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Catchment hydrologic cycle takes on different patterns across temporal scales. The interim between event-scale hydrologic process
and mean annual water-energy correlation pattern requires further examination to justify self-consistent understanding. In this
paper, the temporal scale transition revealed by observation and simulation was evaluated in an information theoretical framework
namedAleatory Epistemic Uncertainty Estimation.TheAleatoryUncertainty refers to posterior uncertainty of runoff given the input
variables’ observations. The Epistemic Uncertainty refers to the posterior uncertainty increase due to the imperfect observation
decoding in models. Daily hydrometeorological observations in 24 catchments were aggregated from 10 days to 1 year before
implementing the information analysis. Estimations of information contents and flows of hydrologic terms across temporal scales
were related with the catchments’ seasonality type. It also showed that information distilled by the monthly and annual water
balance models applied here did not correspond to that provided by observations around temporal scale from two months to half
a year. This calls for a better understanding of seasonal hydrologic mechanism.

1. Introduction

A major realm of hydrologic community is to figure out
the components of hydrologic cycle. Each component should
be determined either by observation or by an indepen-
dent governing equation to guarantee the solvability of
the problem. The accuracy of observation and domain of
governing equations usually change with scales. The term
scale here refers to the characteristic time (or length) of
a process, observation, or model [1]. While large scale
hydrologic patterns are expected to emerge by integrating
detailed event-scale hydrologic control functions along the
spatial and temporal paths, such reductionism approach
often fails to distill the dominant factors that contribute to
catchment’s long range hydrologic behaviours. On the other
hand, the holism perspective has been widely adopted to
provide coarse explanation of catchment’s mean annual water
balance [2, 3]. A cut-through between the reductionism and
holism paradigms is required for reaching a self-consistent
understanding of hydrologic temporal scale transition [4].

One practical attempt toward this goal is to expand the
existing mean annual models to fit for small temporal scale

hydrologic simulation. Classical Budyko curve [5] which
connects the ratio of catchment’s actual evapotranspiration
(𝐸) to precipitation (𝑃) and dryness index (𝑃𝐸/𝑃, where
𝑃𝐸 denotes potential evapotranspiration) can not exert first-
order control of water balance for excluding the impact of
soil moisture change within the scales the model focuses
on [6–8]. By including the soil moisture storage term (𝑆),
the expanded models could be applied for seasonal, even
monthly, hydrologic simulation and prediction.

As is declared, the incorporation of new variable increases
the system’s freedom degree, which should be compensated
by introducing new independent governing equation. In
Budyko curve, the water supply 𝑃 is partitioned into actual
evapotranspiration (𝐸) and runoff (𝑄) with the evapotranspi-
ration demand being 𝑃𝐸. Accordingly, the adjusted models
make a multistep precipitation partition given the water
competition between catchment replenishment demand and
evapotranspiration demand. Table 1 listed the analysis of
some widely accepted water balance models following this
cognitive framework.

Due to the same constraints of extreme zero-order and
first-order boundary conditions where water supply far
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Figure 1: Quantization of continuous random variable.

surpasses or falls behind demand, the curves above take on
similar shapes and achieve similar satisfactory performances
in monthly scale simulation. Each model requires 2 (in
TPWB) to 4 (inABCDorDWBM)parameters to adjust curve
concavity and position to fit for observations. The statistic
characteristics of state variables and parameters differ as the
modelling scale changes [9]. It is interesting to make a closer
examination of data-revealed hydrologic pattern and model
performance during scale transition given the wide temporal
scale gap between event-scale hydrologic process and annual-
mean water balance.

Variables in large temporal scale hydrologic models are
the aggregation of themselves in small scale models.The goal
of these models is to find out the control of the aggregated
variables on that period’s total water balance, which is deter-
mined by the inner-scale temporal distribution of hydrologic
events and catchment’s storage capacity [10]. For instance,
given the same average water and energy supply, catchments
with uniformly distributed rainfall and large storage capacity
tend to generate less direct runoff and more evapotranspi-
ration. These determinants are simplified as state variable 𝑆

in the water balance models. The motivation of this paper
was to quantify data-revealed (potential) andmodel-revealed
(achieved) control of hydrometeorological variables’ mean
values on catchments average water balance over different
temporal scales.The estimationswere implementedwithin an
information theoretical framework namedAleatory Epistemic
Uncertainty Estimation (AEUE) [11] for its mathematical
elegance in assessing such insufficient information control
problems.

The rest of the paper is structured as follows: in Section 2,
the definitions and properties of AEUE are briefly introduced
before clarifying its logical extensions and technical adap-
tions in this work. Section 3 gives the data description. The
results and their interpretations are in Sections 4 and 5. The
last section draws conclusion and recommends directions for
future work.

2. Methodology

2.1. Aleatory and Epistemic Uncertainty in Hydrologic Sim-
ulation. It is intuitively believed that infrequent samples
of a random variable bring more surprise or information.
The mathematical expression of this common sense is

that information provided by an observation should be a
decreasing function of its probability. If we further require
the additive property of information between independent
events, the formof information content attributed to a sample
with probability𝑝 should be− log𝑝.The average information
content of random variable 𝑋 is

𝐻(𝑋) = −Σ𝑝 (𝑥) log𝑝 (𝑥)

ℎ (𝑋) = −∫𝑓 (𝑥) log𝑓 (𝑥) 𝑑𝑥.

(1)

𝐻(𝑋) and ℎ(𝑋) are defined as discrete and continuous
Shannon entropy [12], both measured in bits for logarithm
base 2. The two terms are connected with the following
limitation relation [13]:

𝐻(𝑋
Δ
) → ℎ (𝑋) − logΔ, as Δ → 0. (2)

As is shown in Figure 1, 𝑋
Δ denotes the discrete random

variable by scattering the continuous random variable𝑋 into
binswithwidth ofΔ in its probability density function (p.d.f.).
ℎ(𝑋) − logΔ represents the information content required
to describe 𝑋 to − logΔ bit accuracy [13]. Here − logΔ bit
accuracy means 𝑋 takes the same value in a Δ width bin in
the p.d.f. curve.

Entropy maps the probability distribution function to a
real number. Apply this functionalmap to both sides of Bayes’
Theorem; we have

− ∑

𝑋

∑

𝑌

𝑃 (𝑋, 𝑌) log𝑃 (𝑋 | 𝑌)

= −∑

𝑋

∑

𝑌

𝑃 (𝑋, 𝑌) log𝑃 (𝑋)

− ∑

𝑋

∑

𝑌

𝑃 (𝑋, 𝑌) log 𝑃 (𝑋𝑌)

𝑃 (𝑋) 𝑃 (𝑌)

(3)

or

− ∬𝑃 (𝑋, 𝑌) log𝑃 (𝑋 | 𝑌) 𝑑𝑋𝑑𝑌

= −∬𝑃 (𝑋, 𝑌) log𝑃 (𝑋) 𝑑𝑋𝑑𝑌

− ∬𝑃 (𝑋, 𝑌) log 𝑃 (𝑋𝑌)

𝑃 (𝑋) 𝑃 (𝑌)
𝑑𝑋𝑑𝑌.

(4)

In the literature of information theory, they are denoted as

𝐻(𝑋 | 𝑌) = 𝐻 (𝑋) − 𝐼 (𝑋, 𝑌) (5)

or

ℎ (𝑋 | 𝑌) = ℎ (𝑋) − 𝐼 (𝑋, 𝑌) . (6)

Each term in the equations above is named in corre-
spondence with that in Bayes’ Theorem. Explicitly, 𝐻(𝑋 | 𝑌)

and ℎ(𝑋 | 𝑌) are called conditional entropy, which represent
the posterior uncertainty of 𝑋 given the knowledge of 𝑌.
𝐻(𝑋) and ℎ(𝑋) represent the prior uncertainty. 𝐼(𝑋; 𝑌)
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Table 1: Structure analysis of water balance models1.

Model Replenishment demand Evapotranspiration demand Constitutive functions

ABCD [32] 𝑏 𝑃𝐸
Δ𝑆 =

𝑆 + 𝑃

2𝑎
− √(

𝑆 + 𝑃 + 𝑏

2𝑎
)

2

−
(𝑆 + 𝑃) 𝑏

𝑎

𝐸 = Δ𝑆 × (1 − 𝑒
−𝑃𝐸/𝑏

)

DWBM [33] 𝑆max − 𝑆 + 𝑃𝐸 𝑃𝐸
Δ𝑆 = 𝑆max−𝑆+𝑃𝐸+𝑃−[(𝑆max − 𝑆 + 𝑃𝐸)

𝜔

+ 𝑃
𝜔
]
1/𝜔

𝐸 = Δ𝑆 + 𝑆 + 𝑃𝐸 − [(Δ𝑆 + 𝑆)
𝜔2 + 𝑃𝐸

𝜔2 ]
1/𝜔2

TPWB [17] 𝑆𝐶 𝑃𝐸

Δ𝑆 = (𝑆 + 𝑃 − 𝐸) × tanh(
𝑆 + 𝑃 − 𝐸

𝑆𝐶
) − 𝑆

𝐸 = 𝐶 × 𝑃𝐸 × tanh(
𝑃 + 𝑆

𝑃𝐸
)

1Symbols without explicit explanation are model parameters.

is called mutual information. It represents the information
contribution one variable provides to the other.

The application of Bayes’ Theorem in hydrologic simu-
lation assessment [14–16] endows each of the information
terms with its hydrologic significance. Conceive 𝑋 as the
hydrologic variable to be simulated and 𝑌 as the input
variable observations, both taken as continuous random
variables; (6) quantifies the residual uncertainty of the hydro-
logic system given the inaccurate and insufficient observation
system. This uncertainty is named as Aleatory Uncertainty
(AU) [11]:

Aleatory Uncertainty = 𝐻 (𝑋
𝑜
) − 𝐼 (𝑋

𝑜
; 𝑋
𝑖
) . (7)

Here𝑋
𝑜
,𝑋
𝑖
represent the observed output and input random

variables of hydrologic models. It should be noted that 𝑋
𝑖

is usually high dimensional, since information comes from
different resources (both hydrometeorology and underlying
surface observations) and lagging effects of former hydro-
logic behaviours. Models try to distill the largest information
from 𝑋

𝑖
to construct their simulations 𝑋

𝑠
. Given that 𝑋

𝑠

is function of 𝑋
𝑖
, Data Processing Inequality Theorem [13]

confirms that the potential maximum information models
could distill (represented as 𝐼(𝑋

𝑜
, 𝑋
𝑠
)) is not larger than that

provided by the original data (represented as 𝐼(𝑋
𝑜
, 𝑋
𝑖
)). A

detailed proof is given in Appendix. The information loss
due to imperfect input data processing is defined as Epistemic
Uncertainty (EU) [11]:

Epistemic Uncertainty = 𝐼 (𝑋
𝑜
; 𝑋
𝑖
) − 𝐼 (𝑋

𝑜
; 𝑋
𝑠
) . (8)

Equations (7) and (8) construct the Aleatory Epistemic
Uncertainty Estimation (AEUE) framework. The sum of AU
and EU is the posterior uncertainty of the hydrologic system
given the simulation system.

2.2. Extending AEUE for Temporal Scale Information Anal-
ysis. To implement AEUE across temporal scales, daily
hydrometeorologic observations were aggregated into dif-
ferent temporal scales. The aggregated data were used for
estimation of each term in (7) and (8). To achieve a
more explicit information analysis, we adapted the strat-
egy to gradually expand input variable species and lag-
ging steps to detect the decreasing trajectory of AU. The
decrease is attributed as the information contribution of

Table 2: Information terms to be estimated.

Classification Estimated terms
Observation ℎ (𝑄)

Focused
𝐼 (𝑄; 𝑃) , 𝐼 (𝑄; 𝑃, 𝑃former)

𝐼 (𝑄; 𝑃, 𝑃𝐸) , 𝐼 (𝑄; 𝑃, 𝑃former, 𝑃𝐸, 𝑃𝐸former)

𝐼 (𝑄; 𝑃, 𝑃former, 𝑃𝐸, 𝑃𝐸former, 𝑄former)

Model TPWB: 𝐼(𝑄; 𝑄
𝑠
), 𝐼(𝑄; 𝑃, 𝑃𝐸, 𝑆)

Focused Budyko: 𝐼(𝑄;𝑄
𝑠
)

the included variables. For example, AU(𝑄; 𝑃, 𝑃𝐸)−AU(𝑄; 𝑃)

(which simplified to 𝐼(𝑄; 𝑃, 𝑃𝐸) − 𝐼(𝑄; 𝑃) according to
(7)) represents the information contribution of includ-
ing energy supply constraints (𝑃𝐸) in simulation, while
AU(𝑄; 𝑃, 𝑃former, 𝑃𝐸, 𝑃𝐸former)−AU(𝑄; 𝑃, 𝑃𝐸) (which simpli-
fied to 𝐼(𝑄; 𝑃, 𝑃former, 𝑃𝐸, 𝑃𝐸former) − 𝐼(𝑄; 𝑃, 𝑃𝐸)) represents
the information contribution of former calculating steps’
hydrologic lagging effects; in other words, it denotes the soil
moisture memory significance.

EU of two typical water balance models were estimated.
The Two-Parameter Water Balance (TPWB) Model [17] was
preferred for its simplicity and satisfactory performance at
monthly scale. The model structure was listed in Table 1.
The other model was Budyko Model. It is the combination
of Budyko curve [18] and mass conservation function. The
most significant distinction between the two models is
that TPWB adapts iterative structure. The performance of
iterative models depends on its state variable’s capacity to
distill information of system’s lagging effects and its con-
stitutive functions’ capacity to utilize the distilled informa-
tion. These two factors were discerned through distinguish-
ing 𝐼(𝑄; 𝑃, 𝑃former, 𝑃𝐸, 𝑃𝐸former), 𝐼(𝑄; 𝑃, 𝑃𝐸, 𝑆), and 𝐼(𝑄;𝑄

𝑠
),

where 𝑆 represents model’s state variable and 𝑄
𝑠
represents

simulated runoff. The difference of the first two terms tells
state variable’s representativeness and difference between the
last two terms tells constitutive function’s data processing
efficiency.

Given the analysis above, the explicit AEUE framework
estimates the terms as listed in Table 2.

2.3. High Dimensional Mutual Information Estimator. The
major obstacle AEUE faces is the estimation of high dimen-
sional mutual information terms in Table 2. Samples of
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finite length can not support accurate estimation of their
probability distribution in high dimensional spaces. This
phenomenon, known as dimensionality curse [19], has hin-
dered the definition-based estimation ofmutual information.
Given this, some “nonplugin” methods have been developed.
The basic idea is to construct relation between carefully
designed sample statistics with its entropy [20] or to perform
transform for a step-by-step entropy estimation [21]. Mutual
information was estimated afterwards with the following
equation:

𝐼 (𝑋; 𝑌) = 𝐻 (𝑋) + 𝐻 (𝑌) − 𝐻 (𝑋, 𝑌) . (9)

As can be detected, errormay accumulate in these algorithms.
The estimator we adapted here belongs to the first mode

but makes direct estimation of mutual information. The
formula is based on the concept of 𝑘 nearest neighbour
distances [22]:

𝐼 (𝑋, 𝑌) = 𝜓 (𝑘)

− 𝑁
−1

𝑁

∑

𝑖=1

[𝜓 (𝑛
𝑥 (𝑖) + 1) + 𝜓 (𝑛

𝑦 (𝑖) + 1)]

+ 𝜓 (𝑁) .

(10)

Here 𝜓(𝑥) is the digamma function, 𝜓(𝑥) = Γ(𝑥)
−1

𝑑Γ(𝑥)/𝑑𝑥.
𝑘 is order of nearest neighbour; 𝑛

𝑥
(𝑖) and 𝑛

𝑦
(𝑖) are the

numbers of samples that are within the 𝑘th nearest crisscross
surrounding sample point 𝑖. 𝑘 takes 4 to balance the statistical
error and systematic error according to Kraskov’s suggestion
[22].

An intuitive explanation of (10) is that it estimates mutual
information with statistics that depicts the average concen-
trating density of each window opened around a sample
point. Numerical experiments showed that even less than
30 sample size produces satisfying results. For a strict proof,
please refer to Kraskov et al. [22].

The samples’ distance function should be predefined to
determine 𝑛

𝑥
and 𝑛
𝑦
in (10). Since different dimensions hold

specific hydrologic meanings and are not symmetric, the
distance could not be efficiently depicted with Euclidean
norm. Kernel trick was adapted to implicitly measure sample
distances in their feature space. Kernels were chosen by opti-
mizing their correspondent support vector regression (SVR)
[23] performance implemented on the test set. Satisfactory
kernel SVR performance suggests well-balanced compromise
between minimizing variance and bias in the proper fea-
ture space. Results showed that kernel SVR was effective
in performing high dimensional regression of hydrologic
variables [24–28]. The following function was used to depict
the distance between two input variable samples 𝑥

1
and 𝑥

2
:

Kernel Distance (𝑥
1
, 𝑥
2
) =

𝑓 (𝑥
1
) − 𝑓 (𝑥

2
)
 . (11)

𝑓(𝑥) is the support vector regression function that fitted the
input to the output variable. 𝑛

𝑥
and 𝑛
𝑦
were determined after

the calculation of distances between samples.
In practice, the support vector regression was imple-

mented using the LIBSVM package [29]. Radial basic func-
tion kernel was adopted for its satisfying performance. The

data were first normalized to [−1, 1] to balance the impact
of different dimensional terms. Results were sensitive to the
penalty function parameter 𝑐 and kernel parameter 𝑔, both of
which were autocalibrated with particle swarm optimization
algorithm [30].

3. Data

24 catchmentswith daily hydrologic records (including𝑃,𝑃𝐸,
and𝑄) fromMOPEXdata set [31] were selected to implement
cross temporal scale information analysis. Given their tem-
poral water-energy distribution patterns, the selected catch-
ments are classified into 4 groups, explicitly, weak seasonality
with synchronous rainfall energy distribution (WS), weak
seasonality with asynchronous rainfall energy distribution
(WA), strong seasonality with synchronous rainfall energy
distribution (SS), and strong seasonality with asynchronous
rainfall energy climate (SA). The classification standard was
based on the amplitude and phase of the average daily rainfall
fitted with 𝑠𝑖𝑛𝑒 curve. If the amplitude was less than 0.45,
the catchment was taken as weak seasonality. If the phase of
rainfall was inverse to that of potential evapotranspiration,
it was taken as asynchronous rainfall energy climate type.
The general conditions of the catchments were listed in
Table 3. The vegetation, soil type, land use, and other specific
catchment information are available from the following link:
ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/US Data/.

4. Aleatory and Epistemic Uncertainty across
Temporal Scales

4.1. Aleatory Uncertainty. Considering the implication of (2),
the Aleatory Uncertainty comparison across temporal scales
requires a scheme to preset resolution for each temporal
scale. Since the acceptable deviation of small temporal scale
hydrologicmodels should be stricter than larger scalemodels,
we prerequired relative constant resolution across temporal
scales. Explicitly, the width of the bin into which the objective
variable is clustered in the p.d.f. curve is proportional to its
mean value. It was further assumed that the mean value is
proportional to its temporal scales. Thus, the quantization
correction term in (2) is proportional to the logarithm of the
temporal scale. For two scales𝑚 and 𝑛 into which daily runoff
observation data were aggregated, the entropy difference for
depicting them with specific resolutions is

𝐻(𝑅
𝑚
) − 𝐻 (𝑅

𝑛
) = ℎ (𝑅

𝑚
) − ℎ (𝑅

𝑛
) − log 𝑚

𝑛
. (12)

Given this baseline, the estimated Aleatory Uncertainty
was shown as follows.

In each subgraph above, the abscissa represents the input
steps; for example, number 𝑛 denotes that the current and
(𝑛−1) lagging steps’ input observations were used to decrease
the uncertainty of runoff estimation. The ordinate represents
the estimating temporal scale, which varied from 10 days to a
year.

The general pattern is that AU decreases as temporal scale
expands or more lagging input observations were included. It
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Table 3: Catchment condition.

Climate type ID Location Area (km2) 𝑃mean (mm) 𝑃𝐸mean (mm) 𝑄mean (mm)

WA

02143000 81∘W, 36∘N 215 1299 882 553
02165000 82∘W, 34∘N 611 1252 965 539
02329000 84∘W, 31∘N 2953 1321 1101 330
02375500 87∘W, 31∘N 9886 1452 1061 549
02478500 86∘W, 31∘N 6967 1440 1055 489

WS

05585000 91∘W, 40∘N 3349 922 993 232
06908000 93∘W, 39∘N 2901 1001 1066 261
07019000 91∘W, 38∘N 9811 1006 959 303
07177500 96∘W, 36∘N 2344 948 1259 221
07243500 96∘W, 36∘N 5227 935 1303 160

SA

02414500 86∘W, 33∘N 4338 1371 976 542
02472000 89∘W, 31∘N 1924 1442 1059 509
11025500 117∘W, 33∘N 290 522 1407 34
11532500 124∘W, 42∘N 1577 2748 751 2212
12459000 121∘W, 48∘N 2590 1613 681 1105
13337000 116∘W, 46∘N 3056 1287 775 872
14359000 123∘W, 42∘N 5317 1052 851 510

SS

05418500 91∘W, 42∘N 4022 854 1017 254
05454500 91∘W, 41∘N 8472 839 984 224
05484500 94∘W, 41∘N 8912 794 998 117
06810000 96∘W, 40∘N 7268 808 1027 173
06892000 95∘W, 39∘N 1052 941 1110 228
06914000 95∘W, 38∘N 865 950 1186 236
07183000 96∘W, 37∘N 9889 877 1250 187

could be depicted that AU was closely related to catchment’s
seasonality type; specifically

AUSA > AUWA > AUWS > AUSS. (13)

The detailed analysis discerning each term’s information
contribution for different catchments was discussed in the
next session.

4.2. Epistemic Uncertainty. The estimated Epistemic Uncer-
tainty across temporal scales was shown in Figure 3.

For TPWB model, maximum EU appears around tem-
poral scales from 2 months to half a year. This showed that,
at seasonal temporal scale, the model can not distill the
information provided by the data effectively.

The EU difference between TPWB and Budyko Model
was related to the catchment’s seasonality. In 11 out of 14 asyn-
chronous seasonality catchments, EU differs significantly at
small temporal scales. The difference diminished as scale
expands. In the remaining 3 asynchronous catchments and
14 synchronous catchments, the difference stayed relatively
constant across temporal scales.

5. Specific Information Analysis

5.1. Information Contribution of Included Input Terms. The
including of new information sources could decrease simu-
lation uncertainty. The specific information contribution of
including energy provision 𝑃𝐸 and observed previous runoff

𝑄
𝑝
was obtained by subtracting the right column graphs from

the left column ones (Figure 4). For instance, AU(𝑄; 𝑃) −

AU(𝑄; 𝑃, 𝑃𝐸) denotes the information contribution of con-
sidering 𝑃𝐸 in the simulation.

For all the 10 weak seasonality catchments and 5 out of 14
strong seasonality catchments, the information contribution
of 𝑃𝐸 was more significant at temporal scales of less than
half a year. It was distributedmore uniformly across temporal
scales in the 9 left strong seasonality catchments.

The prominent information contribution of previous
runoff at small scales in some catchments was attributed to
runoff convergence influence.

5.2. Information Contribution of Soil Moisture Memory.
Previous hydrologic behaviour exerts influence on current
hydrologic response due to the storage capacity of soil mois-
ture. Here this influence is defined as soil moisture memory
andwas represented by the difference between splines in each
subgraph of Figure 2.

The second dissection scheme checks the information
contribution of including lagged inputs in mutual informa-
tion estimation.This is implemented bymaking differences in
mutual information estimated with different input steps; for
instance, the 𝑛th spline in each graph from Figure 5 equals
the difference of the (𝑛 + 1)th spline and 𝑛th spline in the
corresponding graph from Figure 6.

It could be depicted that the first lagging steps’ input vari-
ables provide most information contribution across all the
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Figure 2: Aleatory Uncertainty.

temporal scales estimated here. As shown in the first column
of Figure 5, these lagging effects were not significant when
considering only the water provision. The consideration of
energy provision is of key importance in estimating the soil
moisture length.

5.3. Dissection of Model’s Information Distilling Capacity. As
was declared, the simulation capacity of iterative structure
models depends on their capacity to distill lagging effects
information and process such information. The information
distilling and processing capacity were discerned in the
following graphs.

The ordinate of each graph denotes mutual informa-
tion. 𝐼(𝑄; 𝐼

𝑐
, 𝑆) represents the mutual information between

runoff and current input together with current state vari-
able. It denotes model’s capacity to distill lagging effects

fromprevious hydrologic behaviours.The difference between
𝐼(𝑄; 𝐼

𝑐
, 𝑆) and 𝐼(𝑄;𝑄

𝑠
) denotes model’s capacity to process

the information it distilled.
It could be depicted that, in synchronous climate catch-

ments, the information distilled byTPWBandBudykoModel
increases as temporal scale expands, while, in asynchronous
climate catchments, the information distilling capacity of
TPWB does not change monotonously with temporal scales.

6. Discussion and Conclusion

The aggregation of event-scale hydrologic processes yields
to the large temporal scale water-energy correlation pattern.
The temporal scale transition was examined in the extended
Aleatory Epistemic Uncertainty Estimation framework.

The Aleatory Uncertainty quantified the uncertainty
caused by inaccurate and insufficient observation. For a large
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Figure 3: Epistemic Uncertainty.

temporal scale, since the daily observations were aggregated,
the large number law guaranteed that the accumulated error
tended to 0 when there was no systematic observation bias.
Thus, AU was mainly attributed to the insufficience of data.
The aggregated variables could exert certain control on the
total water balance. The control significance was closely
related to the seasonality type as quantified in the previous
session.

The Epistemic Uncertainty of a monthly and mean
annual water balance model was estimated.The performance
of TPWB was evaluated by quantifying its information
distilling capacity and data processing efficiency. Results
showed that information distilled by the models applied
here did not correspond to the information provided by
input observations around temporal scale from two months

to half a year. This called for a better understanding of
seasonal hydrologic mechanism. The information distill-
ing capacity difference of TPWB and Budyko Model was
related to the inner-year distribution of water and energy.
In asynchronous catchments, the difference converged to
0 at half year scale, which suggested close hydrologic
cycle.

The evaluations also revealed some counterintuitive phe-
nomenon that needs to be stressed and explained.Themean-
ing of soil storage capacity from a large temporal scale per-
spective was not as physically clear as it is in event scale. The
state variable 𝑆 is influenced by the distribution of hydrologic
processes and soil properties.The strict definition is required
to explain the uncertainty differences in different seasonality
catchments.
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Figure 4: Information contribution of 𝑃𝐸 and 𝑄
𝑝
.

Appendix

Data Processing Inequality

The Data Processing Inequality states that if𝑋, 𝑌, and 𝑍 form
a Markov Chain (denoted as 𝑋 → 𝑌 → 𝑍), which means 𝑋

and 𝑍 are conditionally independent given 𝑌, then
𝐼 (𝑋; 𝑍) ≤ 𝐼 (𝑋; 𝑌) . (A.1)

The proof is given due to the nonnegative effects of informa-
tion:

𝐼 (𝑋; 𝑍) = 𝐻 (𝑋) − 𝐻 (𝑋 | 𝑍)

≤ 𝐻 (𝑋) − 𝐻 (𝑋 | 𝑌, 𝑍)

= 𝐻 (𝑋) − 𝐻 (𝑋 | 𝑌) = 𝐼 (𝑋; 𝑌) .

(A.2)

Specifically, if 𝑍 = 𝑓(𝑌), then 𝑋 → 𝑌 → 𝑓(𝑌); we have

𝐼 [𝑋; 𝑔 (𝑌)] ≤ 𝐼 [𝑋; 𝑌] . (A.3)

This confirms that information could not be produced
through data processing.

For hydrologic simulation, due to the nonnegative effects
of information, the inclusion of new input terms will not
increase AU in our context. From a functional perspective,
models act as a function that transfers input variables
into output variables, with the estimated state variables
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Figure 5: Information contribution of former inputs.

as intermediate products. Variables from models form the
following Markov Chain:

𝑄 → Inputprevious,

Inputcurrent → 𝑆,

Inputcurrent → 𝑄
𝑠
.

(A.4)

This clarified the reason to perform model information
diagnosis as presented in Figure 6.
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[22] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating
mutual information,” Physical Review E, vol. 69, no. 6, Article
ID 066138, 2004.

[23] D. Basak, S. Pal, and D. C. Patranabis, “Support vector regres-
sion,”Neural Information Processing-Letters and Reviews, vol. 11,
no. 10, pp. 203–224, 2007.

[24] Y. B. Dibike, S. Velickov, D. Solomatine, and M. B. Abbott,
“Model induction with support vector machines: introduction
and applications,” Journal of Computing inCivil Engineering, vol.
15, no. 3, pp. 208–216, 2001.

[25] T. Asefa, M. Kemblowski, M. McKee, and A. Khalil, “Multi-
time scale stream flow predictions: the support vectormachines
approach,” Journal of Hydrology, vol. 318, no. 1–4, pp. 7–16, 2006.

[26] M. Behzad, K. Asghari, M. Eazi, and M. Palhang, “General-
ization performance of support vector machines and neural
networks in runoffmodeling,”Expert Systems with Applications,
vol. 36, no. 4, pp. 7624–7629, 2009.

[27] W. Gong, Watershed model uncertainty analysis based on
information entropy and mutual information [Ph.D. thesis],
Department of Hydraulic Engineering, Tsinghua University,
Beijing, China, 2013.

[28] J.-Y. Lin, C.-T. Cheng, and K.-W. Chau, “Using support vector
machines for long-term discharge prediction,” Hydrological
Sciences Journal, vol. 51, no. 4, pp. 599–612, 2006.

[29] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, no. 3, article 27, 2011.

[30] Y. Shi and R. Eberhart, “Modified particle swarm optimizer,”
in Proceedings of the IEEE World Congress on Computational
Intelligence Evolutionary Computation, pp. 69–73, Anchorage,
Alaska, USA, May 1998.

[31] Q. Duan, J. Schaake, V. Andréassian et al., “Model Parameter
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