral bands)
is projected onto a two-dimensional view as follows. D
parallel vertical lines denote the D axes, that is, the D spectral
bands. The y-coordinate on the ith axis corresponds to a
spectrum’s value at band i. To display the spectral vector of
a pixel, a polyline is drawn with its vertices lying on the
corresponding vertical axes. The resulting display follows the
layout of a plot where the x-axis would denote wavelength
and the y-axis denotes intensity.

3.2.1. Optimized Parallel Coordinates. Drawing a polyline for
each single multispectral vector has several drawbacks: it is
time consuming; and the display may easily get cluttered in
which case single polylines may not separate well from the
rest of the data. A solution to both clutter and speed concerns
is to draw fewer polylines, where a polyline can represent a set
of pixels. With this distinction, polylines that represent more
pixels appear stronger.

We realize this representation by introducing a histogram
in the feature space with B evenly distributed bins in each
dimension. B is user adjustable between 2 and the dynamic
range of the captured data (typically 2° to 2'°). For example,
the histogram for a 31-band multispectral image with B =
256 would hold B” (28! 2**® bins. Building a
dense histogram of this size is not feasible; however a sparse
histogram can be created by using an ordinary hashing
algorithm. The key idea here is that the amount of occupied
bins is bound by the spatial resolution of the input image.
For example, a spatial resolution of 512 x 512 leaves only 2
possible distinct values, effectively giving an upper bound to
the amount of bins filled in a sparse histogram, or the amount
of hash keys needed.

For each populated bin, a polyline is drawn in the parallel
coordinates visualization. The strength of the polyline is
manipulated by assigning it an opacity . « is determined by
the relationship between the number of pixels represented by
the bin, 7, and the total number of processed pixels, #1,,,.

c f(nbin + 1)
¢ f(ntotal) )

where ¢, is a user-adjustable factor and f(-) is a logarithmic
function. The logarithm emphasises bins with fewer pixels.
The idea is that even a single pixel should be perceptible. The
logarithm also ensures that the resulting dynamic range of
alpha values can be represented reasonably well with an 8-bit
alpha channel. Nowadays, Gerbil overcomes this limitation
by drawing onto a floating-point framebuffer and the user can
choose f(-) to be linear.

X =

)

3.2.2. Drawing Refinements. The newer design of Gerbil
includes several measures to further enhance the visual
quality and accuracy of the spectral distribution display. By
dividing the feature space into a fixed number of equally
spaced bins, the histogram applies a nonadaptive quantiza-
tion of a spectral vector x. A possible strategy to reduce the
introduced quantization error is to employ a binning that is
adapted to the observed data. A straight-forward method is to
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FIGURE 3: Spectral distribution view of cropped feathers image with different bin parameters. Spectra in true color.

perform a separate histogram equalization in each dimension
i, which enforces a uniform PDF of the mapped vector
values x; [37]. While it works well for big clusters of similar
pixels, spectra that are sparsely represented in the image will
suffer from such an operation. It may increase the average
accuracy at a great expense in the precision of single pixel
representations, which is not desirable.

We employ an alternative strategy by adjusting how a
bin is drawn. Our method achieves an improved general
accuracy without a significant expense in the accuracy for any
single pixel. When drawing a bin, we draw the mean vector
of its contents instead of its midrange values. This can be
computed on the fly while adding new vectors, with a final
normalization based on the already stored number of entries.
Figure 3 shows an example of the visual quality gain. A broad
description of the spectral distribution is already possible
with a low B.

Another hindrance in visual quality is the mutual
obstruction of pixel representations. In many use-cases, pixels
are color coded (see Section 3.3). This involves effectively
drawing several distributions on top of each other. In highly
populated intensity ranges this can lead to extensive occlu-
sions. There exists work on clutter reduction in parallel
coordinate plots that tackles this problem [38]. The key idea
is to only render a randomly sampled subset of the data
points. Instead, we significantly reduce clutter by drawing
data in a randomly shuffled order, without dismissing any
information.

3.2.3. Evaluation. The error introduced by the histogram-
based quantization can be measured by the average root
mean squared error (RMSE) as well as the maximum absolute

deviation (MAD), between original vectors x; and their
quantized counterparts X;. This gives us the measure

N7 xi‘_xi‘z/D
RMSE:Z\/ Jl( ;\7 ]) , @)
i=1

for the average RMSE, and

MAD = max (max(|%; - x;|, j<D), i<N), (3)
where max(-) is the sample maximum.

The number of bins per dimension B is a crucial parame-
ter. It lets the user choose between drawing speed, viewing
quality, and accuracy. Even a considerably low B should
provide acceptable accuracy, and the speed-up by lowering
B should be effective. We evaluate RMSE and MAD for both
the previously published [6] and the newly proposed draw-
ing methods on several datasets from different application
domains. Table 1 provides statistics on the datasets. The CAVE
dataset consists of objects in a laboratory settings, while
Foster captured natural (outdoor) scenes. Indian Pines and
D.C. Mall are widely used remote sensing images.

We use a desktop machine equipped with a quad-core
Intel Core i7 CPU running at 2.80 GHz and a GeForce GTX
550 Ti consumer graphics card for testing the computational
performance. We measure the time needed for drawing oper-
ations via GL_TIMESTAMP and draw in WUXGA resolution.

In Figure 4 we plot running times against accuracy for
varying B. Bin Center describes the originally published
drawing method, while Mean denotes our refined drawing
method. We can observe that the average RMSE becomes
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TABLE 1: Datasets used for evaluation.
Name Size  Resolution  Bands A (nm) Source
CAVE 32 512 x 512 31 400-700 [20]
Foster 8 1340 x 1020 33 400-720 [21]

145 x 145 220
307 x 1280 191

400-2500  [22]
400-2475  [22]

Indian Pines 1
D.C. Mall 1

0.1F

Deviation
Seconds

0.01

Number of bins per dimension
Mean MAD - -~ Binning
—— Mean RMSE Loading
Bin Center MAD Drawing
—— Bin Center RMSE

FIGURE 4: Experimental results on a scene from the Foster dataset.
Quantization errors are plotted for both the old (Bin Center) and the
refined (Mean) drawing method.

negligible with higher B for both methods. However, our
method achieves low RMSE values for considerably lower
settings of B. Due to outliers present in some of the histogram
bins, the MAD for the refined method is somewhat higher
than the original MAD.

The time needed to build the histogram is denoted as
binning and is not determined by B. The time needed for
preparing the geometry and loading it on the GPU (Loading)
slowly grows with B. In contrast, B plays an important role
for the time needed for the drawing operation (Drawing).
For higher B values, the time needed for drawing grows
to multiples of the time needed for preparation. Hence
the histogramming plays an important role in achieving
interactivity.

In Table 2 the running times and accuracy measures
for the refined drawing method are listed on all datasets
except Indian Pines, where, due to the very low resolution
of the image, running times are negligible. The times shown
for preparation are the combined histogram building and
geometry loading times. As in Figure 4, it is observed that a
low B can already achieve a small quantization error. Setting
B = 64 is a reasonable compromise between speed and
accuracy on the tested datasets. It provides an effective speed-
up in comparison to a high histogram resolution without a
perceivable loss in drawing accuracy.

It can be seen in Table 2 that on our test machine, even
with a moderate setting, drawing the spectra from a large
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TABLE 2: Average drawing times and accuracy.

Dataset # bins Prep. (s) Draw. (s) RMSE MAD
32 0.089 0.161 0.002  0.027

CAVE 647! 0.115 0.240 0.001 0.014
2567 0177 0.390 0.000  0.003

32% 0.274 0.146 0.005  0.031

Foster 64 0.358 0.554 0.002 0.014
256 1.085 2.955 0.000  0.004

3219 0.585 1.789 0.001  0.026

D.C.Mall 64! 0.881 3.171 0.000 0.013
256" 1.020 3.554 0.000  0.003

image may still take several seconds. Typically it is impractical
to work on a high-resolution image without a region of inter-
est. Yet, we alleviate longer drawing times by incrementally
drawing the data (disabled in the benchmarking) in order
to provide direct visual feedback in the form of a rough
approximation of the full data (as pixels are drawn in a
random order).

3.3. Interactive Inspection. An important aspect of today’s
visualization approaches for multivariate data is interactive
manipulation of the presentation. A single view most often
cannot provide the full understanding that may be gained by
a series of user-controlled depictions. User input is vital to
parallel coordinates in particular. We provide several mech-
anisms for both transient (cursor highlights) and persistent
(color labels) interactive viewing.

In the parallel coordinate plots, the user can dynamically
highlight specific data points, that is, spectral vectors that
represent pixels. These are displayed in yellow and with full
opacity as an overlay over nonhighlighted spectra. We realize
this in OpenGL with layered frame buffers. Updates to the
highlight only need to redraw highlighted spectra. While
the highlight constantly follows the keyboard and/or mouse
input; the corresponding pixels are instantly highlighted in
the spatial view. While scrolling through the spectra, the
topological view always reveals which pixels contribute to the
highlighted spectra.

Two modes of operation exist for highlighting in the spec-
tral distribution: single-band limited and multiband limited.
The single-band limited highlight is formed by all spectral
vectors falling into bins that share a specific intensity range
in one band (see Figure 5(a)). The coarseness of this selection
is therefore directly related to the binning parameter. The user
selects the band and intensity range via mouse click or cursor
keys. The multiband limited highlight provides a higher level
of control in exchange for more detailed user input. Here, in
each band, separate lower and upper intensity bounds can be
set (see Figure 5(b)).

Another method of highlighting exists in the topological
view. Here, the user can direct a cursor over individual
pixels in the spatial view. In the corresponding viewports, the
spectrum, and spectral gradient data of the pixel under the
cursor are presented as a yellow overlay.
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(a) Single-band limited

(b) Multiband limited

F1GURE 5: Highlighting modes used in the spectral gradient distribution view of a scene with two objects. In (a), one objects is highlighted.
In (b), further discrimination is performed by adding intensity bounds in two further bands.

While highlights give instant feedback, they constantly
change as the user investigates the data. It is often desired to
keep a selection of pixels distinguished from the rest of the
data, for example, for comparison purposes. We call this pixel
set a label; each pixel can be part of at most one label. A label
can be seen as a permanent highlight. For each label, a distinct
sparse histogram is created as described in Section 3.2.1. It is
then drawn in the label color. When a histogram bin is part
of the current transient highlight, the color is significantly
shifted towards yellow.

When the user has selected pixels within the transient
highlight, they may add this set of pixels to a label or delete
their label association. By doing so, they can iteratively refine
the labeling of the data to concentrate on specific details.
Another way to alter the labeling is to use a “label” brush
in the topological view or to use automated segmentation
methods as discussed in Section 4. Labelings can also be
stored for later use.

Labels are important because they serve as a memory
in the connection between different representations of the
multispectral image such as between a single band and the
spectral distribution. A selection, or temporary highlight in
one representation, is instantly propagated to the others. By
labeling this highlight, it becomes permanent. The user can
then continue his investigation within another representa-
tion, for example, the spectral gradient view, that may reveal
new insights within this labeling. For example, a user may
start by hand-labeling parts of a scene in the topological view.
Then, they may restrict the spectral distribution view to this
label. The parallel coordinates visualization could reveal a
certain variance within the labeled pixels. By using selection
tools inside this viewport, the user could separate parts of
the pixels and assign them to a second label. The topological
view instantly reveals which parts of the object contribute to
which portion of the distinguished spectra. Next, the user
may initialize a multiband limited highlight based on this
second label. This reveals other regions in the scene that share
spectral characteristics with the labeled pixels.

Asaresult, we facilitate a workflow of inspecting an image
that is not possible with a traditional hyperspectral analysis
framework. It is based on concurrent, concerted work with
both topological and spectral views and allows a smooth and
instantaneous switch in attention between them. Such a step-
by-step exploration enables the user to quickly discover and
grasp underlying information. In the visualization domain

this procedure is considered a valuable tool for understanding
complex data [39]. A narrated video demonstration of this
workflow can be accessed at http://video.gerbilvis.org/.

4. Segmentation and Labeling

An interactive interface to the multispectral data is no
replacement for automatic processing. In fact, the two
approaches together form a powerful combination. Within
our framework, it is easy to interpret and assess the results of
algorithms used in automated analysis. These results can be a
good starting point for further interactive analysis. Gerbil is
equipped with two powerful methods that segment the data
either according to spectral characteristics on a global level or
based on topological relation and local similarity. In the latter
case we bring supervised segmentation to the multispectral
domain especially for the purpose of interactive inspection.

4.1. User-Guided Segmentation. Supervised segmentation
incorporates user-provided prior knowledge. A user specifies
a set of background and foreground pixels. All other pixels are
then determined as belonging to either the background or the
foreground. We make this concept a powerful tool within our
interactive workflow.

The early version of Gerbil [6] included a rudimentary
version of supervised segmentation. We have now adapted
an existing algorithm family specifically to the multispectral
domain [10].

4.1.1. Graph-Based Supervised Segmentation. In recent years,
graph-based algorithms have dominated supervised segmen-
tation on both grayscale and RGB images. In 2011, Couprie
et al. introduced a framework for supervised segmentation
that incorporates several key methods based on graph theory
[40]. Their power watersheds integrate graph cuts, random
walker, and watersheds algorithms in a single mathematical
framework.

For this algorithm family, the input consists of two sets of
pixels, the foreground seeds # and background seeds %, as
well as the pixel values x;, 1 < i < N, which are strictly used
in a differential manner. The topological relation of pixels is
reflected in a graph structure. Each pixel i corresponds to
a vertex v;. A neighboring pixel j with corresponding v; is
connected to v; via an edge e;;. The edge weight w;; of an
edge e;; is a function of the similarity between x; and x;. We



compute an N-element vector y, where y; € [0, 1] indicates
that a pixel i belongs to foreground or background via
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where wp; and wg; denote unary weights penalizing fore-
ground and background affinity. Simple thresholding leads
to a binary segmentation s with s; = 1 (foreground pixel) if
y; > 1/2, and 0 (background pixel) otherwise. Based on the
selection of parameters p and g, this minimization matches
the graph cuts, random walker, or shortest paths algorithms.
With p = 00, g > 1, the power watershed algorithm is
obtained. See Couprie et al. [40] for details.

Couprie et al. define the edge weights for grayscale and
RGB images;

w;; = exp (—ﬁ (d (x,»,xj))z) ; €)

where 8 is a constant and d(-) is the L, norm or the L ., norm
[40]. For hyperspectral data, these choices are reasonable if
a single band or the PCA of the image is used as input.
However when operating on the full spectra of the image, a
more appropriate distance function should be employed.

4.1.2. Adaptation to Hyperspectral Data. In our previous
work, we evaluated a range of distance functions on multi-
spectral data, including established similarity measures for
spectral mapping [41, 42] and a data-driven measure [10].
In spectral mapping, captured spectra are compared to a
database of known spectra to determine a material. Hence,
spectral mapping similarity measures are well suited for
hyperspectral distance functions.

The best performing measurement in our experiments
is the spectral angle from the Spectral Angle Mapper [15].
The spectral angle has the property that it disregards pure
intensity changes. It is defined for two spectra u and v as

&) ©)

SA (u,v) = cos™! (
all; - lIvll,

where (-, -) denotes the inner product and || - ||, the L, norm.

4.1.3. Example Use-Case. We demonstrate the use of super-
vised segmentation on the superballs image. It shows plastic
balls of various color that highly reflect on each other. In
Figure 6, the user investigates a red ball specifically. With
an RGB camera we could only spot the reflection from the
yellow ball (see Figure 6(a)). Calculating the PCA on the
spectral gradient (as discussed in Section 5.2) also reveals
the reflection from the green ball (see Figure 6(b)). However,
the blue balls also reflect on the red ball, which is not
revealed by these depictions. The first labeling, Figure 6(c),
is obtained by setting one foreground seed in the middle of
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the ball and drawing a circle around the ball as background
seeds. When looking at the spectral gradient distribution of
that segment (see Figure 6(d)), we see the deviations from
the distribution caused by these interreflections. Browsing
through these parts of the spectral gradient distribution plot
with the interactive highlight reveals their spatial locations.
By setting corresponding seed points again, we can find three
additional segments within the ball (see Figure 6(e)). The
spectral gradient distribution plot (see Figure 6(f)) reveals
how the pixels from these three segments contribute to the
deviations in the distribution. To further understand them,
the user might continue by also segmenting the surrounding
balls, effectively adding them to the plot.

Our user-guided segmentation method is especially use-
ful in interactive analysis. Segmentation results are helpful,
quick to obtain, and easy to refine within the provided user
interface.

4.2. Unsupervised Segmentation. While graph-based seg-
mentation is valuable within an interactive session, it is
object-driven in a sense that spatially connected pixels are
grouped. However, often it is desired to explore the image
as a whole, which means connecting pixels that share no
spatial relation in the image, for example, to form a segment
consisting of all scene objects that share the same albedo.
Note that while the multiband thresholding detailed in
Section 3.3 and illustrated in Figure 5(b) often allows finding
such spatially disconnected material clusters in the spectral
gradient manually, it can be a tedious task, especially when
several material clusters in the scene are to be revealed.
A global clustering method method however can reveal all
material clusters in the scene and be used as a starting point
for further analysis.

For this task we incorporate the mean shift algorithm
into Gerbil. Mean shift has been used for global clustering of
multispectral data for several tasks [43, 44]. Mean shift is a
good choice due to its general purpose design. For example,
while the well-studied and fast k-means algorithm works best
on clusters with circular shape and the number of clusters
needs to be defined a priori, mean shift is a density gradient
estimator and it neither requires prior knowledge of the
number of clusters nor constrains the shape of the clusters
[45], which is desired property for analysis of arbitrary image
data. A drawback of the original mean shift is computational
complexity. The Fast Adaptive Mean Shift (FAMS) algorithm
by Georgescu et al. [46] provides an important improvement
to computation time by introducing an approximate nearest-
neighbor search. However, the method still takes minutes
to hours to segment a hyperspectral image. To facilitate the
use of mean shift in interactive inspection, we introduced
a new variant that combines mean shift with a superpixel
presegmentation [11].

4.2.1. Superpixel Mean Shift Clustering. The mean shift algo-
rithm works in feature space alone to obtain a global clus-
tering rather than spatially constrained segments. It, thus,
disregards any topological context. We reintroduce the use
of spatial information by incorporating superpixel detection.
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FIGURE 6: Inspection of cropped superballs image. Labelings are shown as overlay on the spectral gradient at 490-500 nm.

Both spatial context and superpixels gained attention recently
as means to improve the performance of hyperspectral image
processing tasks [47, 48].

In our algorithm, we first obtain a superpixel segmen-
tation by adapting the method of Felzenszwalb and Hut-
tenlocher [49] to hyperspectral data. We obtain a set of
small, homogeneous regions. Then, FAMS is performed using
these regions as data points. This significantly reduces the
complexity of the mean shift operation. Overall computation
times are in the range of five to ten seconds for images from
the CAVE database [20]. The reliance on superpixels impacts
the spatial resolution of the segmentation, in a way that
often improves the spatial coherence of segments. A detailed
presentation of this work can be found in [11].

4.2.2. Clustering Results and Refinement. In Figure 7, we show
an example result on an image from the CAVE database.
Clusters are assigned random colors with an equal spacing in
the hue range. Our superpixel mean shift algorithm, denoted
as MSSP, uses an established spectral matching measure
[41] to form superpixels in the original feature space and
then performs mean shift for each superpixel in the spectral
gradient feature space. It is compared to FAMS operating in
both the original feature space as well as the spectral gradient

feature space (denoted as SG-FAMS). The results reveal that
the spectral gradient distribution is more helpful for material
clustering as compared to the original spectral distribution
affected by geometry and that we can obtain a very good
approximation of the SG-FAMS result with MSSP.

In Figure 8, we show another example result on an image
from the Foster database, which other than the previous
image captures a natural scene. Due to its high spatial
resolution, clustering is a time-consuming task on this image.
We compare our approach to the method by Huynh and
Robles-Kelly [7], denoted HRK. Due to memory constraints,
HRK was applied on a down-sampled (by a factor of two)
version of the image and took 6 minutes. Note that, for HRK,
the number of desired clusters needs to be set in advance.
Our method took 154 seconds on the original image and 15
seconds on the down-sampled version.

Within Gerbil it is easy to further refine clustering
results. The spectral distribution visualization reveals the
compactness of a cluster. It helps the user to spot under-
segmentation, where a single cluster contains several spectral
profiles (as seen in Figure 6(d)). Oversegmentation, as is the
case in Figure 8(c), can also be easily spotted by comparing
the spectral distribution of two clusters. Gerbil provides
an intuitive interface to merge such segments. To obtain



10

Journal of Electrical and Computer Engineering

(a) True color (b) FAMS (41)

(c) SG-FAMS (24) (d) MSSP (30)

FIGURE 7: Clustering results on fake and real food image. The number of clusters is shown in parentheses in the respective caption.

(a) True color

(b) HRK [7] (20)

(c) MSSP (27)

(d) MSSP refined (20)

FIGURE 8: Clustering results on Ribeira image. The number of clusters is shown in parentheses in the respective caption.

the result in Figure 8(d), the user performed four simple
merging operations. The user may also run a supervised
segmentation to refine the clustering, especially in the case
of an undersegmented area.

4.3. Label Inspection and Manipulation. The segmentation
methods in Gerbil provide beneficial input in a typical usage
scenario. However, a good presentation of the results is
equally important. Depending on the underlying data, mean
shift clustering may produce a high number of meaning-
ful segments. In the supervised scenario, often follow-up
segmentations are used to locally refine obtained segments.
Several measures aid in discerning and manipulating seg-
mentations.

The first measure is the automatic determination of
practical label colors. A preset of label colors consists of the
primary and secondary palette, excluding yellow, which is
reserved for temporary highlights. For more than five labels,
colors are determined by an equal spacing in the hue range
excluding yellow. Figures 1, 6, 8, and 10 show examples of
automatically labeled segmentations. In cases where a tem-
porary highlight falls onto labeled pixels, the corresponding
pixels are drawn in their label colors significantly shifted
towards yellow.

The second measure is a specific mode of operation where
existing single labels can be selected through mouse hover
in the topological view. In this mode, the user can better
examine which pixels and spectra are part of a specific label.
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(a) Three-band composite (b) True color

(d) SOM false color

(¢) PCA false color

FIGURE 9: Color visualizations of Indian Pines image. SOM visualization is more feature-rich when compared to PCA.

Several labels can be selected at once and then be either
deleted or merged using the label manager (Figure 1(e)).

Finally, a label can be used to initialize a multiband
limited highlight. The limits on each band are set to include
all pixels contained in the label. This helps both in finding
similar spectra that are not yet included in the label and in
separating several clusters within the label by adjusting the
limits. The remaining selection can then be added to another
label or form a new label.

Gerbil is a very versatile tool for the creation of labelings
for further use. A common use-case is the creation of
ground truth data for evaluation of algorithms. For this
tedious task, the user can start from a high-quality clustering
or segmentation and quickly incorporate the information
contained in all bands.

5. Color Coding and Color Display

A popular and useful method of visualizing multispectral
and hyperspectral data is the generation of a color image
that preserves the spatial relations in the image. While a
grayscale image can present a single piece of information per
pixel, a color image displays three data values within the r,
g, b color triplet. There are four common categories of color
displays for hyperspectral image data. (a) Band composite:
three image bands are selected and then mapped to r, g, b
color channels. (b) Data fusion: a subset of bands are fused
according to a specific criterion. Most often, this is the human
color perception, modeled by the CIE XYZ color-matching
functions [30]. (c) Dimensionality reduction: the entire spec-
tral information is reduced to three dimensions, which are
mapped to r, g, b. (d) Feature extraction: a combination of
application-specific indicators (e.g., contributions of three
user-selected endmembers to each spectrum) forms a false-
color image. For example, in [50], false-color images can
depict the occurrence of forest types to assess forest structure.

In line with other analysis frameworks, Gerbil pro-
vides color displays based on human color perception (true
color) and on linear dimensionality reduction via principal
component analysis (PCA). Additionally, a fast nonlinear
dimensionality reduction method based on a self-organizing
map (SOM) was developed. Figure 9 depicts the results of the
three methods on an example image.

5.1. Human Color Perception. For images whose spectrum
lies within the range of visible light, an intuitive natural
representation can be formed by mimicking human color
perception. This representation is often referred to as true
color. The CIE 1931 colorimetric system defines three color-
matching functions x(A), ¥(A),z(A) [30]. These functions
describe the spectral sensitivity of a human observer, called
the CIE 1931 standard colorimetric observer. The tristimulus
values X, Y, and Z are then obtained by integrating the
product of observed intensities and the respective color-
matching function over the wavelength A. In practice, the
integrations are replaced by summations over bands of equal
width AA centered at wavelength A [30]. Popular filter-based
multispectral sensors capture the incoming light with AA =
10. The X, Y, and Z values are directly used in the CIE
XYZ color space. They can be transformed to RGB given a
reference white and a gamma correction value. We display
true-color images in SRGB space as it comes with default
values for both and is specifically designed for computer
displays [51].

Scene illumination plays an important role in true-color
visualization. As hyperspectral images provide a complete
spectral response of each pixel and homogeneous lighting
conditions are present in most data capture scenarios, illu-
mination is easy to manipulate. Gerbil offers removal and
exchange of illuminants [6] and includes a set of reference
illuminants modeled as black-body radiators [30]. Apart
from a true-color image with applied reillumination, the
effect of the illuminant is also illustrated within the spectral
distribution plot.

5.2. Principal Component Analysis. Objects of varied reflec-
tance properties can yield the same color sensation, rendering
true-color representations and their variants unsuitable for
several applications. As an alternative, a false-color image
can be created that puts emphasis on different characteristics
of the data. A popular approach uses principal component
analysis (PCA) [52], where the three components with max-
imum variance become the r, g, b values of a color image.
Due to the nature of PCA, the per-component variance
differs significantly. Therefore, an automatic white balancing
is performed for display purposes [52].



12

200

150

50

0 '
400 430

(a) Spectral distribution

(c) True color

460 490 520 550 580 610 640 670 700

Journal of Electrical and Computer Engineering

(b) Labeling
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FIGURE 10: Displays of cropped fake and real peppers image. The spectral distribution (a) is label colored. (b) shows the respective labeling as

an overlay on the image band at 530 nm.

Using three bases that explain most of the variance
in the data is not always the most helpful representation
for discerning relevant spectra. Figure 10 shows a counter
example. The contrast of the green peppers against the
background in Figure 10(d) is very low. It is a direct effect
of the low object reflectance when compared to the red and
yellow peppers in the image, as can be seen in Figure 10(a).
This is unintuitive to human observers (Figure 10(c)) who
have a high sensitivity for green. We would expect the false-
color display to better distinguish the green pepper from the
background.

The simultaneous availability of the parallel coordinates
representation and the PCA-based false-color visualization
allows one to easily judge the quality of the dimensionality
reduction in comparison to the original image data.

5.3. Self-Organizing Map. A self-organizing map (SOM)
converts the nonlinear statistical relationship between high-
dimensional data into simpler geometric relationships [53].
In other words, a SOM provides a topological representation
of the spectral vector distribution of a multispectral image.
A typical SOM consists of a 1D array or 2D grid of model
vectors (also referred to as neurons) that represent vectors in
the original data space. The 3D SOM variant extends a 4-
connected 2D lattice to a 6-connected 3D lattice [54]. The
third dimension often enables the SOM to learn a more
accurate topology on hyperspectral data. We exploit this
topology for false coloring by mapping the 3D coordinates
to the RGB cube [12, 55, 56].

5.3.1. Training and Traditional Approach. A SOM consists of
n model vectors m; € RP, with D corresponding to the
number of bands in the input image. The 3D SOM is a cube of
side length ' = /n. For any input vector x (a pixel’s captured

spectrum), we can find the best-matching unit (BMU) m_ with
index

™ = argmin d (x, m j) , @)

i

where d(-) is the Euclidean distance. In our experiments
we did not observe any advantage by changing the distance
function, for example, to the spectral angle. The location e
Z? of a neuron m; describes its position in the 3D lattice
topology and is a bijective mapping of ;.

Our SOM training is unsupervised and uses s unlabeled
pixels from the input image. Model vectors are initialized with
random values. In each iteration 1 < t < s, we randomly
draw a spectrum x. We first determine the BMU m, of input
x. Then, all model vectors are updated as m;f =h;(t)-(x-m;),
where h_ :(t) defines the influence of x on the model vectors
Erslé ]basedj on the SOM topology. As suggested by Kohonen

[ - £ ”2

S 207()

he;(t)=a(t)-exp| - (8)

The learning-rate factor «(t) is a user-adjustable parame-
ter that is monotonically decreasing. The kernel width o(t)
describes the sphere of influence of a sample vector in the
SOM topology and is also monotonically decreasing. During
the early training phase a SOM seeks a rough global ordering.
In later iterations, local regions are smoothed out. We train
the SOM on the input image itself on the fly and do not
depend on any prior knowledge.

The trained SOM is then used as input for false coloring.
In previous work [55], a false-color image has been created
by finding BMU ¢ for each image pixel x (7). Then, an
r, g, b triplet is created by scaling r'” by 255/n". However,
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this method leads to suboptimal visual quality and achieves
even lower entropy values than PCA false coloring. The
reason is the limited amount of model vectors, resulting in a
strongly quantized output. In the configuration of [55], only
64 different color values could be produced. While we use
SOMs of size n = 10°, we are still far from the capabilities of
an 8-bit color display. Training a SOM of larger sizes, how-
ever, would become infeasible both due to longer learning
times and due to the limited amount of available training
samples.

5.3.2. Improved Look-Up for False Coloring. To avoid the
aforementioned quantized output, we introduce a novel look-
up method [12]. Firstly, instead of using a single best-
matching unit, we develop a set of best-matching units
(BMUs). Furthermore, we order the BMUs according to the
L, distance and assign a set of predetermined weights to
the ordered set. These rank-based weights are crucial. While
a simple unweighed combination would only smooth the
result, using the L, distances directly as weights is not reliable
[57]. In our high-dimensional space, distances would appear
very close to each other and the weights would not discern
well. We define rank weights that ensure both a majority
contribution by the first BMU and significant contributions
by the additional BMUs.
Consider, as in [58], a vector of BMU indices

c
X = argmin Zd (x, m jk) , (9)
j k=1

where C is the number of desired BMUs. For each pixel value
x, we calculate a representative location r' as

% )
r = Zwk-r k7 (10)
k=1

given weights w, with the properties

Wy = 2Wgyp,

C
Zwk = 1,
k=1

1
Vwk, k < C, ( )

d (X’ mfk) <d (X, me., ) >
Vm,, k<C,

which expresses that the BMUs are sorted according to
distance to the query vector and weighed by their rank,
where the weight for rank k is always twice as high as the
weight for subsequent rank k + 1. The representative location
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' = (r] r) r})describes the position in the learned topology
that best represents x. We finally obtain

I‘_r{
=

_n (12)
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Our method gives a high-quality, nonlinear dimension-
ality reduction. The advantage over previous false-color work
based on SOMs is that we do not suffer from quantization
effects. The advantage to other nonlinear methods, for exam-
ple, ISOMAP [59], is speed. While ISOMAP takes minutes to
hours to compute, we train a SOM with # = 10° in less than 20
seconds on a typical hyperspectral remote sensing image. As
most computation is spent in training, execution time is not
significantly affected by image size. Rather, it mostly depends
on the SOM size and the dimensionality of the data.

The SOM itself can be visualized within Gerbil during, as
well as after, its training. The topological views correspond
to the traditional SOM-based data visualization and reveal
the SOM topology. The parallel coordinate plots depict the
distribution of the model vectors, and make it visually
comparable to the distribution of the training data. These
visualizations help in both assessing the training and in fine-
tuning its parameters. Figure 11 depicts a remote sensing
image and its spectral distribution view as compared to the
spectral distribution of a SOM trained on the image, as well
as the ten principal components computed by PCA.

The true-color and false-color display capabilities of
Gerbil provide and extend the state of the art in hyperspec-
tral visualization. They are especially helpful for selecting
regions of interest (ROIs) that should be examined. In
large images, due to clutter and computational expense,
it is beneficial to select a ROI before performing further
visualization tasks. Additionally, the false-color displays can
give a good first impression of the data, for example, to
spot the same reflectance in several regions of the image or
to find inhomogeneities within a depicted object. The user
is directed to specific regions for starting an investigation.
An illustrating example is the fake and real peppers image,
as depicted in Figure 12. In the SOM false-color display
pixels with the same material or reflectance properties are
consistently colored. One such example are the specular
highlights. Another instance is the stems of the plastic and
real peppers as annotated in Figure 12.

6. Software Framework

Gerbil is built around the idea of being able to form a base for
other research projects. We ensure this by working with code
libraries that are already popular in image processing and by
a modular and easily expandable design.

6.1. Software Foundation. Gerbil is written in C++. It relies
on OpenCV [8] for all image processing tasks and for the
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FIGURE 1I: Center part of the D.C. Mall image and parallel coordinates visualizations computed from the data. Pixels and spectral vectors are

colored using the SOM visualized in (c).

Plastic green pepper stem

Organic green pepper/stem

FIGURE 12: Figure 1(e), spectral gradient SOM display. The occur-
rences of two materials in their respective color coding (blue and
light gray) are annotated with circles.

internal representation of multispectral data. Due to the
tight integration of Gerbil and OpenCV it is very easy to
apply OpenCV’s extensive functionality on multispectral data
within Gerbil. Furthermore, when available, the software
utilizes CUDA through OpenCV for some of its common

calculations. For image I/O we incorporate the Geospatial
Data Abstraction Library (GDAL) [17]. It reads a large variety
of image formats from various sources, including FITS, LAN,
GIS, and the ENVLhdr header formats.

For all operations related to the graphical user interface,
the Qt framework [60] is used. Together with a CMake-based
build system we maintain a truly cross-platform software that
runs on a variety of operating systems, including all recent
versions of Windows, MacOS X, and GNU/Linux.

6.2. Internal Design. Our software framework consists of
both a powerful core and a modular system of extensions. In
its core, Gerbil provides a flexible, easy to use programming
interface to the image data. It is built on an internal represen-
tation of multispectral images that combines both per-band
and per-pixel data structures [6].

6.2.1. Modularity. Gerbil is organized in modules that work
independently of each other and of the user interface. A
module can (optionally) depend on external libraries and
other modules. Both the graphical user interface of Gerbil
and a sophisticated command-line interface are stand-alone
units that expose the functionality of the other modules to the
user. The command-line interface enables batch processing of
image analysis tasks.
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6.2.2. Parallelization and Backgrounding. Performance and
responsiveness are both crucial for interactive analysis.
OpenCV utilizes vector instruction sets in CPU computation.
In order to employ all CPU cores, we parallelize computa-
tionally demanding tasks via Intel Thread Building Blocks
[61]. We also heavily recycle previously computed data. For
example, image representations and distribution histograms
are incrementally updated when the current region of interest
is changed.

Computations need to run in the background to keep the
interface responsive to the user and enable the user to cancel
a running task. We introduce a custom shared datatype with
locking facilities and an atomic swap operation. Background
tasks calculate new data on their own shadow copy and lock
the data for a single swap when finished. By using a sequential
background queue and defined data swaps at the end of each
task, we guarantee that at most two copies of the data are
held in memory at once. An exception to this are tasks that
can run for a longer time on their own and are not part of
the regular user interaction. Examples are global clustering
or computation of false-color representations. These tasks run
independently on their own data copy.

6.2.3. GUI Software Design. A significant level of sophistica-
tion is required in creating Gerbil's GUI in order to expose
the framework’s functionality to the user while efficiently
reacting to user input. We model the GUI module after the
model-view-presenter [62] design pattern. Figure 13 gives an
overview of the GUI components. View components display
data and receive user input. Image data, as well as other
representations, for example, distribution histograms, is han-
dled by the respective model components. These components
have access to both the background queue to enqueue tasks
and may spawn command runners which can run in the
background. The presenter components handle user requests
and trigger calculations. They are in control of both view and
model components, which do not see each other. For data
synchronization, Qt’s signal/slot messaging [60] is employed.
With this design we ensure a strict separation between
models and views and reduce unnecessary overhead in data
synchronization code where signals can be passed through.
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6.2.4. Extensibility. With our software design it is easy to
extend the functionality of Gerbil. New methods can be
integrated as modules in the framework. They benefit from
a defined interface for parameter setting and command
execution through the command-line interface. They may
also (optionally) depend on other modules which provide a
standardized method call. To add a new method in the GUI,
anew dock widget can be created as a view component, while
interfacing data calculation with the corresponding module
in a model component. The high level of abstraction on
several levels keeps interfaces simple and prevents side effects
of changes in other components.

7. Conclusions

Gerbil contains several key components that are novel and
essential to interactive visual analysis of multispectral and
hyperspectral image data. We introduce interactive visual-
ization via parallel coordinates, supervised segmentation via
a graph-cut algorithm family, fast global clustering using
a combination of superpixel segmentation and mean shift
density estimation, and fast nonlinear false coloring based
on a 3D self-organizing map. In Gerbil, we tightly integrate
these algorithms into a consistent framework that allows the
user to explore the data in a novel way. Existing research and
commercial software are often comprised of a rich toolbox of
useful algorithms for specific applications. However, the goal
of a general software framework that also provides intuitive
access to the raw image data is unmet. Gerbil fills this gap
within a modern architecture and GUL

In recent years, multispectral capture has gained wider
adoption across a range of applications, in particular in
cultural heritage. Domain experts who did not work with
multispectral data before need assistance in understanding
and utilizing the modality. The new intuition in working
with multispectral images that Gerbil strives to provide may
therefore broaden the scope of multispectral analysis and
foster adoption.

Gerbil is an active open-source project and accepts
contributions on Github [63]. As of May 2016, it includes
25902 physical source lines of code (SLOC) in 326 source
code files with a total of 37 273 lines. In the past 12 months,
3622 downloads of the Gerbil software package were counted,
originating from 45 countries.

For future work, more methods that are established in
remote sensing need to be incorporated and adapted to inter-
active analysis, as done in [33]. Drawing techniques for the
spectral distribution views should be further investigated, for
example, for clutter reduction. Gerbil is an evolving project
that constantly seeks more input from diverse application
domains.
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